Intera and Interspecific Variations Among
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marine Invertebrate Field Guide
Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ........................................................................................................................................................................................... -
Title Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere
Biogeography in Cellana (Patellogastropoda, Nacellidae) with Title Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species González-Wevar, Claudio A.; Nakano, Tomoyuki; Palma, Author(s) Alvaro; Poulin, Elie Citation PLOS ONE (2017), 12(1) Issue Date 2017-01-18 URL http://hdl.handle.net/2433/218484 © 2017 González-Wevar et al. This is an open access article distributed under the terms of the Creative Commons Right Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Type Journal Article Textversion publisher Kyoto University RESEARCH ARTICLE Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species Claudio A. GonzaÂlez-Wevar1,2*, Tomoyuki Nakano3, Alvaro Palma4, Elie Poulin1 1 GAIA-AntaÂrtica, Universidad de Magallanes, Punta Arenas, Chile, 2 Instituto de EcologõÂa y Biodiversidad Ä a1111111111 (IEB), Departamento de Ciencias EcoloÂgicas, Facultad de Ciencias, Universidad de Chile, Nuñoa, Santiago, Chile, 3 Seto Marine Biological Laboratory, Field Science Education and Research Centre, Kyoto University, a1111111111 Nishimuro, Wakayama, Japan, 4 Universidad Gabriela Mistral, Facultad de IngenierõÂa y Negocios, a1111111111 Providencia, Santiago, Chile a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Oceanic islands lacking connections to other land are extremely isolated from sources of Citation: GonzaÂlez-Wevar CA, Nakano T, Palma A, potential colonists and have acquired their biota mainly through dispersal from geographi- Poulin E (2017) Biogeography in Cellana cally distant areas. Hence, isolated island biota constitutes interesting models to infer bio- (Patellogastropoda, Nacellidae) with Special geographical mechanisms of dispersal, colonization, differentiation, and speciation. Limpets Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species. -
Appendix 1. Bodega Marine Lab Student Reports on Polychaete Biology
Appendix 1. Bodega Marine Lab student reports on polychaete biology. Species names in reports were assigned to currently accepted names. Thus, Ackerman (1976) reported Eupolymnia crescentis, which was recorded as Eupolymnia heterobranchia in spreadsheets of current species (spreadsheets 2-5). Ackerman, Peter. 1976. The influence of substrate upon the importance of tentacular regeneration in the terebellid polychaete EUPOLYMNIA CRESCENTIS with reference to another terebellid polychaete NEOAMPHITRITE ROBUSTA in regard to its respiratory response. Student Report, Bodega Marine Lab, Library. IDS 100 ∗ Eupolymnia heterobranchia (Johnson, 1901) reported as Eupolymnia crescentis Chamberlin, 1919 changed per Lights 2007. Alex, Dan. 1972. A settling survey of Mason's Marina. Student Report, Bodega Marine Lab, Library. Zoology 157 Alexander, David. 1976. Effects of temperature and other factors on the distribution of LUMBRINERIS ZONATA in the substratum (Annelida: polychaeta). Student Report, Bodega Marine Lab, Library. IDS 100 Amrein, Yost. 1949. The holdfast fauna of MACROSYSTIS INTEGRIFOLIA. Student Report, Bodega Marine Lab, Library. Zoology 112 ∗ Platynereis bicanaliculata (Baird, 1863) reported as Platynereis agassizi Okuda & Yamada, 1954. Changed per Lights 1954 (2nd edition). ∗ Naineris dendritica (Kinberg, 1867) reported as Nanereis laevigata (Grube, 1855) (should be: Naineris laevigata). N. laevigata not in Hartman 1969 or Lights 2007. N. dendritica taken as synonymous with N. laevigata. ∗ Hydroides uncinatus Fauvel, 1927 correct per I.T.I.S. although Hartman 1969 reports Hydroides changing to Eupomatus. Lights 2007 has changed Eupomatus to Hydroides. ∗ Dorvillea moniloceras (Moore, 1909) reported as Stauronereis moniloceras (Moore, 1909). (Stauronereis to Dorvillea per Hartman 1968). ∗ Amrein reported Stylarioides flabellata, which was not recognized by Hartman 1969, Lights 2007 or the Integrated Taxonomic Information System (I.T.I.S.). -
The Limpets of Hong Kong with Descriptions of Seven New
60 DAVID DUDGEON Proceedings, First International Workshop Thompson, C.M. and Sparks, R.E. 1977b. Improbability of dispersal of adult Asiatic on the Malacofauna of clams, Corbicula manilensis via the intestinal tract of migratory waterfowl.American Hong Kong and Southern China, Midland Naturalist 98: 219-213. 23 March — 8 April 1977, Hong Kong Walford, P.R. 1946. A new graphic method of describing growth of animals.Biological Bulletin o f the Marine Biological Laboratory, Woods Hole 90: 141-147. Walne, P.R. 1972. The influence of current speed, body size and water temperature on the’ filtration rate o f five species o f bivalves.Journal o f the Marine Biological Asso THE LIMPETS OF HONG KONG WITH DESCRIPTIONS OF ciation of the United Kingdom 52: 345-374. SEVEN NEW SPECIES AND SUBSPECIES J. Christiaens 2 4 2 7 Justus Lipsiuslaan 26 B3 500, Hasselt, Belgium During the course of the malacological workshop the following stations were vistited: Wu Kwai Sha: a pebble beach, a rocky shore and a mangrove. Tolo Channel: Bluff Head (on the northern shore), Gruff Head (on the exposed southern shore) and Channel Rock, surrounded by coral, in the middle of the channel and reached by diving to a depth o f 10 m. Hong Kong Island: the exposed rocky shore at Wah Fu and the beach and bay at Stanley, the islands of Kat 0 Chau and Ping Chau, the last with a south-western shore exposed to heavy surf and sheltered to the north east. Subsequently two supplementary lots of limpets were received from Dr. -
Patterns and Processes in the Biogeography of the Limpet Nacella (Mollusca: Patellogastropoda) Across the Southern Ocean Claudio A
Journal of Biogeography (J. Biogeogr.) (2017) 44, 861–874 ORIGINAL Following the Antarctic Circumpolar ARTICLE Current: patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean Claudio A. Gonzalez-Wevar1,2*, Mathias Hune€ 2, Nicolas I. Segovia2, Tomoyuki Nakano3, Hamish G. Spencer4, Steven L. Chown5, Thomas Saucede6, Glenn Johnstone7,Andres Mansilla1 and Elie Poulin2 1Universidad de Magallanes, Bulnes 01890, ABSTRACT Punta Arenas, Chile, 2Instituto de Ecologıa y Aim We use an integrative biogeographical approach to further understand the Biodiversidad (IEB), Departamento de evolution of an important Southern Ocean marine benthic element, the limpet Ciencias Ecologicas, Universidad de Chile, Las Palmeras 3425, Nu~ noa,~ Santiago, Chile, 3Seto genus Nacella (Mollusca: Patellogastropoda). Marine Biological Laboratory, Field Science Location Southern Ocean. Education and Research Centre, Kyoto University, Wakayama 649-2211, Japan, Methods We used multi-locus time-calibrated phylogeny of Nacella at the 4Allan Wilson Centre, Department of Zoology, scale of the whole Southern Ocean to elucidate the underlying processes University of Otago, Dunedin 9054, New involved in the origin and diversification of the genus. Zealand, 5School of Biological Sciences, Results Divergence-time estimates suggest that soon after its origin during the Monash University, Melbourne, VIC 3800, mid-Miocene (c. 12.5 Ma), Nacella separated into two main lineages currently Australia, 6Biogeosciences, UMR CNRS 6282, distributed in (1) South America and (2) Antarctica and the sub-Antarctic Universite de Bourgogne, Dijon 21000, islands. We identified two pulses of diversification, during the late Miocene (8 France, 7Australian Antarctic Division, < Kingston TAS 7050, Australia to 5.5 Ma) and the Pleistocene ( 1 Ma). -
Molecular Phylogeny and Historical Biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean
Molecular Phylogenetics and Evolution 56 (2010) 115–124 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean Claudio A. González-Wevar a, Tomoyuki Nakano b, Juan I. Cañete c, Elie Poulin a,* a Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile b Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo, Japan c Departamento de Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile article info abstract Article history: The evolution and the historical biogeography of the Southern Ocean marine benthic fauna are closely Received 14 September 2009 related to major tectonic and climatic changes that occurred in this region during the last 55 million years Revised 29 January 2010 (Ma). Several families, genera and even species of marine organisms are shared between distant biogeo- Accepted 1 February 2010 graphic provinces in this region. This pattern of distribution in marine benthic invertebrates has been Available online 6 February 2010 commonly explained by vicariant speciation due to plate tectonics. However, recent molecular studies have provided new evidence for long-distance dispersion as a plausible explanation of biogeographical Keywords: patterns in the Southern Ocean. True limpets of the genus Nacella are currently distributed in different Antarctic Circumpolar Current biogeographic regions of the Southern Ocean such as Antarctica, Kerguelen Province, southern New Zea- Cellana Middle-Miocene climatic transition land Antipodean Province, North-Central Chile and South American Magellanic Province. -
Life Cycle of the Symbiotic Scaleworm Arctonoe Vittata (Polychaeta: Polynoidae)
Ophelia Suppl. 5: 305-312 (February 1991) Life Cycle of the Symbiotic Scaleworm Arctonoe vittata (Polychaeta: Polynoidae) T A . Britayev A.N. Severtzov Institute of Animal Morphology and Ecology Lenin Avenue 33, Moscow W-71, U.S.S .R . ABSTRACT The reproductive biology, some stages of de velopment, size structure, distribution by hosts, behaviour and tr aumatism were studied in a population of Arctonoeoittata at Vostok Bay (Sea ofJapan). The species is associat ed with the starfish Asterias amurensis and the limpet A cmaea pallida. It is a polytelic species with an annual reproductive cycle. Spawning occu rs during June and July. Larval development is planktotrophic and lasts about a month. Distribution of young specimens is random as a result of settlement. Analysis of different size groups of sym bionts on starfish reveals a uniformity in their distribution, wh ich is increased due to the size of the pol ynoids. Intraspecific aggressive behaviour is characteri stic for thi s spe cies. Aggressive interactions among the worms stim ula te one or mor e of them to leave a host and move onto another host - mollu sc or starfish - result ing in a uniform distribution oflarge symbionts on the hosts . For at lea st part of the symbiont population, the starfish Astenas amurensis serv es as the intermediate host and the limpet Acmaea pallida as the definitive host. Keyword s: Polychaeta, Polynoid ae, Arctonoe, sym bionts, intraspecific aggression, distribution, reproduction. INTRODUCTION The genus ArctonoeChamberlin includes three species: the typ e speciesA. vittata (Grube), A . pulchra (johnson) and A . jragilis (Baird) (Pettibone 1953: 56-66 , pis. -
Ices Wgitmo Report 2013
ICES WGITMO REPORT 2013 ICES ADVISORY COMMITTEE ICES CM 2013/ACOM:30 Report of the ICES Working Group on Introduc- tion and Transfers of Marine Organisms (WGITMO) 20 - 22 March 2013 Montreal, Canada International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2013. Report of the ICES Working Group on Introduction and Transfers of Ma- rine Organisms (WGITMO), 20 - 22 March 2013, Montreal, Canada. ICES CM 2013/ACOM:30. 149 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2013 International Council for the Exploration of the Sea ICES WGITMO REPORT 2013 i Contents Executive summary ................................................................................................................ 1 1 Opening of the meeting ................................................................................................ 2 2 Adoption of the agenda ................................................................................................ 2 3 WGITMO Terms of Reference .................................................................................... 2 4 Progress in relation -
Out of Antarctica: Quaternary Colonization of Sub-Antarctic Marion Island by the Limpet Genus Nacella (Patellogastropoda: Nacellidae)
Polar Biol DOI 10.1007/s00300-014-1620-9 ORIGINAL PAPER Out of Antarctica: quaternary colonization of sub-Antarctic Marion Island by the limpet genus Nacella (Patellogastropoda: Nacellidae) Claudio A. Gonza´lez-Wevar • Steven L. Chown • Simon Morley • Nestor Coria • Thomas Sauce´de • Elie Poulin Received: 29 January 2014 / Revised: 3 November 2014 / Accepted: 12 November 2014 Ó Springer-Verlag Berlin Heidelberg 2014 Abstract The distribution of the Southern Ocean near- Nacella concinna and its sub-Antarctic relative Nacella shore marine benthic fauna is the consequence of major delesserti from Marion Island stands against this tenet. geologic, oceanographic, and climatic changes during the Here, we performed new phylogenetic reconstructions in last 50 Ma. As a result, a main biogeographic principle in Nacella with special emphasis on the relationship between the Southern Ocean is the clear distinction of the Antarctic N. concinna and N. delesserti. Similarly, we performed biota. The Antarctic Polar Front (APF) represents an population-based analyses in N. concinna and N. delesserti important barrier between Antarctica and other sub-Ant- to further understand the genetic legacy of the Quaternary arctic provinces. However, the high degree of genetic glacial cycles. Phylogenetic reconstructions recognized N. affinity between populations of the Antarctic limpet concinna and N. delesserti as two closely but distinct monophyletic entities and therefore as valid evolutionary units. The cladogenetic process separating them occurred This article is an invited contribution on Life in Antarctica: *0.35 Ma and is consistent with the origin of Marion Boundaries and Gradients in a Changing Environment as the main Island (*0.45 Ma). -
Shell Shape Variation of Tropical Limpet Shell Shape Variation of Tropical Limpet Cellana Testudinaria Cellana Testudinaria (Cla
ILMU KELAUTAN. September 2006. Vol. 11 (3) : 171 - 180 ISSN 0853 - 7291 Shell Shape Variation of Tropical Limpet Cellana testudinaria (Class: Gastropoda, Family: Patellidae) Living on the Rocky Shore in Relation to Their Zonal Distribution Abraham Seumel Khouw Faculty of Fisheries and Marine Sciences, Pattimura University, Ambon – Indonesia, Phone: 0911-351727, HP: 081343044295, E-mail: [email protected] Abstrak Pengujian terhadap dimensi tubuh dari limpet C. testudinaria mengindikasikan bahwa sampel yang dikoleksi dari tiga tingkatan zona pantai adalah berbeda nyata dalam panjang, lebar, tinggi, jarak antara puncak cangkang dari anterior, dan jarak antara puncak cangkang dari posterior. Keseluruhan hubungan antara panjang cangkang terhadap dimensi tubuh lainnya adalah alometrik negatif. Hubungan antara panjang cangkang dengan jarak apex-anterior dan apex-posterior mengindikasikan bahwa bentuk cangkang untuk limpet berukuran panjang 18 mm yang hidup pada zona bawah cenderung agak ke belakang sedangkan ukuran yang lebih besar cenderung agak ke depan. Studi morfometri pada rasio panjang cangkang terhadap lebar dan tinggi cangkang serta rasio keliling terhadap volume cangkang menunjukkan hasil yang sama dengan analisa pada dimensi tubuh yang mengindikasikan bahwa limpet yang menempati zona bawah adalah lebih lebar, tinggi dan lebih lancip dari limpet yang menempati zona atas dan tengah dari pantai. Kata kunci: Limpet, Cellana testudinaria, dimensi tubuh, zona pantai, allometri. Abstract An examination of the body dimensions of C. testudinaria indicated that specimens collected from the three different shore levels were significantly different in shell length (L), width (B), height (H), distance from apex to anterior margin (AA), and distance from apex to posterior margin (AP). The overall relationships between body dimensions and shell length were negatively allometric. -
GROWTH DETERMINATION of TROPICAL LIMPET Cellana Testudinaria (Linnaeus, 1758) LIVING on the ROCKY SHORE of OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA
Journal of Coastal Development ISSN : 1410 - 5217 Volume 10, Number 2, February 2007 : 89 - 103 Accredited : 23a / Dikti/Kep/ 2004 GROWTH DETERMINATION OF TROPICAL LIMPET Cellana testudinaria (Linnaeus, 1758) LIVING ON THE ROCKY SHORE OF OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA Abraham S Khow*) Faculty of Fisheries and Marine Sciences, Pattimura University, Ambon 97123 Indonesia Received : June, 21, 2006 ; Accepted : December, 12 , 2006 ABSTRACT Monthly shell-length frequency distributions were used to analyse the size and age structure of the limpet population inhabiting the rocky shore of Ohoiwait, Southeast Moluccas. The lengths of the collected specimens ranged from 8.0 to 31.8 mm. The analysis of the successive frequency distributions suggested that the population consisted of 4 to 5 distinct age groups (cohorts) at any given time, and that two new cohorts recruited during the one-year investigation period. An analysis to determine growth pattern using FiSAT software showed that the longevity of C. testudinaria extended up to 2 years. The values of von Bertalanffy growth parameters (L∞, K and t0), estimated from size-frequency distributions, were 33.1 mm, 1.4 yr-1, and 0.09, respectively. The highest growth increments were 25% and 18% of the asymptotic length during the first 3 and 6 months, respectively. The effects of environmental variables on the growth rates showed important seasonal variations, with the highest increment of 2.6 mm/month during dry season. Here, growth parameter of C. testudinaria limpet shows the same value as other tropical limpets and depends on environmental variables. Key Words: Shell-length frequency distributions, Growth determination, Cellana testudinaria. -
GROWTH DETERMINATION of TROPICAL LIMPET Cellana Testudinaria (Linnaeus, 1758) LIVING on the ROCKY SHORE of OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA
Journal of Coastal Development ISSN : 1410 - 5217 Volume 10, Number 2, February 2007 : 89 - 103 Accredited : 23a / Dikti/Kep/ 2004 GROWTH DETERMINATION OF TROPICAL LIMPET Cellana testudinaria (Linnaeus, 1758) LIVING ON THE ROCKY SHORE OF OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA Abraham S Khow*) Faculty of Fisheries and Marine Sciences, Pattimura University, Ambon 97123 Indonesia Received : June, 21, 2006 ; Accepted : December, 12 , 2006 ABSTRACT Monthly shell-length frequency distributions were used to analyse the size and age structure of the limpet population inhabiting the rocky shore of Ohoiwait, Southeast Moluccas. The lengths of the collected specimens ranged from 8.0 to 31.8 mm. The analysis of the successive frequency distributions suggested that the population consisted of 4 to 5 distinct age groups (cohorts) at any given time, and that two new cohorts recruited during the one-year investigation period. An analysis to determine growth pattern using FiSAT software showed that the longevity of C. testudinaria extended up to 2 years. The values of von Bertalanffy growth parameters (L∞, K and t0), estimated from size-frequency distributions, were 33.1 mm, 1.4 yr-1, and 0.09, respectively. The highest growth increments were 25% and 18% of the asymptotic length during the first 3 and 6 months, respectively. The effects of environmental variables on the growth rates showed important seasonal variations, with the highest increment of 2.6 mm/month during dry season. Here, growth parameter of C. testudinaria limpet shows the same value as other tropical limpets and depends on environmental variables. Key Words: Shell-length frequency distributions, Growth determination, Cellana testudinaria.