THE MINERAL FACIES of ROCKS Preface
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Facies and Mafic
Metamorphic Facies and Metamorphosed Mafic Rocks l V.M. Goldschmidt (1911, 1912a), contact Metamorphic Facies and metamorphosed pelitic, calcareous, and Metamorphosed Mafic Rocks psammitic hornfelses in the Oslo region l Relatively simple mineral assemblages Reading: Winter Chapter 25. (< 6 major minerals) in the inner zones of the aureoles around granitoid intrusives l Equilibrium mineral assemblage related to Xbulk Metamorphic Facies Metamorphic Facies l Pentii Eskola (1914, 1915) Orijärvi, S. l Certain mineral pairs (e.g. anorthite + hypersthene) Finland were consistently present in rocks of appropriate l Rocks with K-feldspar + cordierite at Oslo composition, whereas the compositionally contained the compositionally equivalent pair equivalent pair (diopside + andalusite) was not biotite + muscovite at Orijärvi l If two alternative assemblages are X-equivalent, l Eskola: difference must reflect differing we must be able to relate them by a reaction physical conditions l In this case the reaction is simple: l Finnish rocks (more hydrous and lower MgSiO3 + CaAl2Si2O8 = CaMgSi2O6 + Al2SiO5 volume assemblage) equilibrated at lower En An Di Als temperatures and higher pressures than the Norwegian ones Metamorphic Facies Metamorphic Facies Oslo: Ksp + Cord l Eskola (1915) developed the concept of Orijärvi: Bi + Mu metamorphic facies: Reaction: “In any rock or metamorphic formation which has 2 KMg3AlSi 3O10(OH)2 + 6 KAl2AlSi 3O10(OH)2 + 15 SiO2 arrived at a chemical equilibrium through Bt Ms Qtz metamorphism at constant temperature and = -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
The Origin of Formation of the Amphibolite- Granulite Transition
The Origin of Formation of the Amphibolite- Granulite Transition Facies by Gregory o. Carpenter Advisor: Dr. M. Barton May 28, 1987 Table of Contents Page ABSTRACT . 1 QUESTION OF THE TRANSITION FACIES ORIGIN • . 2 DEFINING THE FACIES INVOLVED • • • • • • • • • • 3 Amphibolite Facies • • • • • • • • • • 3 Granulite Facies • • • • • • • • • • • 5 Amphibolite-Granulite Transition Facies 6 CONDITIONS OF FORMATION FOR THE FACIES INVOLVED • • • • • • • • • • • • • • • • • 8 Amphibolite Facies • • • • • • • • 9 Granulite Facies • • • • • • • • • •• 11 Amphibolite-Granulite Transition Facies •• 13 ACTIVITIES OF C02 AND H20 . • • • • • • 1 7 HYPOTHESES OF FORMATION • • • • • • • • •• 19 Deep Crust Model • • • • • • • • • 20 Orogeny Model • • • • • • • • • • • • • 20 The Earth • • • • • • • • • • • • 20 Plate Tectonics ••••••••••• 21 Orogenic Events ••••••••• 22 Continent-Continent Collision •••• 22 Continent-Ocean Collision • • • • 24 CONCLUSION • . • 24 BIBLIOGRAPHY • • . • • • • 26 List of Illustrations Figure 1. Precambrian shields, platform sediments and Phanerozoic fold mountain belts 2. Metamorphic facies placement 3. Temperature and pressure conditions for metamorphic facies 4. Temperature and pressure conditions for metamorphic facies 5. Transformation processes with depth 6. Temperature versus depth of a descending continental plate 7. Cross-section of the earth 8. Cross-section of the earth 9. Collision zones 10. Convection currents Table 1. Metamorphic facies ABSTRACT The origin of formation of the amphibolite granulite transition -
Sequence Stratigraphy and Geochemistry of The
Report of Investigations 2007-1 SEQUENCE STRATIGRAPHY AND GEOCHEMISTRY OF THE UPPER LOWER THROUGH UPPER TRIASSIC OF NORTHERN ALASKA: IMPLICATIONS FOR PALEOREDOX HISTORY, SOURCE ROCK ACCUMULATION, AND PALEOCEANOGRAPHY by Landon N. Kelly, Michael T. Whalen, Christopher A. McRoberts, Emily Hopkin, and Carla Susanne Tomsich ASK AL A G N S E Y O E L O V G R U IC S A L L A A N SIC D GEOPHY Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 2007 Report of Investigations 2007-1 SEQUENCE STRATIGRAPHY AND GEOCHEMISTRY OF THE UPPER LOWER THROUGH UPPER TRIASSIC OF NORTHERN ALASKA: IMPLICATIONS FOR PALEOREDOX HISTORY, SOURCE ROCK ACCUMULATION, AND PALEOCEANOGRAPHY by Landon N. Kelly, Michael T. Whalen, Christopher A. McRoberts, Emily Hopkin, and Carla Susanne Tomsich 2007 This DGGS Report of Investigations is a final report of scientific research. It has received technical review and may be cited as an agency publication. STATE OF ALASKA Sarah Palin, Governor DEPARTMENT OF NATURAL RESOURCES Tom Irwin, Commissioner DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Robert F. Swenson, State Geologist and Acting Director Division of Geological & Geophysical Surveys publications can be inspected at the following locations. Address mail orders to the Fairbanks office. Alaska Division of Geological University of Alaska Anchorage Library & Geophysical Surveys 3211 Providence Drive 3354 College Road Anchorage, Alaska 99508 Fairbanks, Alaska 99709-3707 Elmer E. Rasmuson Library Alaska Resource Library University of Alaska Fairbanks 3150 C Street, Suite 100 Fairbanks, Alaska 99775-1005 Anchorage, Alaska 99503 Alaska State Library State Office Building, 8th Floor 333 Willoughby Avenue Juneau, Alaska 99811-0571 This publication released by the Division of Geological & Geophysical Surveys was produced and printed in Fairbanks, Alaska at a cost of $5.00 per copy. -
What We Know About Subduction Zones from the Metamorphic Rock Record
What we know about subduction zones from the metamorphic rock record Sarah Penniston-Dorland University of Maryland Subduction zones are complex We can learn a lot about processes occurring within active subduction zones by analysis of metamorphic rocks exhumed from ancient subduction zones Accreonary prism • Rocks are exhumed from a wide range of different parts of subduction zones. • Exhumed rocks from fossil subduction zones tell us about materials, conditions and processes within subduction zones • They provide complementary information to observations from active subduction systems Tatsumi, 2005 The subduction interface is more complex than we usually draw Mélange (Bebout, and Penniston-Dorland, 2015) Information from exhumed metamorphic rocks 1. Thermal structure The minerals in exhumed rocks of the subducted slab provide information about the thermal structure of subduction zones. 2. Fluids Metamorphism generates fluids. Fossil subduction zones preserve records of fluid-related processes. 3. Rheology and deformation Rocks from fossil subduction zones record deformation histories and provide information about the nature of the interface and the physical properties of rocks at the interface. 4. Geochemical cycling Metamorphism of the subducting slab plays a key role in the cycling of various elements through subduction zones. Thermal structure Equilibrium Thermodynamics provides the basis for estimating P-T conditions using mineral assemblages and compositions Systems act to minimize Gibbs Free Energy (chemical potential energy) Metamorphic facies and tectonic environment SubduconSubducon zone metamorphism zone metamorphism Regional metamorphism during collision Mid-ocean ridge metamorphism Contact metamorphism around plutons Determining P-T conditions from metamorphic rocks Assumption of chemical equilibrium Classic thermobarometry Based on equilibrium reactions for minerals in rocks, uses the compositions of those minerals and their thermodynamic properties e.g. -
Metamorphic Facies Metamorphic Grade Metamorphic Zones
Metamorphic Grade • Controlled by the temperature of Metamorphic Facies metamorphism • Low-grade rocks contain hydrated and Best, Chapter 10 carbonated phases • High-grade rocks are dehydrated and decarbonized Metamorphic Zones • Mappable metamorphic units of similar grade in a rock of distinct composition • Isograds are lines marking the first appearance of key minerals • Zones of Barrow – Biotite, garnet, staurolite, kyanite, sillimanite Metamorphic Reactions Metamorphic Facies • Formation of talc in a siliceous dolomite Dol + Qtz + H20 = Tlc + Cal + C02 • The set of mineral assemblages occurring in • Controlled by the ratio of H 0/ C0 2 2 rocks of diverse composition • Facies develop under restricted P,T conditions • Mineral assemblages may be plotted on ACF diagrams Main Facies Review of Facies • Zeolite • Prehnite- • Mineral assemblages in metamorphosed pumpellyite mafic rocks •Blueschist • Greenschist • Correlation of Barrow’s zones with facies • Amphibolite from different protoliths • Granulite • P, T diagram for various facies • Eclogite P,T Relations Review of Phase Diagrams Jadeite + Quartz = Albite • Solid-solid reactions • Governed by Clapeyron equation – dP/dT = 10 ∆H/T ∆V = ∆S/∆V – ∆H is the heat of reaction – ∆S is the change in entropy – ∆V is the change in volume • The slope of the stability is dP/dT Open System Models - H2O Open System Models - CO2 • Dehydration curves • Dehydration curves • Example of the general • Example of the general case case • Specific minerals • Specific minerals – Breakdown of chlorite, – Breakdown of calcite, muscovite, biotite, etc dolomite, etc Univariant Curves • Curves that define reactions with one degree of freedom • In P-T space this means that if T is changed, than P must also change to maintain equilibrium • Many important metamorphic reactions are defined by these curves P-T Examples Stability of Iron Oxides • PO2 vs. -
Sediment-Hosted Copper Deposits of the World: Deposit Models and Database
Sediment-Hosted Copper Deposits of the World: Deposit Models and Database By Dennis P. Cox1, David A. Lindsey2 Donald A. Singer1, Barry C. Moring1, and Michael F. Diggles1 Including: Descriptive Model of Sediment-Hosted Cu 30b.1 by Dennis P. Cox1 Grade and Tonnage Model of Sediment-Hosted Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Reduced-Facies Cu 30b.2 By Dennis P. Cox1 Grade and Tonnage Model of Reduced Facies Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Redbed Cu 30b.3, by David A. Lindsey2 and Dennis P. Cox1 Grade and Tonnage Model of Redbed Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Revett Cu 30b.4, by Dennis P. Cox1 Grade and Tonnage Model of Revett Cu by Dennis P. Cox1 and Donald A. Singer1 Open-File Report 03-107 Version 1.3 2003, revised 2007 Available online at http://pubs.usgs.gov/of/2003/of03-107/ Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 1 345 Middlefield Road, Menlo Park, CA 94025 2 Box 25046, Denver Federal Center, Denver, CO 80225 Introduction This publication contains four descriptive models and four grade-tonnage models for sediment hosted copper deposits. Descriptive models are useful in exploration planning and resource assessment because they enable the user to identify deposits in the field and to identify areas on geologic and geophysical maps where deposits could occur. -
Metamorphic Rocks
Metamorphic Rocks Geology 200 Geology for Environmental Scientists Regionally metamorphosed rocks shot through with migmatite dikes. Black Canyon of the Gunnison, Colorado Metamorphic rocks from Greenland, 3.8 Ga (billion years old) Major Concepts • Metamorphic rocks can be formed from any rock type: igneous, sedimentary, or existing metamorphic rocks. • Involves recrystallization in the solid state, often with little change in overall chemical composition. • Driving forces are changes in temperature, pressure, and pore fluids. • New minerals and new textures are formed. Major Concepts • During metamorphism platy minerals grow in the direction of least stress producing foliation. • Rocks with only one, non-platy, mineral produce nonfoliated rocks such as quartzite or marble. • Two types of metamorphism: contact and regional. Metamorphism of a Granite to a Gneiss Asbestos, a metamorphic amphibole mineral. The fibrous crystals grow parallel to least stress. Two major types of metamorphism -- contact and regional Major Concepts • Foliated rocks - slate, phyllite, schist, gneiss, mylonite • Non-foliated rocks - quartzite, marble, hornfels, greenstone, granulite • Mineral zones are used to recognize metamorphic facies produced by systematic pressure and temperature changes. Origin of Metamorphic Rocks • Below 200oC rocks remain unchanged. • As temperature rises, crystal lattices are broken down and reformed with different combinations of atoms. New minerals are formed. • The mineral composition of a rock provides a key to the temperature of formation (Fig. 6.5) Fig. 6.5. Different minerals of the same composition, Al2SiO5, are stable at different temperatures and pressures. Where does the heat come from? • Hot magma ranges from 700-12000C. Causes contact metamorphism. • Deep burial - temperature increases 15-300C for every kilometer of depth in the crust. -
Role of Water in the Formation of Granulite and Amphibolite Facies Rocks Tobacco Root Mountains Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1988 Role of water in the formation of granulite and amphibolite facies rocks Tobacco Root Mountains Montana Linda M. Angeloni The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Angeloni, Linda M., "Role of water in the formation of granulite and amphibolite facies rocks Tobacco Root Mountains Montana" (1988). Graduate Student Theses, Dissertations, & Professional Papers. 8115. https://scholarworks.umt.edu/etd/8115 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 Th is is an unpublished manuscript in which copyright SUBSISTS. Any further r e p r in t in g of its contents must be APPROVED BY THE AUTHOR. Ma n s f ie l d Library Un iv e r s it y of Montana Date : t , 9 C B_ THE ROLE OF WATER IN THE FORMATION OF GRANULITE AND AMPHIBOLITE FACIES ROCKS, TOBACCO ROOT MOUNTAINS, MONTANA By Linda Marie Angeloni B.S., University of California, Santa Cruz, 1982 Presented in partial fulfillment of the requirements for the degree of Master of Science University of Montana 1988 Approved by Chairman, Board of Examiners Dean, Graduate School Date UMI Number: EP38916 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
GY 402: Sedimentary Petrology
UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 17: Sandy Fluvial Depositional Environments Instructor: Dr. Douglas W. Haywick Last Time Volcaniclastic Sedimentary Rocks 1. Origin of volcaniclastic sedimentary rocks 2. Classification of volcaniclastic sed. rocks 3. Thin section petrography Volcaniclastic sedimentary rocks Air fall coarse fine Volcaniclastic sedimentary rocks tephra ignimbrite tephra ignimbrite Volcaniclastic sedimentary rocks Parallel laminations Volcaniclastic sedimentary rocks are sedimentary rocks… Channel lag … they follow sedimentary rules Volcaniclastic Petrography Source: Carozzi, A.V., 1993. Sedimentary Petrology. Prentice Hill, 263p. 1993. Sedimentary Petrology. A.V., Source: Carozzi, Vitric\Crystal Tuff quartz rock frag ppl xn 1.5mm vitric fragments Today’s Agenda Sandy Fluvial Siliciclastic Environments •Meandering river dynamics •Sedimentary facies •The model (vertical sections) Meandering Rivers • Sinuous, single channel drainage systems Meandering Rivers • Sinuous, single channel drainage systems • Typically form on low gradient alluvial plains Meandering Rivers • Sinuous, single channel drainage systems • Typically form on low gradient alluvial plains • Sinuosity depends on gradient Meandering Rivers • Are characterized by a distinct suite of facies and processes • Oxbow lakes • Levees • Floodplains • Cut banks • Point bars • Yazoo streams • Cutoffs Meandering Rivers • The channel meanders across the flood plain Meandering Rivers • Deposition occurs on the inside of meander loops (point bar) Meandering Rivers • Large point bars may consist of numerous accretionary ridges Meandering Rivers • Erosion occurs on the outside of meander loops (cut bank) Meandering Rivers • Meandering river channels are asymmetrical (deepest near cut bank) Meandering Rivers • Water velocity is greatest where the channel is deepest resulting in a “corkscrew” flow pattern. http://www.geocities.com/sogodbay/Images/SDK/Inecar03.jpg Meandering Rivers • Vortices can be either singular or complex. -
Module 22A Geological Laws GEOLOGIC LAWS
Module 22A Geological Laws GEOLOGIC LAWS Geologic Laws ❑ Superposition ❑ Original Horizontality ❑ Original Continuity ❑ Uniformitarianism ❑ Cross-cutting Relationship ❑ Inclusions ❑ Faunal Succession Missing strata ❑ Unconformity ❑ Correlation Law of Superposition ❑ In an undisturbed rock sequence, the bottom layer of rock is older than the layer above it, or ❑ The younger strata at the top in an undisturbed sequence of sedimentary rocks. Law of Superposition Undisturbed strata Law of Superposition Disturbed strata Law of original horizontality ❑ Sedimentary rocks are laid down in horizontal or nearly horizontal layers, or ❑ Sedimentary strata are laid down nearly horizontally and are essentially paralel to the surface upon which they acummulate Law of Original Continuity ❑ The original continuity of water-laid sedimentary strata is terminated only by pincing out againts the basin of deposition, at the time of their deposition Law of Original Continuity Law of Original Continuity Law of Original Continuity NOTE: This law is considerable oversimplification. The last discoveries indicate that the termination is not necessarily at a basin border. Facies changes may terminated a strata. Uniformitarianism ❑ James Hutton (1726-1797) Scottish geologist developed the laws of geology ❑ Uniformitarianism is a cornerstone of geology ❑ Considered the Father of Modern Geology Uniformitarianism ❑ Uniformitarianism is based on the premise that: ➢ the physical and chemical laws of nature have remained the same through time ➢ present-day processes have operated throughout geologic time ➢ rates and intensities of geologic processes, and their results may have changed with time ❑ To interpret geologic events from evidence preserved in rocks ➢ we must first understand present-day processes and their results Uniformitarianism is a cornerstone of geology Uniformitarianism MODIFIED STATEMENT “The present is the key to the past" • The processes (plate tectonics, mountain building, erosion) we see today are believed to have been occurring since the Earth was formed. -
Facies Analysis, Genetic Sequences, and Paleogeography of the Lower Part of the Minturn Formation (Middle Pennsylvanian), Southeastern Eagle Basin, Colorado
Facies Analysis, Genetic Sequences, and Paleogeography of the Lower Part of the Minturn Formation (Middle Pennsylvanian), Southeastern Eagle Basin, Colorado U.S. GEOLOGICAL SURVEY BULLETIN 1 787-AA ^A2 Chapter AA Facies Analysis, Genetic Sequences, and Paleogeography of the Lower Part of the Minturn Formation (Middle Pennsylvanian), Southeastern Eagle Basin, Colorado By JOHN A. KARACHEWSKI A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern U.S. GEOLOGICAL SURVEY BULLETIN 1 787 EVOLUTION OF SEDIMENTARY BASINS UINTA AND PICEANCE BASINS U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by the Books and Open-File Report Sales U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Karachewski, John A. Facies analysis, genetic sequences, and paleogeography of the lower part of the Minturn Formation (Middle Pennsylvanian), Southeastern Eagle Basin, Colorado/ by John A. Karachewski. p. cm. (U.S. Geological Survey bulletin ; 1787) Evolution of sedimentary basins Uinta and Piceance basins ; ch. AA) Includes bibliographical references. Supt. of Docs, no.: I 19.3:1787 1. Sedimentation and deposition Colorado Eagle County. 2. Geology, Stratigraphic Pennsylvanian. 3. Geology, Stratigraphic Paleozoic. 4. Geology, Stratigraphic Colorado Eagle County. 5. Paleogeography Paleozoic. 6. Minturn Formation sedimentary basins Uinta and Piceance basins ; ch.