Sampling Methods for Online Surveys
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sampling and Fieldwork Practices in Europe
www.ssoar.info Sampling and Fieldwork Practices in Europe: Analysis of Methodological Documentation From 1,537 Surveys in Five Cross-National Projects, 1981-2017 Jabkowski, Piotr; Kołczyńska, Marta Veröffentlichungsversion / Published Version Zeitschriftenartikel / journal article Empfohlene Zitierung / Suggested Citation: Jabkowski, P., & Kołczyńska, M. (2020). Sampling and Fieldwork Practices in Europe: Analysis of Methodological Documentation From 1,537 Surveys in Five Cross-National Projects, 1981-2017. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 16(3), 186-207. https://doi.org/10.5964/meth.2795 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer CC BY Lizenz (Namensnennung) zur This document is made available under a CC BY Licence Verfügung gestellt. Nähere Auskünfte zu den CC-Lizenzen finden (Attribution). For more Information see: Sie hier: https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0/deed.de Diese Version ist zitierbar unter / This version is citable under: https://nbn-resolving.org/urn:nbn:de:0168-ssoar-74317-3 METHODOLOGY Original Article Sampling and Fieldwork Practices in Europe: Analysis of Methodological Documentation From 1,537 Surveys in Five Cross-National Projects, 1981-2017 Piotr Jabkowski a , Marta Kołczyńska b [a] Faculty of Sociology, Adam Mickiewicz University, Poznan, Poland. [b] Department of Socio-Political Systems, Institute of Political Studies of the Polish Academy of Science, Warsaw, Poland. Methodology, 2020, Vol. 16(3), 186–207, https://doi.org/10.5964/meth.2795 Received: 2019-03-23 • Accepted: 2019-11-08 • Published (VoR): 2020-09-30 Corresponding Author: Piotr Jabkowski, Szamarzewskiego 89C, 60-568 Poznań, Poland. +48 504063762, E-mail: [email protected] Abstract This article addresses the comparability of sampling and fieldwork with an analysis of methodological data describing 1,537 national surveys from five major comparative cross-national survey projects in Europe carried out in the period from 1981 to 2017. -
E-Survey Methodology
Chapter I E-Survey Methodology Karen J. Jansen The Pennsylvania State University, USA Kevin G. Corley Arizona State University, USA Bernard J. Jansen The Pennsylvania State University, USA ABSTRACT With computer network access nearly ubiquitous in much of the world, alternative means of data col- lection are being made available to researchers. Recent studies have explored various computer-based techniques (e.g., electronic mail and Internet surveys). However, exploitation of these techniques requires careful consideration of conceptual and methodological issues associated with their use. We identify and explore these issues by defining and developing a typology of “e-survey” techniques in organiza- tional research. We examine the strengths, weaknesses, and threats to reliability, validity, sampling, and generalizability of these approaches. We conclude with a consideration of emerging issues of security, privacy, and ethics associated with the design and implications of e-survey methodology. INTRODUCTION 1999; Oppermann, 1995; Saris, 1991). Although research over the past 15 years has been mixed on For the researcher considering the use of elec- the realization of these benefits (Kiesler & Sproull, tronic surveys, there is a rapidly growing body of 1986; Mehta & Sivadas, 1995; Sproull, 1986; Tse, literature addressing design issues and providing Tse, Yin, Ting, Yi, Yee, & Hong, 1995), for the laundry lists of costs and benefits associated with most part, researchers agree that faster response electronic survey techniques (c.f., Lazar & Preece, times and decreased costs are attainable benefits, 1999; Schmidt, 1997; Stanton, 1998). Perhaps the while response rates differ based on variables three most common reasons for choosing an e-sur- beyond administration mode alone. -
Combining Probability and Nonprobability Samples to Form Efficient Hybrid Estimates: an Evaluation of the Common Support Assumption Jill A
Combining Probability and Nonprobability Samples to form Efficient Hybrid Estimates: An Evaluation of the Common Support Assumption Jill A. Dever RTI International, Washington, DC Proceedings of the 2018 Federal Committee on Statistical Methodology (FCSM) Research Conference Abstract Nonprobability surveys, those without a defined random sampling scheme, are becoming more prevalent. These studies can offer faster results at less cost than many probability surveys, especially for targeting important subpopulations. This can be an attractive option given the continual challenge of doing more with less, as survey costs continue to rise and response rates to plummet. Nonprobability surveys alone, however, may not fit the needs (purpose) of Federal statistical agencies where population inference is critical. Nonprobability samples may best serve to enhance the representativeness of certain domains within probability samples. For example, if locating and interviewing a required number of subpopulation members is resource prohibitive, data from a targeted nonprobability survey may lower coverage bias exhibited in a probability survey. In this situation, the question is how to best combine information from both sources. Our research searches for an answer to this question through an evaluation of hybrid estimation methods currently in use that combine probability and nonprobability data. Methods that employ generalized analysis weights (i.e., one set of weights for all analyses) are the focus because they enable other survey researchers and policy makers to analyze the data. The goal is to identify procedures that maximize the strength of each data source to produce hybrid estimates with the low mean square error. The details presented here focus on the propensity score adjusted (PSA) nonprobability weights needed prior to combining the data sources, and the common support assumption critical to hybrid estimation and PSA weighting. -
ESOMAR 28 Questions
Responses to ESOMAR 28 Questions INTRODUCTION Intro to TapResearch TapResearch connects mobile, tablet and pc users interested in completing surveys with market researchers who need their opinions. Through our partnerships with dozens of leading mobile apps, ad networks and websites, we’re able to reach an audience exceeding 100 million people in the United States. We are focused on being a top-quality partner for ad hoc survey sampling, panel recruitment, and router integrations. Our technology platform enables reliable feasibility estimates, highly competitive costs, sophisticated quality enforcement, and quick-turnaround project management. Intro to ESOMAR ESOMAR (European Society for Opinion and Market Research) is the essential organization for encouraging, advancing and elevating market research worldwide. Since 1948, ESOMAR’s aim has been to promote the value of market and opinion research in effective decision-making. The ICC/ESOMAR Code on Market and Social Research, which was developed jointly with the International Chamber of Commerce, sets out global guidelines for self-regulation for researchers and has been undersigned by all ESOMAR members and adopted or endorsed by more than 60 national market research associations worldwide. Responses to ESOMAR 28 Questions COMPANY PROFILE 1) What experience does your company have in providing online samples for market research? TapResearch connects mobile, tablet and pc users interested in completing surveys with market researchers who need their opinions. Through our partnerships with dozens of leading mobile apps, ad networks and websites, we’re able to reach an audience exceeding 100 million people in the United States - we’re currently adding about 30,000 panelists/day and this rate is increasing. -
A Critical Review of Studies Investigating the Quality of Data Obtained with Online Panels Based on Probability and Nonprobability Samples1
Callegaro c02.tex V1 - 01/16/2014 6:25 P.M. Page 23 2 A critical review of studies investigating the quality of data obtained with online panels based on probability and nonprobability samples1 Mario Callegaro1, Ana Villar2, David Yeager3,and Jon A. Krosnick4 1Google, UK 2City University, London, UK 3University of Texas at Austin, USA 4Stanford University, USA 2.1 Introduction Online panels have been used in survey research as data collection tools since the late 1990s (Postoaca, 2006). The potential great cost and time reduction of using these tools have made research companies enthusiastically pursue this new mode of data collection. However, 1 We would like to thank Reg Baker and Anja Göritz, Part editors, for their useful comments on preliminary versions of this chapter. Online Panel Research, First Edition. Edited by Mario Callegaro, Reg Baker, Jelke Bethlehem, Anja S. Göritz, Jon A. Krosnick and Paul J. Lavrakas. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Callegaro c02.tex V1 - 01/16/2014 6:25 P.M. Page 24 24 ONLINE PANEL RESEARCH the vast majority of these online panels were built by sampling and recruiting respondents through nonprobability methods such as snowball sampling, banner ads, direct enrollment, and other strategies to obtain large enough samples at a lower cost (see Chapter 1). Only a few companies and research teams chose to build online panels based on probability samples of the general population. During the 1990s, two probability-based online panels were documented: the CentER data Panel in the Netherlands and the Knowledge Networks Panel in the United States. -
Esomar/Grbn Guideline for Online Sample Quality
ESOMAR/GRBN GUIDELINE FOR ONLINE SAMPLE QUALITY ESOMAR GRBN ONLINE SAMPLE QUALITY GUIDELINE ESOMAR, the World Association for Social, Opinion and Market Research, is the essential organisation for encouraging, advancing and elevating market research: www.esomar.org. GRBN, the Global Research Business Network, connects 38 research associations and over 3500 research businesses on five continents: www.grbn.org. © 2015 ESOMAR and GRBN. Issued February 2015. This Guideline is drafted in English and the English text is the definitive version. The text may be copied, distributed and transmitted under the condition that appropriate attribution is made and the following notice is included “© 2015 ESOMAR and GRBN”. 2 ESOMAR GRBN ONLINE SAMPLE QUALITY GUIDELINE CONTENTS 1 INTRODUCTION AND SCOPE ................................................................................................... 4 2 DEFINITIONS .............................................................................................................................. 4 3 KEY REQUIREMENTS ................................................................................................................ 6 3.1 The claimed identity of each research participant should be validated. .................................................. 6 3.2 Providers must ensure that no research participant completes the same survey more than once ......... 8 3.3 Research participant engagement should be measured and reported on ............................................... 9 3.4 The identity and personal -
SAMPLING DESIGN & WEIGHTING in the Original
Appendix A 2096 APPENDIX A: SAMPLING DESIGN & WEIGHTING In the original National Science Foundation grant, support was given for a modified probability sample. Samples for the 1972 through 1974 surveys followed this design. This modified probability design, described below, introduces the quota element at the block level. The NSF renewal grant, awarded for the 1975-1977 surveys, provided funds for a full probability sample design, a design which is acknowledged to be superior. Thus, having the wherewithal to shift to a full probability sample with predesignated respondents, the 1975 and 1976 studies were conducted with a transitional sample design, viz., one-half full probability and one-half block quota. The sample was divided into two parts for several reasons: 1) to provide data for possibly interesting methodological comparisons; and 2) on the chance that there are some differences over time, that it would be possible to assign these differences to either shifts in sample designs, or changes in response patterns. For example, if the percentage of respondents who indicated that they were "very happy" increased by 10 percent between 1974 and 1976, it would be possible to determine whether it was due to changes in sample design, or an actual increase in happiness. There is considerable controversy and ambiguity about the merits of these two samples. Text book tests of significance assume full rather than modified probability samples, and simple random rather than clustered random samples. In general, the question of what to do with a mixture of samples is no easier solved than the question of what to do with the "pure" types. -
Options for Conducting Web Surveys Matthias Schonlau and Mick P
Statistical Science 2017, Vol. 32, No. 2, 279–292 DOI: 10.1214/16-STS597 © Institute of Mathematical Statistics, 2017 Options for Conducting Web Surveys Matthias Schonlau and Mick P. Couper Abstract. Web surveys can be conducted relatively fast and at relatively low cost. However, Web surveys are often conducted with nonprobability sam- ples and, therefore, a major concern is generalizability. There are two main approaches to address this concern: One, find a way to conduct Web surveys on probability samples without losing most of the cost and speed advantages (e.g., by using mixed-mode approaches or probability-based panel surveys). Two, make adjustments (e.g., propensity scoring, post-stratification, GREG) to nonprobability samples using auxiliary variables. We review both of these approaches as well as lesser-known ones such as respondent-driven sampling. There are many different ways Web surveys can solve the challenge of gen- eralizability. Rather than adopting a one-size-fits-all approach, we conclude that the choice of approach should be commensurate with the purpose of the study. Key words and phrases: Convenience sample, Internet survey. 1. INTRODUCTION tion and invitation of sample persons to a Web sur- vey. No complete list of e-mail addresses of the general Web or Internet surveys1 have come to dominate the survey world in a very short time (see Couper, 2000; population exists from which one can select a sample Couper and Miller, 2008). The attraction of Web sur- and send e-mailed invitations to a Web survey. How- veys lies in the speed with which large numbers of ever, for many other important populations of interest people can be surveyed at relatively low cost, using (e.g., college students, members of professional asso- complex instruments that extend measurement beyond ciations, registered users of Web services, etc.), such what can be done in other modes (especially paper). -
Sampling Methods It’S Impractical to Poll an Entire Population—Say, All 145 Million Registered Voters in the United States
Sampling Methods It’s impractical to poll an entire population—say, all 145 million registered voters in the United States. That is why pollsters select a sample of individuals that represents the whole population. Understanding how respondents come to be selected to be in a poll is a big step toward determining how well their views and opinions mirror those of the voting population. To sample individuals, polling organizations can choose from a wide variety of options. Pollsters generally divide them into two types: those that are based on probability sampling methods and those based on non-probability sampling techniques. For more than five decades probability sampling was the standard method for polls. But in recent years, as fewer people respond to polls and the costs of polls have gone up, researchers have turned to non-probability based sampling methods. For example, they may collect data on-line from volunteers who have joined an Internet panel. In a number of instances, these non-probability samples have produced results that were comparable or, in some cases, more accurate in predicting election outcomes than probability-based surveys. Now, more than ever, journalists and the public need to understand the strengths and weaknesses of both sampling techniques to effectively evaluate the quality of a survey, particularly election polls. Probability and Non-probability Samples In a probability sample, all persons in the target population have a change of being selected for the survey sample and we know what that chance is. For example, in a telephone survey based on random digit dialing (RDD) sampling, researchers know the chance or probability that a particular telephone number will be selected. -
5.1 Survey Frame Methodology
Regional Course on Statistical Business Registers: Data sources, maintenance and quality assurance Perak, Malaysia 21-25 May, 2018 4 .1 Survey fram e methodology REVIEW For sampling purposes, a snapshot of the live register at a particular point in t im e is needed. The collect ion of active statistical units in the snapshot is referred to as a frozen frame. REVIEW A sampling frame for a survey is a subset of t he frozen fram e t hat includes units and characteristics needed for t he survey. A single frozen fram e should be used for all surveys in a given reference period Creat ing sam pling fram es SPECIFICATIONS Three m ain t hings need t o be specified t o draw appropriate sampling frames: ▸ Target population (which units?) ▸ Variables of interest ▸ Reference period CHOICE OF STATISTICAL UNIT Financial data Production data Regional data Ent erpri ses are Establishments or Establishments or typically the most kind-of-activity local units should be appropriate units to units are typically used if regional use for financial data. the most appropriate disaggregation is for production data. necessary. Typically a single t ype of unit is used for each survey, but t here are except ions where t arget populat ions include m ult iple unit t ypes. CHOICE OF STATISTICAL UNIT Enterprise groups are useful for financial analyses and for studying company strategies, but they are not normally the target populations for surveys because t hey are t oo diverse and unstable. SURVEYS OF EMPLOYMENT The sam pling fram es for t hese include all active units that are em ployers. -
Lesson 3: Sampling Plan 1. Introduction to Quantitative Sampling Sampling: Definition
Quantitative approaches Quantitative approaches Plan Lesson 3: Sampling 1. Introduction to quantitative sampling 2. Sampling error and sampling bias 3. Response rate 4. Types of "probability samples" 5. The size of the sample 6. Types of "non-probability samples" 1 2 Quantitative approaches Quantitative approaches 1. Introduction to quantitative sampling Sampling: Definition Sampling = choosing the unities (e.g. individuals, famililies, countries, texts, activities) to be investigated 3 4 Quantitative approaches Quantitative approaches Sampling: quantitative and qualitative Population and Sample "First, the term "sampling" is problematic for qualitative research, because it implies the purpose of "representing" the population sampled. Population Quantitative methods texts typically recognize only two main types of sampling: probability sampling (such as random sampling) and Sample convenience sampling." (...) any nonprobability sampling strategy is seen as "convenience sampling" and is strongly discouraged." IIIIIIIIIIIIIIII Sampling This view ignores the fact that, in qualitative research, the typical way of IIIIIIIIIIIIIIII IIIII selecting settings and individuals is neither probability sampling nor IIIII convenience sampling." IIIIIIIIIIIIIIII IIIIIIIIIIIIIIII It falls into a third category, which I will call purposeful selection; other (= «!Miniature population!») terms are purposeful sampling and criterion-based selection." IIIIIIIIIIIIIIII This is a strategy in which particular settings, persons, or activieties are selected deliberately in order to provide information that can't be gotten as well from other choices." Maxwell , Joseph A. , Qualitative research design..., 2005 , 88 5 6 Quantitative approaches Quantitative approaches Population, Sample, Sampling frame Representative sample, probability sample Population = ensemble of unities from which the sample is Representative sample = Sample that reflects the population taken in a reliable way: the sample is a «!miniature population!» Sample = part of the population that is chosen for investigation. -
Impact of Demographic Factors on Impulse Buying Behavior of Consumers in Multan-Pakistan
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals European Journal of Business and Management www.iiste.org ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) Vol.7, No.22, 2015 Impact of Demographic Factors on Impulse Buying Behavior of Consumers in Multan-Pakistan Prof. Dr. Abdul Ghafoor Awan Dean, Faculty of Management and Social Sciences, Institute of Southern Punjab, Multan Nayyar Abbas MS Scholar, Department of Business Administration, Institute of Southern Punjab, Multan Abstract The purpose of this study is to investigate the effect of demographic factors (gender, age, income, and education) on impulse buying behavior of consumers in Multan. The study adopted quantitative approach. A structured questionnaire was used to survey 250 respondents (104 males and 146 females) who were selected using non- probability convenience sampling. Data were collected in different educational institutions of Multan. Different statistical methods like multiple regression, chi-square test and simple descriptive techniques were used to derive results from the data collected with the help of SPSS 17.0. The multiple regression and chi-square test results revealed that gender and age were significantly and inversely associated with impulse buying behavior of consumers. The results further indicated that income and education were significantly and directly associated with impulse buying behavior of consumers. The ANOVA results indicated that consumers’ demographic characteristic had significant influence on impulse buying and demographic characteristics (gender, age, income, and education) affect simultaneously impulse buying behavior of consumers. The findings of the study were consistent and supported by previous studies.