A Meta-Analysis of the Effect of Concurrent Web Options on Mail Survey Response Rates

Total Page:16

File Type:pdf, Size:1020Kb

A Meta-Analysis of the Effect of Concurrent Web Options on Mail Survey Response Rates When More Gets You Less: A Meta-Analysis of the Effect of Concurrent Web Options on Mail Survey Response Rates Jenna Fulton and Rebecca Medway Joint Program in Survey Methodology, University of Maryland May 19, 2012 Background: Mixed-Mode Surveys • Growing use of mixed-mode surveys among practitioners • Potential benefits for cost, coverage, and response rate • One specific mixed-mode design – mail + Web – is often used in an attempt to increase response rates • Advantages: both are self-administered modes, likely have similar measurement error properties • Two strategies for administration: • “Sequential” mixed-mode • One mode in initial contacts, switch to other in later contacts • Benefits response rates relative to a mail survey • “Concurrent” mixed-mode • Both modes simultaneously in all contacts 2 Background: Mixed-Mode Surveys • Growing use of mixed-mode surveys among practitioners • Potential benefits for cost, coverage, and response rate • One specific mixed-mode design – mail + Web – is often used in an attempt to increase response rates • Advantages: both are self-administered modes, likely have similar measurement error properties • Two strategies for administration: • “Sequential” mixed-mode • One mode in initial contacts, switch to other in later contacts • Benefits response rates relative to a mail survey • “Concurrent” mixed-mode • Both modes simultaneously in all contacts 3 • Mixed effects on response rates relative to a mail survey Methods: Meta-Analysis • Given mixed results in literature, we conducted a meta- analysis to: • Estimate effect of concurrent Web options on mail survey response rates • Evaluate whether study features influence size of effect • Search for studies • Searched journals and conference abstracts • Posted messages to AAPOR and ASA listservers • Eligible studies • Randomly assigned respondents to either • “mail-only” condition, or • “mode choice” condition (offered mail and web options concurrently ) • Both conditions: included same survey items and same incentive (if 4 offered), made all contacts by mail, and did not encourage response by a particular mode Methods: Effect size • Odds ratios (ORs) to quantify relationship between response rate in mail-only and mode choice conditions • Used response rate for mail-only condition as reference • To calculate overall OR: weighted study-level ORs by inverse of variance • Interpretation of ORs • OR < 1: adding a Web option to a mail survey has a negative impact on response rates • OR = 1: adding a Web option has no effect • OR > 1: adding a Web option has a positive impact 5 Methods: Moderator Analyses • Used moderator analyses to determine if study characteristics impacted the magnitude of the effect size • Greater % respondents selecting Web • Young people as target population Adding Web option would be more effective for studies with • Published study these characteristics • Government sponsorship • Required participation These characteristics would increase motivation to • Incentive complete survey, reducing • Salient topic difference between conditions • Comprehensive Meta-Analysis software, random effects 6 model Results: Eligible Studies • Search produced 19 eligible experimental comparisons • All studies conducted during or after 2000 • Choice response rate lower than mail-only response rate for almost all comparisons Min Max Mean Median Mail-only sample size 139 212,072 17,547 1,107 Choice sample size 141 32,520 5,161 1,106 Mail-only response rate 16% 75% 51% 58% Choice response rate 15% 74% 48% 53% Proportion utilizing Web 4% 52% 17% 10% in choice condition 7 Results: Effect Sizes • ORs ranged from 0.57 to 1.13 • 17 of 19 ORs less than 1.00 • 8 of 19 ORs significantly less than 1.00 • Only 1 OR significantly greater than 1.00 • Overall weighted OR was 0.87 (p<0.001) • Providing a concurrent web option in mail surveys decreases the odds of response by 12.8% as compared to a mail-only survey. 8 Results: Forest Plot of Effect Sizes Total (0.87) Schneider et al. (1.13) • The number in Brady et al. (1.01) parentheses is the odds Lesser et al. (a) (0.96) Friese et al. (0.96) ratio for each comparison. Turner et al. (0.93) Brogger et al. (0.93) • The dot for each Lesser et al. (b) (0.90) Millar and Dillman (b) (0.89) comparison represents Gentry and Good (b) (0.87) the odds ratio value, while Millar and Dillman (a) (0.87) the bar spans the 95% Werner and Forsman (0.84) Gentry and Good (a) (0.84) confidence interval. Israel (0.80) Griffin et al. (0.79) Hardigan et al. (0.72) Schmuhl et al. (0.72) Ziegenfuss et al. (0.70) Smyth et al. (0.66) Radon et al. (0.57) 9 .4 .6 .8 1 1.2 1.4 Odds Ratio Results: Moderator Analyses • None of the moderator analyses were significant at the 0.05 level. 1.00 Percent Age of Published Choosing Web Target Pop. 0.90 0.90 0.90 0.89 0.86 0.87 0.82 Odds Odds Ratios 0.80 15%+ <15% Youth All ages No Yes (n=7) (n=12) (n=5) (n=14) (n=8) (n=11) 10 Results: Moderator Analyses • Surveys with government sponsor see smaller difference between mail-only and mode choice condition response rates (significant at 0.10 level) Government Required Incentive Topic 1.00 Sponsor Salience 0.96 0.92* 0.90 0.90 0.90 0.86 0.85 0.84 0.83 Odds Odds Ratios 0.80 Yes No Yes No Yes No High Regular (n=10) (n=9) (n=3) (n=16) (n=9) (n=10) (n=12) (n=7) 11 * p<0.10 Discussion • Across 19 experimental comparisons, we find that offering a concurrent Web option in a mail survey results in a significant reduction in the response rate. • As demonstrated by the moderator analyses, the study characteristics we examined largely do not influence the magnitude of the effect. • Potentially due to: small number of eligible studies; variation in design characteristics, sample sizes, and response rate calculations 12 Discussion Three hypotheses to explain negative effect of concurrent Web options: 1. Making a choice between two modes • Increases complexity and burden of responding • Weighing pros and cons of each may cause both to appear less attractive 2. Replying by Web involves a break in the response process • Receive survey invitation in mail and likely open it as part of a larger task of sorting through and responding to mail • If choose to complete survey on the Web, they must transition to a different category of behavior. 3. Implementation problems with Web instrument • Sample members who attempt to complete survey online may 13 abandon effort due to frustration with computerized instrument or Internet connection Discussion • Our findings are only generalizable to specific type of concurrent Web option included in this meta-analysis. • Concurrent Web options also may be offered in mail surveys in other ways, such as: • Adding email or telephone contacts to the design • Offering incentives that are conditional on Web response. • Further research will need to be conducted to determine whether these types of designs can be used to increase response rates and improve research quality. 14 Thank you! • For additional information: • [email protected][email protected] 15 Additional Slides 16 Discussion • Researchers may be interested in outcomes other than response rate – such as cost, nonresponse bias, timeliness, or data quality. • Reported only occasionally in studies included in this meta- analysis; as a result, we are not able to empirically evaluate effect of concurrent Web options on these outcomes. 17 .
Recommended publications
  • Statistical Inference: How Reliable Is a Survey?
    Math 203, Fall 2008: Statistical Inference: How reliable is a survey? Consider a survey with a single question, to which respondents are asked to give an answer of yes or no. Suppose you pick a random sample of n people, and you find that the proportion that answered yes isp ˆ. Question: How close isp ˆ to the actual proportion p of people in the whole population who would have answered yes? In order for there to be a reliable answer to this question, the sample size, n, must be big enough so that the sample distribution is close to a bell shaped curve (i.e., close to a normal distribution). But even if n is big enough that the distribution is close to a normal distribution, usually you need to make n even bigger in order to make sure your margin of error is reasonably small. Thus the first thing to do is to be sure n is big enough for the sample distribution to be close to normal. The industry standard for being close enough is for n to be big enough so that 1 − p 1 − p n > 9 and n > 9 p p both hold. When p is about 50%, n can be as small as 10, but when p gets close to 0 or close to 1, the sample size n needs to get bigger. If p is 1% or 99%, then n must be at least 892, for example. (Note also that n here depends on p but not on the size of the whole population.) See Figures 1 and 2 showing frequency histograms for the number of yes respondents if p = 1% when the sample size n is 10 versus 1000 (this data was obtained by running a computer simulation taking 10000 samples).
    [Show full text]
  • E-Survey Methodology
    Chapter I E-Survey Methodology Karen J. Jansen The Pennsylvania State University, USA Kevin G. Corley Arizona State University, USA Bernard J. Jansen The Pennsylvania State University, USA ABSTRACT With computer network access nearly ubiquitous in much of the world, alternative means of data col- lection are being made available to researchers. Recent studies have explored various computer-based techniques (e.g., electronic mail and Internet surveys). However, exploitation of these techniques requires careful consideration of conceptual and methodological issues associated with their use. We identify and explore these issues by defining and developing a typology of “e-survey” techniques in organiza- tional research. We examine the strengths, weaknesses, and threats to reliability, validity, sampling, and generalizability of these approaches. We conclude with a consideration of emerging issues of security, privacy, and ethics associated with the design and implications of e-survey methodology. INTRODUCTION 1999; Oppermann, 1995; Saris, 1991). Although research over the past 15 years has been mixed on For the researcher considering the use of elec- the realization of these benefits (Kiesler & Sproull, tronic surveys, there is a rapidly growing body of 1986; Mehta & Sivadas, 1995; Sproull, 1986; Tse, literature addressing design issues and providing Tse, Yin, Ting, Yi, Yee, & Hong, 1995), for the laundry lists of costs and benefits associated with most part, researchers agree that faster response electronic survey techniques (c.f., Lazar & Preece, times and decreased costs are attainable benefits, 1999; Schmidt, 1997; Stanton, 1998). Perhaps the while response rates differ based on variables three most common reasons for choosing an e-sur- beyond administration mode alone.
    [Show full text]
  • SAMPLING DESIGN & WEIGHTING in the Original
    Appendix A 2096 APPENDIX A: SAMPLING DESIGN & WEIGHTING In the original National Science Foundation grant, support was given for a modified probability sample. Samples for the 1972 through 1974 surveys followed this design. This modified probability design, described below, introduces the quota element at the block level. The NSF renewal grant, awarded for the 1975-1977 surveys, provided funds for a full probability sample design, a design which is acknowledged to be superior. Thus, having the wherewithal to shift to a full probability sample with predesignated respondents, the 1975 and 1976 studies were conducted with a transitional sample design, viz., one-half full probability and one-half block quota. The sample was divided into two parts for several reasons: 1) to provide data for possibly interesting methodological comparisons; and 2) on the chance that there are some differences over time, that it would be possible to assign these differences to either shifts in sample designs, or changes in response patterns. For example, if the percentage of respondents who indicated that they were "very happy" increased by 10 percent between 1974 and 1976, it would be possible to determine whether it was due to changes in sample design, or an actual increase in happiness. There is considerable controversy and ambiguity about the merits of these two samples. Text book tests of significance assume full rather than modified probability samples, and simple random rather than clustered random samples. In general, the question of what to do with a mixture of samples is no easier solved than the question of what to do with the "pure" types.
    [Show full text]
  • Summary of Human Subjects Protection Issues Related to Large Sample Surveys
    Summary of Human Subjects Protection Issues Related to Large Sample Surveys U.S. Department of Justice Bureau of Justice Statistics Joan E. Sieber June 2001, NCJ 187692 U.S. Department of Justice Office of Justice Programs John Ashcroft Attorney General Bureau of Justice Statistics Lawrence A. Greenfeld Acting Director Report of work performed under a BJS purchase order to Joan E. Sieber, Department of Psychology, California State University at Hayward, Hayward, California 94542, (510) 538-5424, e-mail [email protected]. The author acknowledges the assistance of Caroline Wolf Harlow, BJS Statistician and project monitor. Ellen Goldberg edited the document. Contents of this report do not necessarily reflect the views or policies of the Bureau of Justice Statistics or the Department of Justice. This report and others from the Bureau of Justice Statistics are available through the Internet — http://www.ojp.usdoj.gov/bjs Table of Contents 1. Introduction 2 Limitations of the Common Rule with respect to survey research 2 2. Risks and benefits of participation in sample surveys 5 Standard risk issues, researcher responses, and IRB requirements 5 Long-term consequences 6 Background issues 6 3. Procedures to protect privacy and maintain confidentiality 9 Standard issues and problems 9 Confidentiality assurances and their consequences 21 Emerging issues of privacy and confidentiality 22 4. Other procedures for minimizing risks and promoting benefits 23 Identifying and minimizing risks 23 Identifying and maximizing possible benefits 26 5. Procedures for responding to requests for help or assistance 28 Standard procedures 28 Background considerations 28 A specific recommendation: An experiment within the survey 32 6.
    [Show full text]
  • Survey Experiments
    IU Workshop in Methods – 2019 Survey Experiments Testing Causality in Diverse Samples Trenton D. Mize Department of Sociology & Advanced Methodologies (AMAP) Purdue University Survey Experiments Page 1 Survey Experiments Page 2 Contents INTRODUCTION ............................................................................................................................................................................ 8 Overview .............................................................................................................................................................................. 8 What is a survey experiment? .................................................................................................................................... 9 What is an experiment?.............................................................................................................................................. 10 Independent and dependent variables ................................................................................................................. 11 Experimental Conditions ............................................................................................................................................. 12 WHY CONDUCT A SURVEY EXPERIMENT? ........................................................................................................................... 13 Internal, external, and construct validity ..........................................................................................................
    [Show full text]
  • Evaluating Survey Questions Question
    What Respondents Do to Answer a Evaluating Survey Questions Question • Comprehend Question • Retrieve Information from Memory Chase H. Harrison Ph.D. • Summarize Information Program on Survey Research • Report an Answer Harvard University Problems in Answering Survey Problems in Answering Survey Questions Questions – Failure to comprehend – Failure to recall • If respondents don’t understand question, they • Questions assume respondents have information cannot answer it • If respondents never learned something, they • If different respondents understand question cannot provide information about it differently, they end up answering different questions • Problems with researcher putting more emphasis on subject than respondent Problems in Answering Survey Problems in Answering Survey Questions Questions – Problems Summarizing – Problems Reporting Answers • If respondents are thinking about a lot of things, • Confusing or vague answer formats lead to they can inconsistently summarize variability • If the way the respondent remembers something • Interactions with interviewers or technology can doesn’t readily correspond to the question, they lead to problems (sensitive or embarrassing may be inconsistemt responses) 1 Evaluating Survey Questions Focus Groups • Early stage • Qualitative research tool – Focus groups to understand topics or dimensions of measures • Used to develop ideas for questionnaires • Pre-Test Stage – Cognitive interviews to understand question meaning • Used to understand scope of issues – Pre-test under typical field
    [Show full text]
  • MRS Guidance on How to Read Opinion Polls
    What are opinion polls? MRS guidance on how to read opinion polls June 2016 1 June 2016 www.mrs.org.uk MRS Guidance Note: How to read opinion polls MRS has produced this Guidance Note to help individuals evaluate, understand and interpret Opinion Polls. This guidance is primarily for non-researchers who commission and/or use opinion polls. Researchers can use this guidance to support their understanding of the reporting rules contained within the MRS Code of Conduct. Opinion Polls – The Essential Points What is an Opinion Poll? An opinion poll is a survey of public opinion obtained by questioning a representative sample of individuals selected from a clearly defined target audience or population. For example, it may be a survey of c. 1,000 UK adults aged 16 years and over. When conducted appropriately, opinion polls can add value to the national debate on topics of interest, including voting intentions. Typically, individuals or organisations commission a research organisation to undertake an opinion poll. The results to an opinion poll are either carried out for private use or for publication. What is sampling? Opinion polls are carried out among a sub-set of a given target audience or population and this sub-set is called a sample. Whilst the number included in a sample may differ, opinion poll samples are typically between c. 1,000 and 2,000 participants. When a sample is selected from a given target audience or population, the possibility of a sampling error is introduced. This is because the demographic profile of the sub-sample selected may not be identical to the profile of the target audience / population.
    [Show full text]
  • The Evidence from World Values Survey Data
    Munich Personal RePEc Archive The return of religious Antisemitism? The evidence from World Values Survey data Tausch, Arno Innsbruck University and Corvinus University 17 November 2018 Online at https://mpra.ub.uni-muenchen.de/90093/ MPRA Paper No. 90093, posted 18 Nov 2018 03:28 UTC The return of religious Antisemitism? The evidence from World Values Survey data Arno Tausch Abstract 1) Background: This paper addresses the return of religious Antisemitism by a multivariate analysis of global opinion data from 28 countries. 2) Methods: For the lack of any available alternative we used the World Values Survey (WVS) Antisemitism study item: rejection of Jewish neighbors. It is closely correlated with the recent ADL-100 Index of Antisemitism for more than 100 countries. To test the combined effects of religion and background variables like gender, age, education, income and life satisfaction on Antisemitism, we applied the full range of multivariate analysis including promax factor analysis and multiple OLS regression. 3) Results: Although religion as such still seems to be connected with the phenomenon of Antisemitism, intervening variables such as restrictive attitudes on gender and the religion-state relationship play an important role. Western Evangelical and Oriental Christianity, Islam, Hinduism and Buddhism are performing badly on this account, and there is also a clear global North-South divide for these phenomena. 4) Conclusions: Challenging patriarchic gender ideologies and fundamentalist conceptions of the relationship between religion and state, which are important drivers of Antisemitism, will be an important task in the future. Multiculturalism must be aware of prejudice, patriarchy and religious fundamentalism in the global South.
    [Show full text]
  • 2021 RHFS Survey Methodology
    2021 RHFS Survey Methodology Survey Design For purposes of this document, the following definitions are provided: • Building—a separate physical structure identified by the respondent containing one or more units. • Property—one or more buildings owned by a single entity (person, group, leasing company, and so on). For example, an apartment complex may have several buildings but they are owned as one property. Target population: All rental housing properties in the United States, circa 2020. Sampling frame: The RHFS sample frame is a single frame based on a subset of the 2019 American Housing Survey (AHS) sample units. The RHFS frame included all 2019 AHS sample units that were identified as: 1. Rented or occupied without payment of rent. 2. Units that are owner occupied and listed as “for sale or rent”. 3. Vacant units for rent, for rent or sale, or rented but not yet occupied. By design, the RHFS sample frame excluded public housing and transient housing types (i.e. boat, RV, van, other). Public housing units are identified in the AHS through a match with the Department of Housing and Urban Development (HUD) administrative records. The RHFS frame is derived from the AHS sample, which is itself composed of housing units derived from the Census Bureau Master Address File. The AHS sample frame excludes group quarters housing. Group quarters are places where people live or stay in a group living arrangement. Examples include dormitories, residential treatment centers, skilled nursing facilities, correctional facilities, military barracks, group homes, and maritime or military vessels. As such, all of these types of group quarters housing facilities are, by design, excluded from the RHFS.
    [Show full text]
  • A Computationally Efficient Method for Selecting a Split Questionnaire Design
    Iowa State University Capstones, Theses and Creative Components Dissertations Spring 2019 A Computationally Efficient Method for Selecting a Split Questionnaire Design Matthew Stuart Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Social Statistics Commons Recommended Citation Stuart, Matthew, "A Computationally Efficient Method for Selecting a Split Questionnaire Design" (2019). Creative Components. 252. https://lib.dr.iastate.edu/creativecomponents/252 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Computationally Efficient Method for Selecting a Split Questionnaire Design Matthew Stuart1, Cindy Yu1,∗ Department of Statistics Iowa State University Ames, IA 50011 Abstract Split questionnaire design (SQD) is a relatively new survey tool to reduce response burden and increase the quality of responses. Among a set of possible SQD choices, a design is considered as the best if it leads to the least amount of information loss quantified by the Kullback-Leibler divergence (KLD) distance. However, the calculation of the KLD distance requires computation of the distribution function for the observed data after integrating out all the missing variables in a particular SQD. For a typical survey questionnaire with a large number of categorical variables, this computation can become practically infeasible. Motivated by the Horvitz-Thompson estima- tor, we propose an approach to approximate the distribution function of the observed in much reduced computation time and lose little valuable information when comparing different choices of SQDs.
    [Show full text]
  • Chi Square Survey Questionnaire
    Chi Square Survey Questionnaire andCoptic polo-neck and monoclonal Guido catholicizes Petey slenderize while unidirectional her bottom tigerishness Guthrie doffs encased her lamplighter and cricks documentarily necromantically. and interlinedMattery disinterestedly,queenly. Garcon offerable enskied andhis balderdashesmanufactural. trivializes mushily or needily after Aamir ethylate and rainproof Chi Square test of any Contingency Table because Excel. Comparing frequencies Chi-Square tests Manny Gimond. Are independent of squared test have two tests are the. The Chi Squared Test is a statistical test that already often carried out connect the start of they intended geographical investigation. OpenStax Statistics CH11THE CHI-SQUARE Top Hat. There are classified according to chi square survey questionnaire. You can only includes a questionnaire can take these. ANOVA Regression and Chi-Square Educational Research. T-Tests & Survey Analysis SurveyMonkey. Aids victims followed the survey analysis has a given by using likert? Square test of questionnaires, surveys frequently scared to watch horror movies too small? In short terms with are regression tests t-test ANOVA chi square and. What you calculate a survey solution is two columns of questionnaires, surveys frequently than to download reports! Using Cross Tabulation and Chi-Square The Survey Says. The Chi-Square Test for Independence Department of. And you'll must plug the research into a chi-square test for independence. Table 4a reports the responses to questions 213 in framework study survey. What output it mean look the chi square beauty is high? Completing the survey and surveys frequently ask them? Chi square test is rejected: the survey in surveys, is the population, explain that minority male and choose your dv the population of.
    [Show full text]
  • (“Quasi-Experimental”) Study Designs Are Most Likely to Produce Valid Estimates of a Program’S Impact?
    Which Comparison-Group (“Quasi-Experimental”) Study Designs Are Most Likely to Produce Valid Estimates of a Program’s Impact?: A Brief Overview and Sample Review Form Originally published by the Coalition for Evidence- Based Policy with funding support from the William T. Grant Foundation and U.S. Department of Labor, January 2014 Updated by the Arnold Ventures Evidence-Based Policy team, December 2018 This publication is in the public domain. Authorization to reproduce it in whole or in part for educational purposes is granted. We welcome comments and suggestions on this document ([email protected]). Brief Overview: Which Comparison-Group (“Quasi-Experimental”) Studies Are Most Likely to Produce Valid Estimates of a Program’s Impact? I. A number of careful investigations have been carried out to address this question. Specifically, a number of careful “design-replication” studies have been carried out in education, employment/training, welfare, and other policy areas to examine whether and under what circumstances non-experimental comparison-group methods can replicate the results of well- conducted randomized controlled trials. These studies test comparison-group methods against randomized methods as follows. For a particular program being evaluated, they first compare program participants’ outcomes to those of a randomly-assigned control group, in order to estimate the program’s impact in a large, well- implemented randomized design – widely recognized as the most reliable, unbiased method of assessing program impact. The studies then compare the same program participants with a comparison group selected through methods other than randomization, in order to estimate the program’s impact in a comparison-group design.
    [Show full text]