The Role of the Deubiquitinase USP24 in Multiple Myeloma

Total Page:16

File Type:pdf, Size:1020Kb

The Role of the Deubiquitinase USP24 in Multiple Myeloma Fakultät für Medizin III. Medizinische Klinik und Poliklinik The role of the deubiquitinase USP24 in multiple myeloma Laura Häusler Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Medizin (Dr. med.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Jürgen Schlegel Prüfer der Dissertation: 1. Prof. Dr. Florian Bassermann 2. Prof. Dr. Christian Peschel Die Dissertation wurde am 10.02.2017 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 28.03.2018 angenommen. Table of Contents Abstract ....................................................................................................................... 5 List of Figures ............................................................................................................ 6 List of Tables .............................................................................................................. 7 Abbreviations ............................................................................................................. 8 1 Introduction ........................................................................................................ 11 1.1 Multiple myeloma ........................................................................................ 11 1.1.1 Genetic aberrations and molecular pathogenesis .................................. 11 1.1.2 Clinical manifestation and diagnosis ....................................................... 14 1.1.3 Current treatment .................................................................................... 16 1.2 The ubiquitin proteasome system in health and disease ....................... 19 1.2.1 Ubiquitin and the proteasome ................................................................. 19 1.2.2 Ubiquitination .......................................................................................... 20 1.2.2.1 The ubiquitin cascade ....................................................................... 20 1.2.2.2 Ubiquitin-ligases ................................................................................ 21 1.2.3 Deubiquitination ...................................................................................... 24 1.2.4 The Usp24 gene locus in MM ................................................................. 26 1.3 The TGF-beta signaling pathway ............................................................... 28 1.3.1 The TGF-beta superfamily ...................................................................... 28 1.3.2 SMAD family-dependent TGF-beta signaling ......................................... 29 1.3.3 Regulation of the TGF-beta signaling pathway ....................................... 32 1.3.4 The TGF-beta system in MM .................................................................. 35 1.4 Aim of the study .......................................................................................... 37 2 Materials and Methods ...................................................................................... 38 2.1 Materials ....................................................................................................... 38 2.1.1 Chemicals ............................................................................................... 38 2.1.2 Media and supplements for cell culture .................................................. 40 2.1.3 Antibiotics ............................................................................................... 40 2.1.4 Transfection reagents ............................................................................. 40 2.1.5 Enzymes ................................................................................................. 40 2.1.6 Inhibitors ................................................................................................. 40 2.1.7 Molecular weight standards .................................................................... 41 2.1.8 Molecular biological Kits ......................................................................... 41 THE ROLE OF USP24 IN MM 2 2.1.9 Buffers .................................................................................................... 41 2.1.10 Antibodies ............................................................................................. 43 2.1.11 Plasmids ............................................................................................... 44 2.1.12 Oligonucleotides ................................................................................... 45 2.1.13 Bacteria ................................................................................................. 47 2.1.14 Cell lines ............................................................................................... 47 2.1.15 Cell culture dishes ................................................................................ 47 2.1.16 Membranes ........................................................................................... 47 2.1.17 Machinery and equipment .................................................................... 48 2.1.18 Software and databases ....................................................................... 48 2.2 Methods ....................................................................................................... 49 2.2.1 Molecular biology .................................................................................... 49 2.2.1.1 Agarose gel electrophoresis .............................................................. 49 2.2.1.2 DNA restriction .................................................................................. 49 2.2.1.3 DNA ligation ...................................................................................... 49 2.2.1.4 Molecular cloning and DNA extraction .............................................. 50 2.2.1.5 Gene silencing .................................................................................. 50 2.2.1.6 PCR ................................................................................................... 51 2.2.1.7 Reverse transcription ........................................................................ 51 2.2.1.8 qPCR ................................................................................................. 52 2.2.2 Protein biochemistry ............................................................................... 52 2.2.2.1 SDS-gel electrophoresis ................................................................... 52 2.2.2.2 Western blot analysis ........................................................................ 53 2.2.2.3 Cell lysis and fractionation ................................................................ 54 2.2.2.4 Immunoprecipitation .......................................................................... 54 2.2.2.5 Mass spectrometry ............................................................................ 55 2.2.2.6 SILAC ................................................................................................ 56 2.2.2.7 Ubiquitination assay .......................................................................... 57 2.2.3 Eukaryotic cell culture ............................................................................. 57 2.2.3.1 Plasmid and siRNA transfections ...................................................... 58 2.2.3.2 Lentivirus production ......................................................................... 59 2.2.3.3 Viral infection ..................................................................................... 59 2.2.3.4 Proteasome inhibition ........................................................................ 60 2.2.3.5 Ribosome inhibition ........................................................................... 60 2.2.3.6 TGF-beta signaling ............................................................................ 60 THE ROLE OF USP24 IN MM 3 2.2.3.7 Flow cytometry .................................................................................. 61 2.2.4 Bacterial cell culture and transformation ................................................. 62 2.2.5 Data mining and processing ................................................................... 62 3 Results ................................................................................................................ 64 3.1 Loss of the Usp24 gene locus in MM ........................................................ 64 3.1.1 FISH analysis of MM patient samples .................................................... 64 3.1.2 Usp24 mRNA and protein levels in different MM cell lines ..................... 65 3.2 USP24 inhibits proliferation in U2OS cells ............................................... 67 3.3 WWP2 as important binding partner of USP24 ........................................ 69 3.3.1 Specific binding of USP24 to WWP2 ...................................................... 71 3.3.2 WWP2 is not a substrate of USP24 ........................................................ 73 3.4 USP24 and proteins of the SMAD family .................................................. 76 3.4.1 Binding of USP24 to activating SMAD2 and 3 ........................................ 76 3.4.2 USP24 depletion and phosphorylation of SMAD3 .................................. 77 3.5 Proteins of the SMAD family as possible substrates of USP24 ............. 79 3.5.1 USP24 has no influence on SMAD stability ............................................ 79 3.5.2 SMAD2 is not a substrate
Recommended publications
  • Distinguishing Pleiotropy from Linked QTL Between Milk Production Traits
    Cai et al. Genet Sel Evol (2020) 52:19 https://doi.org/10.1186/s12711-020-00538-6 Genetics Selection Evolution RESEARCH ARTICLE Open Access Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle Zexi Cai1*†, Magdalena Dusza2†, Bernt Guldbrandtsen1, Mogens Sandø Lund1 and Goutam Sahana1 Abstract Background: Production and health traits are central in cattle breeding. Advances in next-generation sequencing technologies and genotype imputation have increased the resolution of gene mapping based on genome-wide association studies (GWAS). Thus, numerous candidate genes that afect milk yield, milk composition, and mastitis resistance in dairy cattle are reported in the literature. Efect-bearing variants often afect multiple traits. Because the detection of overlapping quantitative trait loci (QTL) regions from single-trait GWAS is too inaccurate and subjective, multi-trait analysis is a better approach to detect pleiotropic efects of variants in candidate genes. However, large sample sizes are required to achieve sufcient power. Multi-trait meta-analysis is one approach to deal with this prob- lem. Thus, we performed two multi-trait meta-analyses, one for three milk production traits (milk yield, protein yield and fat yield), and one for milk yield and mastitis resistance. Results: For highly correlated traits, the power to detect pleiotropy was increased by multi-trait meta-analysis com- pared with the subjective assessment of overlapping of single-trait QTL confdence intervals. Pleiotropic efects of lead single nucleotide polymorphisms (SNPs) that were detected from the multi-trait meta-analysis were confrmed by bivariate association analysis. The previously reported pleiotropic efects of variants within the DGAT1 and MGST1 genes on three milk production traits, and pleiotropic efects of variants in GHR on milk yield and fat yield were con- frmed.
    [Show full text]
  • Dissertation YL.Pdf (4.445Mb)
    The Role of Sugar-sweetened Water in the Progression of Nonalcoholic Fatty Liver Disease by Yuwen Luo A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 10, 2016 Keywords: Nonalcoholic fatty liver disease, adipose tissue, fructose, high-fat Western diet, RNA-seq, ORM Copyright 2016 by Yuwen Luo Approved by Michael W. Greene, Chair, Assistant Professor, Nutrition, Dietetics and Hospitality Management Kevin W. Huggins, Associate Professor, Nutrition, Dietetics and Hospitality Management Ramesh B. Jeganathan, Associate Professor, Nutrition, Dietetics and Hospitality Management Robert L. Judd, Associate Professor, Anatomy, Physiology and Pharmacology i Abstract Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis (fatty liver) to nonalcoholic steatohepatitis (NASH), has become the most common chronic liver disease in both children and adults, paralleling the increased prevalence of obesity and diabetes during the last decades. The rise in NASH prevalence is a major public health concern because there are currently no specific and effective treatments for NASH. In addition, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. To model the human condition, a high-fat Western diet that includes liquid sugar consumption has been used in mice. A high-fat Western diet (HFWD) with liquid sugar [fructose and sucrose (F/S)] induced acute hyperphagia above that observed in HFWD-fed mice, yet without changes in energy expenditure. Liquid sugar (F/S) exacerbated HFWD-induced glucose intolerance and insulin resistance and impaired the storage capacity of epididymal white adipose tissue (eWAT).
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • ADHD) Gene Networks in Children of Both African American and European American Ancestry
    G C A T T A C G G C A T genes Article Rare Recurrent Variants in Noncoding Regions Impact Attention-Deficit Hyperactivity Disorder (ADHD) Gene Networks in Children of both African American and European American Ancestry Yichuan Liu 1 , Xiao Chang 1, Hui-Qi Qu 1 , Lifeng Tian 1 , Joseph Glessner 1, Jingchun Qu 1, Dong Li 1, Haijun Qiu 1, Patrick Sleiman 1,2 and Hakon Hakonarson 1,2,3,* 1 Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; [email protected] (Y.L.); [email protected] (X.C.); [email protected] (H.-Q.Q.); [email protected] (L.T.); [email protected] (J.G.); [email protected] (J.Q.); [email protected] (D.L.); [email protected] (H.Q.); [email protected] (P.S.) 2 Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Department of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA * Correspondence: [email protected]; Tel.: +1-267-426-0088 Abstract: Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with poorly understood molecular mechanisms that results in significant impairment in children. In this study, we sought to assess the role of rare recurrent variants in non-European populations and outside of coding regions. We generated whole genome sequence (WGS) data on 875 individuals, Citation: Liu, Y.; Chang, X.; Qu, including 205 ADHD cases and 670 non-ADHD controls. The cases included 116 African Americans H.-Q.; Tian, L.; Glessner, J.; Qu, J.; Li, (AA) and 89 European Americans (EA), and the controls included 408 AA and 262 EA.
    [Show full text]
  • Inbred Mouse Strains Expression in Primary Immunocytes Across
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 Daphne is online at: average * The Journal of Immunology published online 29 September 2014 from submission to initial decision 4 weeks from acceptance to publication Sara Mostafavi, Adriana Ortiz-Lopez, Molly A. Bogue, Kimie Hattori, Cristina Pop, Daphne Koller, Diane Mathis, Christophe Benoist, The Immunological Genome Consortium, David A. Blair, Michael L. Dustin, Susan A. Shinton, Richard R. Hardy, Tal Shay, Aviv Regev, Nadia Cohen, Patrick Brennan, Michael Brenner, Francis Kim, Tata Nageswara Rao, Amy Wagers, Tracy Heng, Jeffrey Ericson, Katherine Rothamel, Adriana Ortiz-Lopez, Diane Mathis, Christophe Benoist, Taras Kreslavsky, Anne Fletcher, Kutlu Elpek, Angelique Bellemare-Pelletier, Deepali Malhotra, Shannon Turley, Jennifer Miller, Brian Brown, Miriam Merad, Emmanuel L. Gautier, Claudia Jakubzick, Gwendalyn J. Randolph, Paul Monach, Adam J. Best, Jamie Knell, Ananda Goldrath, Vladimir Jojic, J Immunol http://www.jimmunol.org/content/early/2014/09/28/jimmun ol.1401280 Koller, David Laidlaw, Jim Collins, Roi Gazit, Derrick J. Rossi, Nidhi Malhotra, Katelyn Sylvia, Joonsoo Kang, Natalie A. Bezman, Joseph C. Sun, Gundula Min-Oo, Charlie C. Kim and Lewis L. Lanier Variation and Genetic Control of Gene Expression in Primary Immunocytes across Inbred Mouse Strains Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2014/09/28/jimmunol.140128 0.DCSupplemental Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc.
    [Show full text]
  • Single-Molecule Studies of Rad4-Rad23 Reveal a Dynamic Dna Damage Recognition Process
    SINGLE-MOLECULE STUDIES OF RAD4-RAD23 REVEAL A DYNAMIC DNA DAMAGE RECOGNITION PROCESS by Muwen Kong B.A. Physics, Knox College, 2008 M.S. Physics, Carnegie Mellon University, 2010 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2017 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Muwen Kong It was defended on June 30, 2017 and approved by Guillermo Romero, PhD., Associate Professor, Department of Pharmacology and Chemical Biology Marcel Bruchez, PhD., Associate Professor, Departments of Biological Sciences and Chemistry, Carnegie Mellon University Neil Kad, PhD., Senior Lecturer, School of Biosciences, University of Kent Patricia Opresko, PhD., Associate Professor, Department of Environmental and Occupational Health Dissertation Director: Bennett Van Houten, PhD., Professor, Department of Pharmacology and Chemical Biology ii Copyright © by Muwen Kong 2017 iii Single-Molecule Studies of Rad4-Rad23 Reveal a Dynamic DNA Damage Recognition Process Muwen Kong, PhD University of Pittsburgh, 2017 Nucleotide excision repair (NER) is an evolutionarily conserved mechanism that processes helix- destabilizing and/or -distorting DNA lesions, such as UV-induced photoproducts. As the first step towards productive repair, the human NER damage sensor XPC-RAD23B needs to efficiently locate sites of damage among billons of base pairs of undamaged DNA. In this dissertation, we investigated the dynamic protein-DNA interactions during the damage recognition step using a combination of fluorescence-based single-molecule DNA tightrope assays, atomic force microscopy, as well as cell survival and in vivo repair kinetics assays. We observed that quantum dot-labeled Rad4-Rad23, the yeast homolog of human XPC-RAD23B, formed nonmotile complexes on DNA or conducted a one-dimensional search via either random diffusion or constrained motion along DNA.
    [Show full text]
  • USP24 (S-18): Sc-82080
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . USP24 (S-18): sc-82080 BACKGROUND PRODUCT The ubiquitin (Ub) pathway involves three sequential enzymatic steps that Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide facilitate the conjugation of Ub and Ub-like molecules to specific protein and 0.1% gelatin. substrates. Through the use of a wide range of enzymes that can add or Blocking peptide available for competition studies, sc-82080 P, (100 µg remove ubiquitin, the Ub pathway controls many intracellular processes such peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). as signal transduction, transcriptional activation and cell cycle progression. USP24 (ubiquitin carboxyl-terminal hydrolase 24) is a 2,620 amino acid pro - APPLICATIONS tein that contains one UBA domain and is expressed at moderate levels in lung, heart, brain, kidney and liver. Involved in the ubiquitin pathway of pro - USP24 (S-18) is recommended for detection of USP24 of human and rat tein degradation, USP24 functions to catalyze the conversion of a ubiquitin origin by Western Blotting (starting dilution 1:200, dilution range 1:100- C-terminal thio ester to a free ubiquitin and a free thiol, an event that plays 1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml an important role in proteasome-mediated protein disposal. The gene encod - of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range ing USP24 maps to human chromosome 1 and is thought to play a role in 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- the pathogenesis of Parkinson’s disease.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • 2018 GRC Abstract Book
    40th Annual Graduate Research Conference Presented by: 40th Annual Graduate Research Conference presented by the Graduate Student Association Contents: 4 President’s Message 5 Forward 6 Student Award Winners 7 Keynote Speaker Biography 8 Schedule of Events 9 Session Assignments 10 Abstracts 55 Presenter Index 2 The GSA would like to thank our sponsors and supporting organizations for helping make this conference possible. Agilent BD Biosciences BioLegend Biostorage Labs Gliknik Peprotech Pierce Biotechnology (now part of Thermo Fisher) Proteintech Rainin USA Scientific, Inc. Xpress Bio 3 A Message from the President March 15, 2018 Congratulations to the Graduate Student Association on its 40th annual Graduate Research Conference. What an incredible milestone! This is one of the University’s very best and most enduring traditions, inviting students from all schools and disciplines to share in each other’s work, to learn about new avenues of discovery and research, and most importantly, to create opportunities for the kind of interprofessional, interdisciplinary collaboration that so often breeds breakthroughs. This instinct to share is important. It’s important that each of us understands how our colleagues contribute to our collective mission, and it’s important that we consider our work not in isolation but in context. The search for context has ignited partnerships at all levels of this institution, and I remain convinced that we work best for the people of this state, this nation, and this world when we work together. I hope the day proves enlightening and exciting. I hope it opens up possibilities to take your work further. I hope others might find in your research the spark or scaffolding they need for their own.
    [Show full text]
  • Integrated Analysis of Optical Mapping and Whole-Genome Sequencing Reveals Intratumoral Genetic Heterogeneity in Metastatic Lung Squamous Cell Carcinoma
    681 Original Article Integrated analysis of optical mapping and whole-genome sequencing reveals intratumoral genetic heterogeneity in metastatic lung squamous cell carcinoma Yizhou Peng1,2, Chongze Yuan1,2, Xiaoting Tao1,2, Yue Zhao1,2, Xingxin Yao1,2, Lingdun Zhuge1,2, Jianwei Huang3, Qiang Zheng2,4, Yue Zhang3, Hui Hong1,2, Haiquan Chen1,2, Yihua Sun1,2 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; 3Berry Genomics Corporation, Beijing 100015, China; 4Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China Contributions: (I) Conception and design: Y Peng, C Yuan, H Chen, Y Sun; (II) Administrative support: H Chen, Y Sun; (III) Provision of study materials or patients: X Tao, X Yao, Q Zheng, H Chen, Y Sun; (IV) Collection and assembly of data: J Huang, Y Zhang; (V) Data analysis and interpretation: Y Peng, Y Zhao, L Zhuge, J Huang, Y Zhang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Yihua Sun; Haiquan Chen. Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China. Email: [email protected]; [email protected]. Background: Intratumoral heterogeneity is a crucial factor to the outcome of patients and resistance to therapies, in which structural variants play an indispensable but undiscovered role. Methods: We performed an integrated analysis of optical mapping and whole-genome sequencing on a primary tumor (PT) and matched metastases including lymph node metastasis (LNM) and tumor thrombus in the pulmonary vein (TPV). Single nucleotide variants, indels and structural variants were analyzed to reveal intratumoral genetic heterogeneity among tumor cells in different sites.
    [Show full text]
  • Supplementary Material Peptide-Conjugated Oligonucleotides Evoke Long-Lasting Myotonic Dystrophy Correction in Patient-Derived C
    Supplementary material Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice Arnaud F. Klein1†, Miguel A. Varela2,3,4†, Ludovic Arandel1, Ashling Holland2,3,4, Naira Naouar1, Andrey Arzumanov2,5, David Seoane2,3,4, Lucile Revillod1, Guillaume Bassez1, Arnaud Ferry1,6, Dominic Jauvin7, Genevieve Gourdon1, Jack Puymirat7, Michael J. Gait5, Denis Furling1#* & Matthew J. A. Wood2,3,4#* 1Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, CRM, F-75013 Paris, France 2Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK 3Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford, UK 4MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK 5Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK 6Sorbonne Paris Cité, Université Paris Descartes, F-75005 Paris, France 7Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, QC, Canada † These authors contributed equally to the work # These authors shared co-last authorship Methods Synthesis of Peptide-PMO Conjugates. Pip6a Ac-(RXRRBRRXRYQFLIRXRBRXRB)-CO OH was synthesized and conjugated to PMO as described previously (1). The PMO sequence targeting CUG expanded repeats (5′-CAGCAGCAGCAGCAGCAGCAG-3′) and PMO control reverse (5′-GACGACGACGACGACGACGAC-3′) were purchased from Gene Tools LLC. Animal model and ASO injections. Experiments were carried out in the “Centre d’études fonctionnelles” (Faculté de Médecine Sorbonne University) according to French legislation and Ethics committee approval (#1760-2015091512001083v6). HSA-LR mice are gift from Pr. Thornton. The intravenous injections were performed by single or multiple administrations via the tail vein in mice of 5 to 8 weeks of age.
    [Show full text]