The Effects of Carbon Dioxide Removal on the Carbon Cycle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Reforestation in Carbon Sequestration
New Forests (2019) 50:115–137 https://doi.org/10.1007/s11056-018-9655-3 The role of reforestation in carbon sequestration L. E. Nave1,2 · B. F. Walters3 · K. L. Hofmeister4 · C. H. Perry3 · U. Mishra5 · G. M. Domke3 · C. W. Swanston6 Received: 12 October 2017 / Accepted: 24 June 2018 / Published online: 9 July 2018 © Springer Nature B.V. 2018 Abstract In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. More broadly, reforestation following harvesting, recent or historic disturbances can enhance numerous carbon (C)-based ecosystem services and functions. These include production of woody biomass for forest products, and mitigation of atmos- pheric CO2 pollution and climate change by sequestering C into ecosystem pools where it can be stored for long timescales. Nonetheless, a range of assessments and analyses indicate that reforestation in the U.S. lags behind its potential, with the continuation of ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration, from ecosystems up to regional and national levels. Here, we describe the methods and report the fndings of a large-scale data synthesis aimed at four objectives: (1) estimate C storage in major ecosystem pools in forest and other land cover types; (2) quan- tify sources of variation in ecosystem C pools; (3) compare the impacts of reforestation and aforestation on C pools; (4) assess whether these results hold or diverge across ecore- gions. -
Long-Term Carbon Sink in Borneo's Forests Halted by Drought
Corrected: Publisher correction ARTICLE DOI: 10.1038/s41467-017-01997-0 OPEN Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects Lan Qie et al. Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records fi −1 1234567890 of up to half a century, we nd that intact forests in Borneo gained 0.43 Mg C ha per year (95% CI 0.14–0.72, mean period 1988–2010) in above-ground live biomass carbon. These results closely match those from African and Amazonian plot networks, suggesting that the world’s remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997–1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere. Correspondence and requests for materials should be addressed to L.Q. (email: [email protected]) #A full list of authors and their affliations appears at the end of the paper NATURE COMMUNICATIONS | 8: 1966 | DOI: 10.1038/s41467-017-01997-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01997-0 ver the past half-century land and ocean carbon sinks Nevertheless, crucial evidence required to establish whether the have removed ~55% of anthropogenic CO2 emissions to forest sink is pan-tropical remains missing. -
Assessing the Role of Carbon Dioxide Removal in Companies' Climate
Net Expectations Assessing the role of carbon dioxide removal in companies’ climate plans. Briefing by Greenpeace UK January 2021 ~ While a few companies plan to deliver CDR Executive in specific projects, many plan to simply purchase credits on carbon markets, summary which have been beset with integrity problems and dubious accounting, even where certified. To stabilise global temperatures at any level – whether 1.5˚C, 2˚C, 3˚C or 5˚C Limits and uncertainties – carbon dioxide (CO2) emissions must The IPCC warns that reliance on CDR is a major reach net zero at some point, because risk to humanity’s ability to achieve the Paris goals. of CO2’s long-term, cumulative effect. The uncertainties are not whether mechanisms to remove CO2 “work”: they all work in a laboratory According to the Intergovernmental at least. Rather, it is whether they can be delivered Panel on Climate Change (IPCC), at scale, with sufficient funding and regulation, to store CO2 over the long term without unacceptable limiting warming to 1.5˚C requires net- social and environmental impacts. zero CO2 to be reached by about 2050. To illustrate the need for regulation, the carbon A small proportion of emissions is likely to be dioxide captured by forests is highly dependent on unavoidable and must be offset by carbon dioxide their specific circumstances, including their removal (CDR), such as by tree-planting (afforestation/ species diversity, the prior land use, and future reforestation) or by technological approaches like risks to the forest (such as fires or pests). In some bioenergy with carbon capture and storage (BECCS) cases, forests and BECCS can increase rather than or direct air carbon capture with storage (DACCS). -
Ocean Storage
277 6 Ocean storage Coordinating Lead Authors Ken Caldeira (United States), Makoto Akai (Japan) Lead Authors Peter Brewer (United States), Baixin Chen (China), Peter Haugan (Norway), Toru Iwama (Japan), Paul Johnston (United Kingdom), Haroon Kheshgi (United States), Qingquan Li (China), Takashi Ohsumi (Japan), Hans Pörtner (Germany), Chris Sabine (United States), Yoshihisa Shirayama (Japan), Jolyon Thomson (United Kingdom) Contributing Authors Jim Barry (United States), Lara Hansen (United States) Review Editors Brad De Young (Canada), Fortunat Joos (Switzerland) 278 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 279 6.7 Environmental impacts, risks, and risk management 298 6.1 Introduction and background 279 6.7.1 Introduction to biological impacts and risk 298 6.1.1 Intentional storage of CO2 in the ocean 279 6.7.2 Physiological effects of CO2 301 6.1.2 Relevant background in physical and chemical 6.7.3 From physiological mechanisms to ecosystems 305 oceanography 281 6.7.4 Biological consequences for water column release scenarios 306 6.2 Approaches to release CO2 into the ocean 282 6.7.5 Biological consequences associated with CO2 6.2.1 Approaches to releasing CO2 that has been captured, lakes 307 compressed, and transported into the ocean 282 6.7.6 Contaminants in CO2 streams 307 6.2.2 CO2 storage by dissolution of carbonate minerals 290 6.7.7 Risk management 307 6.2.3 Other ocean storage approaches 291 6.7.8 Social aspects; public and stakeholder perception 307 6.3 Capacity and fractions retained -
Long-Term Carbon Sink in Borneo’S Forests Halted By
ARTICLE DOI: 10.1038/s41467-017-01997-0 OPEN Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects Lan Qie et al. Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records fi −1 1234567890 of up to half a century, we nd that intact forests in Borneo gained 0.43 Mg C ha per year (95% CI 0.14–0.72, mean period 1988–2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world’s remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan- tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997–1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere. Correspondence and requests for materials should be addressed to L.Q. (email: [email protected]) #A full list of authors and their affliations appears at the end of the paper NATURE COMMUNICATIONS | 8: 1966 | DOI: 10.1038/s41467-017-01997-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01997-0 ver the past half-century land and ocean carbon sinks Nevertheless, crucial evidence required to establish whether the have removed ~55% of anthropogenic CO2 emissions to forest sink is pan-tropical remains missing. -
Forestry As a Natural Climate Solution: the Positive Outcomes of Negative Carbon Emissions
PNW Pacific Northwest Research Station INSIDE Tracking Carbon Through Forests and Streams . 2 Mapping Carbon in Soil. .3 Alaska Land Carbon Project . .4 What’s Next in Carbon Cycle Research . 4 FINDINGS issue two hundred twenty-five / march 2020 “Science affects the way we think together.” Lewis Thomas Forestry as a Natural Climate Solution: The Positive Outcomes of Negative Carbon Emissions IN SUMMARY Forests are considered a natural solu- tion for mitigating climate change David D’A more because they absorb and store atmos- pheric carbon. With Alaska boasting 129 million acres of forest, this state can play a crucial role as a carbon sink for the United States. Until recently, the vol- ume of carbon stored in Alaska’s forests was unknown, as was their future car- bon sequestration capacity. In 2007, Congress passed the Energy Independence and Security Act that directed the Department of the Inte- rior to assess the stock and flow of carbon in all the lands and waters of the United States. In 2012, a team com- posed of researchers with the U.S. Geological Survey, U.S. Forest Ser- vice, and the University of Alaska assessed how much carbon Alaska’s An unthinned, even-aged stand in southeast Alaska. New research on carbon sequestration in the region’s coastal temperate rainforests, and how this may change over the next 80 years, is helping land managers forests can sequester. evaluate tradeoffs among management options. The researchers concluded that ecosys- tems of Alaska could be a substantial “Stones have been known to move sunlight, water, and atmospheric carbon diox- carbon sink. -
C2G Evidence Brief: Carbon Dioxide Removal and Its Governance
Carnegie Climate EVIDENCE BRIEF Governance Initiative Carbon Dioxide Removal An initiative of and its Governance 2 March 2021 Summary This briefing summarises the latest evidence relating to Carbon Dioxide Removal (CDR) techniques and their governance. It describes a range of techniques currently under consideration, exploring their technical readiness, current research, applicable governance frameworks, and other socio-political considerations in section I. It also provides an overview of some generic CDR governance issues and the key instruments relevant for the governance of CDR in section II. About C2G The Carnegie Climate Governance Initiative (C2G) seeks to catalyse the creation of effective governance for climate-altering approaches, in particular for solar radiation modification (SRM) and large-scale carbon dioxide removal (CDR). In 2018, the Intergovernmental Panel on Climate Change (IPCC) reaffirmed that large-scale CDR is required in all pathways to limit global warming to 1.5°C with limited or no overshoot. Some scientists say SRM may also be needed to avoid that overshoot. C2G is impartial regarding the potential use of specific approaches, but not on the need for their governance - which includes multiple, diverse processes of learning, discussion and decision-making, involving all sectors of society. It is not C2G’s role to influence the outcome of these processes, but to raise awareness of the critical governance questions that underpin CDR and SRM. C2G’s mission will have been achieved once their governance is taken on board by governments and intergovernmental bodies, including awareness raising, knowledge generation, and facilitating collaboration. C2G has prepared several other briefs exploring various CDR and SRM technologies and associated issues. -
Principles for Thinking About Carbon Dioxide Removal in Just Climate Policy
ll Commentary Principles for Thinking about Carbon Dioxide Removal in Just Climate Policy David R. Morrow,1,* Michael S. Thompson,2 Angela Anderson,3 Maya Batres,4 Holly J. Buck,5 Kate Dooley,6 Oliver Geden,7,8 Arunabha Ghosh,9 Sean Low,10 Augustine Njamnshi,11 John Noel,€ 4 Olu´ fẹ́mi O. Ta´ ı´wo` ,12 Shuchi Talati,3 and Jennifer Wilcox13 1Institute for Carbon Removal Law and Policy, American University, Washington, DC, USA 2Carnegie Climate Governance Initiative, New York, NY, USA 3Union of Concerned Scientists, Washington, DC, USA 4Independent scholar, USA 5UCLA School of Law, Los Angeles, CA, USA 6Australian-German Climate and Energy College, University of Melbourne, Melbourne, Australia 7German Institute for International and Security Affairs, Berlin, Germany 8International Institute for Applied Systems Analysis, Laxenburg, Austria 9Council on Energy, Environment, and Water, New Delhi, India 10Institute for Advanced Sustainability Studies, Potsdam, Germany 11Pan-African Climate Justice Alliance, Nairobi, Kenya 12Department of Philosophy, Georgetown University, Washington, DC, USA 13Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA *Correspondence: [email protected] https://doi.org/10.1016/j.oneear.2020.07.015 Carbon dioxide removal (CDR) is rising up the climate-policy agenda. Four principles for thinking about its role in climate policy can help ensure that CDR supports the kind of robust, abatement-focused long-term climate strategy that is essential to fair and effective implementation. Carbon dioxide removal (CDR), some- agencies are wrestling with the chal- Different people and institutions will times called carbon removal or negative lenge of forming positions on CDR, have different expectations about long- emissions, is the practice of capturing including whether to support it at all term climate strategies. -
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2. -
Climate Intervention (July 2021)
State of the Science FACT SHEET Climate Intervention Climate Intervention (CI), also called climate engineering or geoengineering, refers to deliberate, large‐scale actions intended to counteract aspects of climate change. This Fact Sheet explains some of the fundamental principles and issues associated with CI (1). Why Might Climate Intervention Be Considered? The main driver of climate change over the past century has been anthropogenic emissions of carbon dioxide (CO2), a greenhouse gas (GHG). Increasing emission rates have caused present‐day atmospheric CO2 to reach the highest value in over a million years based on studies of emissions of atmospheric CO2 and its accumulation in the atmosphere, ocean, and terrestrial biosphere. The increased emissions of other GHGs, such as methane, nitrous oxide and ozone, also contribute to anthropogenic climate change. The increased accumulation of GHGs has led to warming over much of the globe, to acidification of ocean surface waters (from CO2) (2), and to many other well‐documented climate impacts (3). As climate change continues, if the world does not make the desired greenhouse gas emissions reductions (4) such as those initiated by the Paris agreement (5), governments and other entities might turn to CI to counteract increasing climate change impacts. CI could potentially be implemented by consensus or unilaterally; either way, a thorough understanding of CI methods, and their associated uncertainties and unintended side effects is essential. Principal CI methods are divided into two How might CDR be accomplished? general categories (6) (see figure): Oceanic sequestration: Adding nutrients, such as iron, to “ferti‐ lize” the ocean enhances biological growth (e.g., phytoplank‐ Carbon dioxide removal (CDR): CDR is a process to remove ton), which removes CO2 from surface waters and leads to lower CO2 from the atmosphere for long‐term storage on land or atmospheric levels. -
Novartis Carbon-Sink Forestry Projects
Novartis Business Services Health, Safety and Environment Novartis carbon-sink forestry projects An inclusive business approach to fighting climate change and supporting local communities 2 | NOVARTIS CARBON-SINK FORESTRY PROJECTS China Sichuan Forestry Project Mali Colombia Jatropha Hacienda Mali Initiative El Manantial Argentina Santo Domingo Estate Contents Energy and climate at Novartis 4 Argentina: Santo Domingo Estate 6 Mali: Jatropha Mali Initiative 8 China: Sichuan Forestry Project 10 Colombia: Hacienda El Manantial 12 Performance summary and outlook 14 NOVARTIS CARBON-SINK FORESTRY PROJECTS | 3 Four carbon-sink forestry projects around the world United Nations Santo Jatropha Sichuan Hacienda Sustainable Development Goals Domingo Mali Forestry El Manantial (SDGs) Estate Initiative Project Goal 7 Ensure access to affordable, reliable, sustainable and modern energy for all Goal 8 Promote sustained, inclusive and sustainable economic growth, full and productive employment, and decent work for all Goal 13 Take urgent action to combat climate change and its impacts Goal 15 Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat deserti fication and halt and reverse land degradation, and halt biodiversity loss Goal 17 Strengthen the means of implementation and revitalize the global partnership for sustainable development 4 | EnERGY AND CLIMATE AT NOVARTIS Energy and climate at Novartis At Novartis, minimizing our environmental footprint our 2020 GHG reduction target of 30% reduction is an integral part of our Corporate Responsibility versus 2010, steadily reducing our total Scope 1 and strategy and respect for the environment a guiding Scope 2 emissions year after year. principle behind all our activities. Using energy efficiently, switching to renewable energy sources While supporting Novartis in meeting our emission and reducing greenhouse gas emissions (GHG) are reduction target, our four forestry projects provide priority areas for our company. -
Carbon Sink Or Carbon Source? Instruction Manual Carbon Sink Or Carbon Source?
Carbon Sink or Carbon Source? Instruction Manual Carbon Sink or Carbon Source? This activity is designed for adults, families, or kids ages 9 and older with their families. Some younger children have been engaged by this activity and can help with sorting. Materials Setup Sink or Source setup (wooden 1. Clip the six metal dowels into their holders, with the weighted stand, wooden piece for the top, ends on the educator side of the cart. Try to line up the center six metal dowels) groove on the dowel with the center of the white dowel that holds the metal holders. Cards with hooks 2. Check alignment—the dowels should all fall at roughly the iPad same angle. 3. Put the top wooden piece in, so that the dowels are parallel to the floor. 4. Array the images so the visitors can see them. 5. Get the iPad from the Magic Planet cart. Open the program “GoodReader.” If the Sink/Source activity is not showing, touch the center of the screen and touch “My Documents” in the upper left-hand corner. Select the Sink/Source document. Touch the center of the screen to get rid of the borders. Set it up so that visitors can see it. Doing the activity 1. Ask visitors what they know about carbon sources and carbon sinks. They may be familiar with these terms, or not. They may be able to figure out carbon source fairly easily and need help figuring out carbon sink. A carbon source is something that releases carbon into the atmosphere, and a sink is something that removes carbon from the atmosphere.