The Occurrence of the Lessepsian Migrant Lutjanus Argentimaculatus

Total Page:16

File Type:pdf, Size:1020Kb

The Occurrence of the Lessepsian Migrant Lutjanus Argentimaculatus ISSN: 0001-5113 ACTA ADRIAT., SHORT COMMUNICATION AADRAY 60(1): 99 - 102, 2019 The occurrence of the Lessepsian migrant Lutjanus argentimaculatus in the Mediterranean, (Actinopterygii: Perciformes: Lutjanidae) first record from the coast of Israel Oren SONIN1, Dor EDELIST 2 and Daniel GOLANI3* 1 Department of Fisheries, Ministry of Agriculture. P.O. Box 1213 Kiryat Haim, 26105 Israel 2 Department of Maritime Civilizations, Charney School for Marine Sciences, University of Haifa. Mount Carmel, Haifa 31905, Israel 3 National Natural History Collections and Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel * Corresponding author, email: [email protected] Two specimens of the Lessepsian migrant, the Mangrove red snapper Lutjanus argentimaculatus are reported from the Mediterranean coast of Israel. L. argentimaculatus was first recorded in the Mediterranean in 1979 by a single specimen. Over three decades later and only in the last two years four specimens, including the two reported herein, were recorded. This pattern strongly suggests that L. argentimaculatus has established a sustainable population in the Mediterranean. Key words: Lessepsian migrant, Lutjanus argentimaculatus, first record, Israel INTRODUCTION Therefore, the Israeli specimens constitute the fourth and fifth records from the Mediterranean, The phenomenon of invasion by Red Sea strongly suggesting that, after an initial lag, this organisms into the Mediterranean via the Suez species has recently established a viable popula- Canal is an ongoing process showing no signs tion in its new region. of ceasing or slowing. Among these “Lessep- sian migrants” are more than 100 fish species MATERIAL AND METHODS (FRICKE et al, 2017). Lutjanus argentimaculatus (Forsskål, 1775) On 21 January 2019 a 540 mm SL (660 mm was first recorded in the Mediterranean by MOU- TL), weighing 4,452 g. specimen of Lutjanus NEIMNÉ (1979) from Lebanon, who provided a argentimaculatus was collected by hook-and- drawing. Almost four decades later, CROCETTA line at depths of ca. 50 m in the vicinity of Tel- & BARICHE (2016) reported the second record, Aviv, Israel (Fig 1). The specimen was deposited also from Lebanon. Shortly thereafter, AKYOL in the Hebrew University Fish Collection and (in press) reported the first record of this spe- received the catalogue number HUJ 20917. Two cies from the Bay of Izmir, Aegean Sea, Turkey. months earlier, on 17 November 2018, a ca. 450 In the present study we report two additional mm specimen of Lutjanus argentimaculatus records from the Mediterranean coast of Israel. (Fig.2) was speared at a depth of 30 m, approxi- 100 ACTA ADRIATICA, 60(1): 99 - 102, 2019 Fig. 1 Lutjanus argentimaculatus, 540 mm SL from the Mediterranean coast of Israel (HUJ 20917) mately 15 km north of Tel Aviv, Israel (32017 N 34041 E). This specimen was photographed but was not saved. All counts and measurements fol- lowed HUBBS and LAGLER, 1947. RESULTS Fig. 2. Specimen of Lutjanus argentimaculatus (on the right) speared in the Mediterranean coast of Israel, Description of the Lutjanus argentimaculatus together with a specimen of Epinephelus aeneus. specimen from the Mediterranean coast of Israel (HUJ 20917) DISCUSSION Body moderately elongated and slightly The family of Lutjanidae consists of 110 spe- cies world-wide (NELSON et al., 2016), of which compressed. Large head, 25.4% in SL. Jaws four occur in the Mediterranean; three are L. reach back almost to the vertical of anterior of argentimaculatus, L. fulviflamma and L. saba eye. Two canine teeth at the anterior of upper which also occur in the Red Sea (GOLANI & jaw, followed by a series of small sharp teeth. FRICKE, 2018) and can be considered as Lessep- Series of small sharp teeth on each side of the sian migrants. One species L. juco is of Atlantic lower jaws. Lower limb of the first gill arch with origin. four rudiments, eight rakers, and five rakers on Lutjanus argentimaculatus lives near rocky the upper limb. Pointed snout (55.2%), eye situ- substrate and open areas to a depth of 80 m. It ated on the upper head (21.8%), and wide inter- feeds mainly on fishes and, to a lesser extent, on orbital (29.6%), all in Head length. Continuous cephalopods and crustaceans. dorsal fin with shallow notch between spinulous This species can be distinguished from its portion and the ray portion, with 10 spines and Indo-Pacific co-generic species by the following rd th 14 rays, the 3 -5 spines are the longest. Anal characteristics: Body generally uniform in color fin with three spines and seven rays. Caudal fin without stripes, spots or blotches (juveniles with emarginated. Pectoral fin slightly pointed with eight dark bars), horizontal longitudinal scale 16 rays. Ventral fin with one spine and five rays, rows above and parallel to the lateral line and its origin slightly behind pectoral fin origin. emarginated to truncated caudal fin (ALLEN, Lateral line parallel to the dorsal contour of the 1985). body, with 48 scales. Scales are present on the Lutjanus argentimaculatus has a wide Indo- operculum, preoperculum and the base of anal Pacific distribution, from the Red Sea and fin and the ray portion of the dorsal fin. eastern Africa to Australia and Samoa. The Color: Body brownish-bronze, darker on the collection of four specimens of Lutjanus argen- back, becoming lighter on the ventral surface. timaculatus in the last two years, indicate that Most scales with grey posterior edges. this Lessepsian migrant has established a popu- lation in its new region. Although no juveniles SONIN et. al.: The occurrence of the Lessepsian migrant Lutjanus argentimaculatus in the Mediterranean, ... 101 have been collected as yet, this is probably due Israel by a single specimen (WHITEHEAD, 1963), to their small size preventing their capture by under the name of Etrumeus teres. More than standard fishing methods. It is very unlikely that three decades elapsed until it was recorded again all four recently collected specimens crossed the in the Mediterranean coast of Egypt (EL-SAYED, Suez Canal independently. 1994). A short time later it became an important The pattern of a long period of time elapsing commercial species in the region (GOLANI et al., between the first and second records, followed 2002). This pattern of a long lag between first and immediately by a population establishment is second records raises the question, whether the known in at least two other Lessepsian fish first record represents an abortive colonization migrants, Pterois miles and Etrumeus golanii: attempt and the second record followed by rapid the former was first recorded in the Mediter- population growth represents colonization of a ranean in 1991 (GOLANI & SONIN, 1992) and then better-adapted morph or, alternatively, whether only in 2012, the next two Mediterranean speci- a small population existed since the first record, mens were reported from Lebanon (BARICHE, but was not detected. et al.2013), and almost immediately afterwards, It will be interesting to observe whether Lut- it became very common throughout the eastern janus argentimaculatus will follow this pattern Mediterranean basin (see: AZZURRO & BARICHE, and establish a large population in the Mediter- 2017; STERN et al., 2017). ranean. A similar case is Etrumeus golanii, which was first recorded from the Mediterranean coast of REFERENCES AKYOL, O. (in press). First record of a Man- EL-SAYAD, R.S. 1994. Checklist of Egyptian Medi- grove Red snapper Lutjanus argentimacula- terranean fishes. National Institute of Ocean- tus (Actinopterygii: Perciformes: Lutjanidae) ography and Fisheries, Alexandria, Egypt, from the Aegean Sea (Izmir Bay Turkey). 77 pp. Acta Ichth. Pisc. FRICKE, R., D. GOLANI & B. APPELBAUM-GOLANI. ALLEN, G.R. 1985. FAO species catalogue Vol. 2017. Arnoglossus nigrofilamentosus n. sp., a 6 Snappers of the world. An annotated and new species of flounder from off the Medi- illustrated catalogue of lutjanid species terranean coast of Israel, probably a new case known to date. Rome, Italy, FAO of the UN. of Lessepsian migration (Teleostei: Bothi- 208 pp + 27 colorplates. dae). Scien. Mar. 81(4): 457-465. AZZURRO, E, & M. BARICHE. 2017. Local knowl- GOLANI, D. & O. SONIN. 1992. New records of the edge and awareness on the incipient lionfish Red Sea fishes, Pterois miles (Scorpaenidae) invasion in the eastern Mediterranean Sea. and Pteragogus pelycus (Labridae) from the Mar. Freshwater Res. 68: 1950–1954. eastern Mediterranean Sea. Jap. J. Ichth. BARICHE, M., M. TORRES, & E. AZZURRO. 2013. 39(2):167-169. The presence of the invasive lionfish Pterois GOLANI, D. & R. FRICKE. 2018. Checklist of miles in the Mediterranean Sea. Medit. Mar. the Red Sea fishes with delineation of the Sci. 14:292–294. Gulf of Suez, Gulf of Aqaba, endemism CROCETTA, F. & M. BARICHE. 2016. Citizen sci- and Lessepsian migrants. Zootaxa 4509(1): entist’s contribution to better knowledge of 1-215. the Mediterranean marine biota: records of GOLANI, D., L. ORSI-RELINI, E. MASSUTI & J.P. five alien and native species from Lebanon. QUIGNARD. 2002. CIESM atlas of exotic spe- Pp.620-621. In: T. Dailiaanis, O. Akyol, M. cies in the Mediterranean. Vol.1. Fishes. Bri- Badali, et al. (Editors). New Mediterranean and, F. (ed.) CIESM Publications, Monaco, biodiversity records. Medit. Mar. Sci. 17(2): 256 pp. 608-626. HUBBS, C.L. & K.F. LAGLER, K.F. 1947. Fishes of 102 ACTA ADRIATICA, 60(1): 99 - 102, 2019 the Great Lakes Region. Bull. Cranbrook STERN, N., C. JIMENEZ, M.F. HUSEYINOGLU, V. Inst. Sci. Bloomfield Hills, Michigan. 26: ANDREOU, L. HADIJIOANNOU, A. PETROU, B. VI+186 pp. ÖZTÜRK, D. GOLANI & S.B.S. ROTHMAN. 2018. MOUNEIMNÉ, N. 1979. Poissons nouveaux pour Constructing the genetic population demog- les cotes Libanaises (Méditerranée orientale). raphy of the invasive lionfish Pterois miles Cybium 6: 105-110. in the Levant Basin, Eastern Mediterranean. NELSON, J.S., T.C. GRANDE & M.V.H.
Recommended publications
  • The Open Access Israeli Journal of Aquaculture – Bamidgeh
    The Open Access Israeli Journal of Aquaculture – Bamidgeh As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions. This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible. Editor-in-Chief Published under auspices of Dan Mires The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB), Editorial Board University of Hawaii at Manoa Library Sheenan Harpaz Agricultural Research Organization and Beit Dagan, Israel University of Hawaii Aquaculture Zvi Yaron Dept. of Zoology Program in association with Tel Aviv University AquacultureHub Tel Aviv, Israel http://www.aquaculturehub.org Angelo Colorni National Center for Mariculture, IOLR Eilat, Israel Rina Chakrabarti Aqua Research Lab Dept. of Zoology University of Delhi Ingrid Lupatsch Swansea University Singleton Park, Swansea, UK Jaap van Rijn The Hebrew University Faculty of Agriculture Israel Spencer Malecha Dept. of Human Nutrition, Food and Animal Sciences University of Hawaii Daniel Golani The Hebrew University of Jerusalem Jerusalem, Israel Emilio Tibaldi Udine University Udine, Italy ISSN 0792 - 156X Israeli Journal of Aquaculture - BAMIGDEH. Copy Editor Ellen Rosenberg PUBLISHER: Israeli Journal of Aquaculture - BAMIGDEH - Kibbutz Ein Hamifratz, Mobile Post 25210, ISRAEL Phone: + 972 52 3965809 http://siamb.org.il 22 The Israeli Journal of Aquaculture – Bamidgeh 55(1), 2003, 22-30.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 9: 185–192, 2010 AQUATIC BIOLOGY Published online May 12 doi: 10.3354/ab00250 Aquat Biol Microparasite ecology and health status of common bluestriped snapper Lutjanus kasmira from the Pacific Islands Thierry M. Work1,*, Matthias Vignon2, 3, Greta S. Aeby4 1US Geological Survey, National Wildlife Health Center, Honolulu Field Station, PO Box 50167, Honolulu, Hawaii 96850, USA 2Centre de Biologie et d’Ecologie Tropicale et Méditerranéenne, UMR 5244 CNRS-EPHE-UPVD, avenue Paul Alduy, 66860 Perpignan Cedex, France 3Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), USR 3278 CNRS-EPHE, BP 1013 Papetoia, Moorea, French Polynesia 4Hawaii Institute of Marine Biology, PO Box 1346, Kaneohe, Hawaii 96744, USA ABSTRACT: Common bluestriped snappers Lutjanus kasmira were intentionally introduced into Hawaii from the South Pacific in the 1950s and have become well established throughout the archi- pelago. We examined health, prevalence and infection intensity of 2 microparasites, coccidia and epitheliocystis-like organisms (ELO), in L. kasmira from their introduced and native range including the islands where translocated fish originated (Tahiti and Marquesas Islands, French Polynesia) and from several other islands (American Samoa, Fiji and New Caledonia). In addition, we did a longitu- dinal survey of these parasites in the introduced range. Coccidia and ELO were widely distributed and were found on all islands except for New Caledonia. Health indices, as measured by overall organ lesions, body condition and parasite intensity, indicated that fish from Samoa were the least healthy, and fish from Midway (Hawaiian Archipelago) were the healthiest. Microparasite diversity was highest on Midway and Hawaii and lowest on New Caledonia.
    [Show full text]
  • Reef Snappers (Lutjanidae)
    #05 Reef snappers (Lutjanidae) Two-spot red snapper (Lutjanus bohar) Mangrove red snapper Blacktail snapper (Lutjanus argentimaculatus) (Lutjanus fulvus) Common bluestripe snapper (Lutjanus kasmira) Humpback red snapper Emperor red snapper (Lutjanus gibbus) (Lutjanus sebae) Species & Distribution Habitats & Feeding The family Lutjanidae contains more than 100 species of Although most snappers live near coral reefs, some species tropical and sub-tropical fi sh known as snappers. are found in areas of less salty water in the mouths of rivers. Most species of interest in the inshore fi sheries of Pacifi c Islands belong to the genus Lutjanus, which contains about The young of some species school on seagrass beds and 60 species. sandy areas, while larger fi sh may be more solitary and live on coral reefs. Many species gather in large feeding schools One of the most widely distributed of the snappers in the around coral formations during daylight hours. Pacifi c Ocean is the common bluestripe snapper, Lutjanus kasmira, which reaches lengths of about 30 cm. The species Snappers feed on smaller fi sh, crabs, shrimps, and sea snails. is found in many Pacifi c Islands and was introduced into They are eaten by a number of larger fi sh. In some locations, Hawaii in the 1950s. species such as the two-spot red snapper, Lutjanus bohar, are responsible for ciguatera fi sh poisoning (see the glossary in the Guide to Information Sheets). #05 Reef snappers (Lutjanidae) Reproduction & Life cycle Snappers have separate sexes. Smaller species have a maximum lifespan of about 4 years and larger species live for more than 15 years.
    [Show full text]
  • Snapper and Grouper: SFP Fisheries Sustainability Overview 2015
    Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Patrícia Amorim | Fishery Analyst, Systems Division | [email protected] Megan Westmeyer | Fishery Analyst, Strategy Communications and Analyze Division | [email protected] CITATION Amorim, P. and M. Westmeyer. 2016. Snapper and Grouper: SFP Fisheries Sustainability Overview 2015. Sustainable Fisheries Partnership Foundation. 18 pp. Available from www.fishsource.com. PHOTO CREDITS left: Image courtesy of Pedro Veiga (Pedro Veiga Photography) right: Image courtesy of Pedro Veiga (Pedro Veiga Photography) © Sustainable Fisheries Partnership February 2016 KEYWORDS Developing countries, FAO, fisheries, grouper, improvements, seafood sector, small-scale fisheries, snapper, sustainability www.sustainablefish.org i Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 EXECUTIVE SUMMARY The goal of this report is to provide a brief overview of the current status and trends of the snapper and grouper seafood sector, as well as to identify the main gaps of knowledge and highlight areas where improvements are critical to ensure long-term sustainability. Snapper and grouper are important fishery resources with great commercial value for exporters to major international markets. The fisheries also support the livelihoods and food security of many local, small-scale fishing communities worldwide. It is therefore all the more critical that management of these fisheries improves, thus ensuring this important resource will remain available to provide both food and income. Landings of snapper and grouper have been steadily increasing: in the 1950s, total landings were about 50,000 tonnes, but they had grown to more than 612,000 tonnes by 2013.
    [Show full text]
  • Biochemical and Morphometric Analyses for Phylogenic Relationships Between Seven Snapper Species (Subfamily Lutjaninae) of the Western Atlantic
    BULLETIN OF MARINE SCIENCE, 50(3): 508-519,1992 CORAL REEF PAPER BIOCHEMICAL AND MORPHOMETRIC ANALYSES FOR PHYLOGENIC RELATIONSHIPS BETWEEN SEVEN SNAPPER SPECIES (SUBFAMILY LUTJANINAE) OF THE WESTERN ATLANTIC Seinen Chow and Patrick J. Walsh ABSTRACT Fourteen snapper species belonging to the three genera (Lutjanus and two mono typic genera Ocyurus and Rhomboplites) of the subfamily Lutjaninae have been described in the western Atlantic. Electrophoretic (on 25 enzyme loci) and skull morphometric (by analysis of variance and discriminant analysis) comparisons among seven species of the three genera were per- formed. Average Nei's genetic distances were 0.566 ± 0.207 among five species of Lutjanus, 0.687 ± 0.148 between five species of Lutjanus and O. chrysurus, 0.869 ± 0.224 between five species of Lutjallus and R. aurorubens. and 0.877 between O. chrysurus and R. aurorubens. Cluster and additive tree analyses based on the genetic distance indicated that: I) there are at least two distinct groups (gray and red snapper groups) within the genus Lutjanus; 2) the lane snapper (L. synagris) has a closer relationship with the red snapper group (L. analis and L. vivanus) than with the gray snapper group (L. apodus and L. griseus); and 3) there is a closer relationship between Lutjanus and O. chrysurus than between R. aurorubens and Lutjanus or O. chrysurus. On the other hand, the skull morphometric analysis indicated that: I) the lane snapper (L. synagris) has greater affinity with the gray snapper group than with L. analis (red snapper); and 2) although O. chrysurus has some affinities with R. aurorubens, this monotypic genus showed much less distance than R.
    [Show full text]
  • Seafood Watch Seafood Report
    Seafood Watch Seafood Report Commercially Important Gulf of Mexico/South Atlantic Snappers Red snapper, Lutjanus campechanus Vermilion snapper, Rhomboplites aurorubens Yellowtail snapper, Ocyurus chrysurus With minor reference to: Gray snapper, Lutjanus griseus Mutton snapper, Lutjanus analis Lane snapper, Lutjanus synagris Lutjanus campechanus Illustration ©Monterey Bay Aquarium Original Report dated April 20, 2004 Last updated February 4, 2009 Melissa M Stevens Fisheries Research Analyst Monterey Bay Aquarium Seafood Watch® Gulf of Mexico/South Atlantic Snappers Report February 4, 2009 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices”, “Good Alternatives” or “Avoid.” The detailed evaluation methodology is available upon request.
    [Show full text]
  • Red Snapper, Vermilion Snapper, Yellowtail Snapper Gulf of Mexico
    Red Snapper, Vermilion Snapper, Yellowtail Snapper Lutjanus campechanus, Rhomboplites aurorubens, Ocyurus chrysurus ©Monterey Bay Aquarium Gulf of Mexico/South Atlantic Vertical Line: Hydraulic/Electric Reel, Rod and Reel, Hand Line January 9, 2013 Rachelle Fisher, Consulting Researcher Disclaimer Seafood Watch® strives to ensure all our Seafood Reports and the recommendations contained therein are accurate and reflect the most up-to-date evidence available at time of publication. All our reports are peer- reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science or aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch program or its recommendations on the part of the reviewing scientists. Seafood Watch is solely responsible for the conclusions reached in this report. We always welcome additional or updated data that can be used for the next revision. Seafood Watch and Seafood Reports are made possible through a grant from the David and Lucile Packard Foundation. 2 Final Seafood Recommendation Although there are many snappers caught in the U.S., only the three most commercially important species relative to landed weight and value (red snapper (Lutjanus campechanus), vermilion snapper (Rhomboplites aurorubens), and yellowtail snapper (Ocyurus chrysurus) are discussed here. This report discusses snapper caught in the South Atlantic (SA) and Gulf of Mexico (GOM) by vertical gear types including hydraulic/electric reel, rod and reel, and handline. Snapper caught by bottom longline in the GOM and SA will not be discussed since it makes up a statistically insignificant proportion of the total snapper catch in the GOM and in the SA bottom longline fishing in waters shallower than 50 fathoms, where snapper are generally caught, is prohibited.
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]
  • FAO Fisheries & Aquaculture
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Species Fact Sheets Lutjanus argentimaculatus (Forsskål, 1775) Lutjanus argentimaculatus: (click for more) Synonyms Sciaena argentata Gmelin, 1789 Alphestes gembra Schneider, , (in Bloch & Schneider, 1801). Mesoprion flavipinnis Cuvier, , (in C. & V, 1828). Mesoprion taeniops Valenciennes, , (in C. & V, 1830). Mesoprion griseoides Guichenot, 1862 Lutianus johngarah Day, 1875 Diacope superbus Castelnau, 1878 Mesoprion obscurus Macleay, 1881 Mesoprion sexfasciatus Macleay, 1883 Lutianus salmonoides Gilchrist & Thompson, 1908 FAO Names En - Mangrove red snapper, Fr - Vivaneau des mangroves, Sp - Pargo de manglar. 3Alpha Code: RES Taxonomic Code: 1703202702 Diagnostic Features Body moderately deep (greatest depth 2.5 to 3.1 times in standard length). Snout somewhat pointed; preorbital bone relatively broad wider than eye diameter; preopercular notch and knob poorly developed; vomerine tooth patch crescentic, without a medial posterior extension, tongue with a patch of granular teeth; gill rakers on lower limb of first arch (including rudiments) 9 to 12, total gill rakers on first arch 16 to 20. Dorsal fin with 10 spines and 13 or 14 soft rays; anal fin with 3 spines and B soft rays; posterior profile of dorsal and anal fins rounded; pectoral fins with 16 or 17 rays; caudal fin emarginate to nearly truncate. Scale rows on back S more or less parallel to lateral line, or parallel below spinous part of dorsal fin and sometimes rising obliquely posteriorly, or rarely with entirely oblique rows. Colour: back and sides greenish-brown to reddish; belly silvery or whitish; specimens from deep water frequently overall reddish; juveniles with a series of about eight whitish bars crossing sides, and 1 or 2 blue lines across cheek.
    [Show full text]
  • Two Species of Snappers Off Lazarus and Seringat Islands
    SINGAPORE BIODIVERSITY RECORDS 2017: 91-92 ISSN 2345-7597 Date of publication: 28 July 2017. © National University of Singapore Two species of snappers off Lazarus and Seringat Islands Subjects: Bigeye snapper, Lutjanus lutjanus (Teleostei: Lutjanidae); Russell’s snapper, Lutjanus russelli (Teleostei: Lutjanidae). Subjects identified by: Contributor & Kelvin K. P. Lim. Location, date and time: Singapore Strait, off north-western part of Lazarus Island; 20 May 2016; 1256 hrs; and the eastern part of Seringat Island; 7 June 2017; 1443 hrs. Habitat: Marine. Subtidal zone of seawalls of large granite boulders, extending to 3-4 m depth, followed by sandy substrates. Observer: Contributor. Observations: Two separate observations - Fig. 1. Fig. 2. Photographs by Daisuke Taira 1) One example of bigeye snapper (Lutjanus lutjanus) of about 10 cm total length was observed swimming along the seawall at the north-western part of Lazarus Island at a depth of about 2 m on 20 May 2016 at 1256 hrs (Fig. 1 & 2). Fig. 3. Fig. 4. Photographs by Daisuke Taira 2) A Russell’s snapper (Lutjanus russelli) around 15 cm in total length was seen along the eastern part of Seringat Island at around 4 m depth on 7 June 2017 at 1443 hrs (Fig. 3 & 4). 91 Remarks: Both Lutjanus lutjanus and Lutjanus russelli are known from Singapore waters (Fowler, 1938: 146; Lim & Low, 2008: 108 as Lutjanus madras, 109). Lutjanus lutjanus is distinguished from the similar looking and sympatric Lutjanus madras (Indian snapper) chiefly by its larger eyes and the width of the space between the lower eye margin and the mouth.
    [Show full text]
  • 1 RED SNAPPER – Lutjanus Spp. Depending on Language And
    RED SNAPPER – Lutjanus spp. Depending on language and location, the name Red Snapper applies to a number of fish species across the globe within the Lutjanidae family, and refers to those snappers that exhibit a red coloration as adults. Species falling under the title “red snapper” include: • Lutjanus campechanus (Northern red snapper; found in the Western Atlantic from the Gulf of Mexico and southeastern USA to the northern coast of South America) • Lutjanus argentimaculatus (Mangrove red snapper; found in the Indo-West Pacific from East Africa to Southeast Asia and south to the northern coasts of Australia) • Lutjanus purpureus (Southern red snapper; found in the Caribbean Sea to the northeast coast of South America) • Lutjanus buccanella (Blackfin snapper; found in the Western Atlantic from the Gulf of Mexico and southeastern USA to the northern coast of South America) • Lutjanus bohar (Two-spot red snapper; found in the Indo-Pacific from East Africa to the Pacific islands south to Australia. • Lutjanus erhrytropterus (Crimson red snapper; found in the Western Pacific and Indian Oceans, from the Gulf of Oman to Japan and northern Australia) • Lutjanus malabaricus (Malabar blood snapper; found in the Western Pacific, where it is found east to Fiji and Japan, and Indian Ocean, where it occurs west to the Persian Gulf and Arabian Sea). Snappers are an extremely important fishery resource in the geographies where they are found, contributing to production for both local consumption as well as export markets. Red snappers are one of the most valuable and widely recognized members among the Lutjanidae, although the common name “red snapper” pertains to, and are sometimes used indistinctively for, several distinct species.
    [Show full text]
  • Pisces: Lutjanidae: Lutjanus) from the Indo-West Pacific
    Two new species of snappers (Pisces: Lutjanidae: Lutjanus) from the Indo-West Pacific GERALD R. ALLEN Western Australian Museum, Locked Bag 49, Welshpool DC Perth, Western Australia 6986, Australia. E-mail: [email protected] WILLIAM T. WHITE CSIRO Marine Research, Wealth from Oceans Flagship, GPO Box 1538, Hobart, Tasmania 7011, Australia MARK V. ERDMANN Conservation International, Jl. Dr. Muwardi No. 17, Renon, Denpasar, Bali 80235, Indonesia Abstract Two new species of snappers, genus Lutjanus, are described from Indo-West Pacific seas.Lutjanus indicus is de- scribed from 20 specimens, 54.7–226 mm SL, from western Thailand, India, Sri Lanka, and Bahrain. It has also been photographed at Oman and the Andaman Islands (tissue sample also taken). It has invariably been confused with its sibling species, L. russellii, from the western Pacific. Comparison of the mitochondrial cytochrome c oxidase subunit 1 (CO1) genetic marker utilised in DNA barcoding produced a genetic divergence of about 4.1 % between L. indicus and its closest congener, L. russellii. In addition, significant colour differences are useful for separating the two species, specifically a series of seven narrow yellow-to-brown stripes on the side, obliquely rising (except lower two) dorsally and posteriorly, which are present on both juveniles and adults of L. indicus. Lutjanus papuensis is described from four specimens, 173–259 mm SL, collected at Cenderawasih Bay, West Papua and purchased from fish markets at Bali and western Java, Indonesia. It has also been observed at Timor Leste, northern Papua New Guinea, and the Solomon Islands. It is most closely related to L.
    [Show full text]