L 28 Electricity and Magnetism [6] Basic Facts of Magnetism Induced

Total Page:16

File Type:pdf, Size:1020Kb

L 28 Electricity and Magnetism [6] Basic Facts of Magnetism Induced L 28 Electricity and Magnetism [6] Basic facts of Magnetism • Oersted discovered that a compass needle • magnetism responded to the a current in a loop of wire • Ampere deduced the law describing how a • Faraday’s Law of Electromagnetic magnetic field is produced by the current in a wire Induction • magnetic field lines are always closed loops – no – induced currents isolated magnetic poles; magnets always have a north and south pole – electric generator • permanent magnets: the currents are atomic – eddy currents currents – due to electrons spinning in atoms - • Electromagnetic Waves (Maxwell & Hertz) these currents are always there • electromagnets: currents in wires produce magnetic fields 1 2 Faraday’s Law of Electromagnetic Induction Induced currents (a) • Faraday thought that if A B currents could produce magnetic field lines magnetic fields, (Oersted, Ampere) magnetic fields might produce currents battery • He was correct, with one current important qualification: indicator the magnetic field must be switch changing in some way to • When a current is turned on or off in coil A, a magnetic produce a current field is produced which also passes through coil B. • the phenomenon that a • A current then briefly appears in coil B changing magnetic field can produce a current is called • The current in coil B is called an induced current. Michael Faraday • The current in B is only present when the current in A is electromagnetic induction (1791-1867) 3 turned on or off, that is, when the current in A is changing 4 Induced currents (b) Induced currents (c) • If an AC (time varying) (a) (b) (c) current is used in the primary circuit, a current is induced in the secondary windings. • If the current in the primary windings were a) No current is induced if the magnet is stationary. DC, there would be NO b) When the magnet is pushed toward the coil or pulled induced current in the away from it, an induced current appears in the coil. secondary circuit. c) The induced current only appears when the magnet is being moved • Levitated coil demo 5 6 1 electric generators The transformer The voltage on the secondary depends on the number When a coil is rotated in a magnetic field, an of turns on the primary and secondary. induced current appears in it. This is how electricity Step-up the secondary has more turns than the primary is generated. Some external source of energy is Step-down the secondary has less turns than the primary needed to rotate the turbine which turns the coil. 7 8 Eddy currents Eddy currents application • Eddy currents are induced in conductors if time- varying magnetic fields are present An induction stove uses • As the magnet falls the magnetic field strength at eddy currents to cook food the plate increases Falling Copper magnet plate Eddy currents Induced magnetic Only the metal pot gets hot, not the 10 9 field glass pot or the stove. Floating magnet – induced currents The Laws of Electricity and Magnetism • As the magnet falls, it • Laws of electricity bar induces currents in the – electric charges produce electric fields magnet copper pipe known as eddy (Coulomb) currents. – electric fields begin and end on charges • These eddy currents • Laws of magnetism produce a magnetic field – currents produce magnetic fields (Ampere) that opposes the field of the – magnetic field lines are closed loops slotted falling magnet, so the – a changing magnetic field can produce a copper pipe magnet does not accelerate current (induced currents) (Faraday) but descends slowly. – A changing electric field can produce a magnetic field (Maxwell) 11 12 2 ELECTROMAGNETIC (EM) WAVES Electromagnetic (EM) waves Faraday laid the groundwork with his discovery of electromagnetic induction • Mechanical wave: a disturbance that propagates in a medium (eg, water, strings, air) EM • An electromagnetic wave is a combination WAVES of electric and magnetic fields that oscillate together in space (no medium) and time in a synchronous manner, and propagate at the LIGHT speed of light 3 ×108 m/s or 186,000 miles/s. • EM waves include radio, microwaves, x-rays, James Clerk Maxwell in 1865 Heinrich Hertz showed light waves, thermal waves gamma rays predicted theoretically that EM experimentally in 1886 waves should exist that EM waves exist 13 14 the generation of an electromagnetic wave EM waves: transverse • the electromagnetic wave is a transverse electric field wave, the electric and magnetic fields oscillate in the direction perpendicular to wave emitter the direction of propagation e.g. antenna E field magnetic field direction of propagation The time varying electric field generated the time varying magnetic field which generates the time Bfield varying electric field and so on and so on . 15 16 Electromagnetic waves How radio waves are produced • the EM wave propagates because the electric field recreates the magnetic field and the magnetic field recreates the electric field transmission line • an oscillating voltage applied to the antenna makes the charges in the antenna vibrate up and down sending out a synchronized pattern of electric and magnetic fields • an electromagnetic wave must have both an High Frequency electric and magnetic field component Oscillator Dipole 17 Antenna 18 3 Electromagnetic Waves Radio antenna the EM wave causes the electrons in the receiving antenna Sound waves are transformed to an to oscillate at the electrical signal same frequency which is amplified and sent to the EM WAVE: time and space transmitter Antenna: varying electric and magnetic emits waves fields moving through space the amplifier at the speed of light, c = converts the 3 x 108 m/s = 186,000 miles/sec electrical signal 19 to sound waves20 The periodic wave relation applies to Electromagnetic spectrum electromagnetic waves = c 21 Visible light 22 Common frequency bands Microwaves • 1 vibration per second = 1 Hertz (Hz) • 1 KHz (kilohertz) = 103 Hz • are in the frequency range of a few billion Hz or • 1 MHz (megahertz) = 106 Hz wavelengths of about several cm (about the • 1 GHz (gigahertz) = 109 Hz same range as radar the “Radarange” • How do microwaves heat water? • Remember that the water molecule has a positive end and a negative end. • The electric field of the microwave grabs onto these charges and shakes them violently a few • AM radio: 535 KHz – 1.7 MHz billion times each second • FM radio: 88 – 108 MHz • all this shaking energizes the molecules making • GPS: 1.227 and 1.575 GHz the water hotter and hotter. • Cell phones: 824 MHz – 2 GHz 23 24 4.
Recommended publications
  • Magnetic Fields Magnetism Magnetic Field
    PHY2061 Enriched Physics 2 Lecture Notes Magnetic Fields Magnetic Fields Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to your own notes. Please report any inaccuracies to the professor. Magnetism Is ubiquitous in every-day life! • Refrigerator magnets (who could live without them?) • Coils that deflect the electron beam in a CRT television or monitor • Cassette tape storage (audio or digital) • Computer disk drive storage • Electromagnet for Magnetic Resonant Imaging (MRI) Magnetic Field Magnets contain two poles: “north” and “south”. The force between like-poles repels (north-north, south-south), while opposite poles attract (north-south). This is reminiscent of the electric force between two charged objects (which can have positive or negative charge). Recall that the electric field was invoked to explain the “action at a distance” effect of the electric force, and was defined by: F E = qel where qel is electric charge of a positive test charge and F is the force acting on it. We might be tempted to define the same for the magnetic field, and write: F B = qmag where qmag is the “magnetic charge” of a positive test charge and F is the force acting on it. However, such a single magnetic charge, a “magnetic monopole,” has never been observed experimentally! You cannot break a bar magnet in half to get just a north pole or a south pole. As far as we know, no such single magnetic charges exist in the universe, D.
    [Show full text]
  • Electrostatics Voltage Source
    012-07038B Instruction Sheet for the PASCO Model ES-9077 ELECTROSTATICS VOLTAGE SOURCE Specifications Ranges: • Fixed 1000, 2000, 3000 VDC ±10%, unregulated (maximum short circuit current less than 0.01 mA). • 30 VDC ±5%, 1mA max. Power: • 110-130 VDC, 60 Hz, ES-9077 • 220/240 VDC, 50 Hz, ES-9077-220 Dimensions: Introduction • 5 1/2” X 5” X 1”, plus AC adapter and red/black The ES-9077 is a high voltage, low current power cable set supply designed exclusively for experiments in electrostatics. It has outputs at 30 volts DC for IMPORTANT: To prevent the risk of capacitor plate experiments, and fixed 1 kV, 2 kV, and electric shock, do not remove the cover 3 kV outputs for Faraday ice pail and conducting on the unit. There are no user sphere experiments. With the exception of the 30 volt serviceable parts inside. Refer servicing output, all of the voltage outputs have a series to qualified service personnel. resistance associated with them which limit the available short-circuit output current to about 8.3 microamps. The 30 volt output is regulated but is Operation capable of delivering only about 1 milliamp before When using the Electrostatics Voltage Source to power falling out of regulation. other electric circuits, (like RC networks), use only the 30V output (Remember that the maximum drain is 1 Equipment Included: mA.). • Voltage Source Use the special high-voltage leads that are supplied with • Red/black, banana plug to spade lug cable the ES-9077 to make connections. Use of other leads • 9 VDC power supply may allow significant leakage from the leads to ground and negatively affect output voltage accuracy.
    [Show full text]
  • Quantum Mechanics Electromotive Force
    Quantum Mechanics_Electromotive force . Electromotive force, also called emf[1] (denoted and measured in volts), is the voltage developed by any source of electrical energy such as a batteryor dynamo.[2] The word "force" in this case is not used to mean mechanical force, measured in newtons, but a potential, or energy per unit of charge, measured involts. In electromagnetic induction, emf can be defined around a closed loop as the electromagnetic workthat would be transferred to a unit of charge if it travels once around that loop.[3] (While the charge travels around the loop, it can simultaneously lose the energy via resistance into thermal energy.) For a time-varying magnetic flux impinging a loop, theElectric potential scalar field is not defined due to circulating electric vector field, but nevertheless an emf does work that can be measured as a virtual electric potential around that loop.[4] In a two-terminal device (such as an electrochemical cell or electromagnetic generator), the emf can be measured as the open-circuit potential difference across the two terminals. The potential difference thus created drives current flow if an external circuit is attached to the source of emf. When current flows, however, the potential difference across the terminals is no longer equal to the emf, but will be smaller because of the voltage drop within the device due to its internal resistance. Devices that can provide emf includeelectrochemical cells, thermoelectric devices, solar cells and photodiodes, electrical generators,transformers, and even Van de Graaff generators.[4][5] In nature, emf is generated whenever magnetic field fluctuations occur through a surface.
    [Show full text]
  • Measuring Electricity Voltage Current Voltage Current
    Measuring Electricity Electricity makes our lives easier, but it can seem like a mysterious force. Measuring electricity is confusing because we cannot see it. We are familiar with terms such as watt, volt, and amp, but we do not have a clear understanding of these terms. We buy a 60-watt lightbulb, a tool that needs 120 volts, or a vacuum cleaner that uses 8.8 amps, and dont think about what those units mean. Using the flow of water as an analogy can make Voltage electricity easier to understand. The flow of electrons in a circuit is similar to water flowing through a hose. If you could look into a hose at a given point, you would see a certain amount of water passing that point each second. The amount of water depends on how much pressure is being applied how hard the water is being pushed. It also depends on the diameter of the hose. The harder the pressure and the larger the diameter of the hose, the more water passes each second. The flow of electrons through a wire depends on the electrical pressure pushing the electrons and on the Current cross-sectional area of the wire. The flow of electrons can be compared to the flow of Voltage water. The water current is the number of molecules flowing past a fixed point; electrical current is the The pressure that pushes electrons in a circuit is number of electrons flowing past a fixed point. called voltage. Using the water analogy, if a tank of Electrical current (I) is defined as electrons flowing water were suspended one meter above the ground between two points having a difference in voltage.
    [Show full text]
  • Calculating Electric Power
    Calculating electric power We've seen the formula for determining the power in an electric circuit: by multiplying the voltage in "volts" by the current in "amps" we arrive at an answer in "watts." Let's apply this to a circuit example: In the above circuit, we know we have a battery voltage of 18 volts and a lamp resistance of 3 Ω. Using Ohm's Law to determine current, we get: Now that we know the current, we can take that value and multiply it by the voltage to determine power: Answer: the lamp is dissipating (releasing) 108 watts of power, most likely in the form of both light and heat. Let's try taking that same circuit and increasing the battery voltage to see what happens. Intuition should tell us that the circuit current will increase as the voltage increases and the lamp resistance stays the same. Likewise, the power will increase as well: Now, the battery voltage is 36 volts instead of 18 volts. The lamp is still providing 3 Ω of electrical resistance to the flow of electrons. The current is now: This stands to reason: if I = E/R, and we double E while R stays the same, the current should double. Indeed, it has: we now have 12 amps of current instead of 6. Now, what about power? Notice that the power has increased just as we might have suspected, but it increased quite a bit more than the current. Why is this? Because power is a function of voltage multiplied by current, and both voltage and current doubled from their previous values, the power will increase by a factor of 2 x 2, or 4.
    [Show full text]
  • Electromotive Force
    Voltage - Electromotive Force Electrical current flow is the movement of electrons through conductors. But why would the electrons want to move? Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Chemical: Battery Magnetic: Generator Light (Photons): Solar Cell Mechanical: Phonograph pickup, crystal microphone, antiknock sensor Heat: Thermocouple Voltage is the amount of push or pressure that is being applied to the electrons. It is analogous to water pressure. With higher water pressure, more water is forced through a pipe in a given time. With higher voltage, more electrons are pushed through a wire in a given time. If a hose is connected between two faucets with the same pressure, no water flows. For water to flow through the hose, it is necessary to have a difference in water pressure (measured in psi) between the two ends. In the same way, For electrical current to flow in a wire, it is necessary to have a difference in electrical potential (measured in volts) between the two ends of the wire. A battery is an energy source that provides an electrical difference of potential that is capable of forcing electrons through an electrical circuit. We can measure the potential between its two terminals with a voltmeter. Water Tank High Pressure _ e r u e s g s a e t r l Pump p o + v = = t h g i e h No Pressure Figure 1: A Voltage Source Water Analogy. In any case, electrostatic force actually moves the electrons.
    [Show full text]
  • Electromagnetic Induction, Ac Circuits, and Electrical Technologies 813
    CHAPTER 23 | ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES 813 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Figure 23.1 This wind turbine in the Thames Estuary in the UK is an example of induction at work. Wind pushes the blades of the turbine, spinning a shaft attached to magnets. The magnets spin around a conductive coil, inducing an electric current in the coil, and eventually feeding the electrical grid. (credit: phault, Flickr) 814 CHAPTER 23 | ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Learning Objectives 23.1. Induced Emf and Magnetic Flux • Calculate the flux of a uniform magnetic field through a loop of arbitrary orientation. • Describe methods to produce an electromotive force (emf) with a magnetic field or magnet and a loop of wire. 23.2. Faraday’s Law of Induction: Lenz’s Law • Calculate emf, current, and magnetic fields using Faraday’s Law. • Explain the physical results of Lenz’s Law 23.3. Motional Emf • Calculate emf, force, magnetic field, and work due to the motion of an object in a magnetic field. 23.4. Eddy Currents and Magnetic Damping • Explain the magnitude and direction of an induced eddy current, and the effect this will have on the object it is induced in. • Describe several applications of magnetic damping. 23.5. Electric Generators • Calculate the emf induced in a generator. • Calculate the peak emf which can be induced in a particular generator system. 23.6. Back Emf • Explain what back emf is and how it is induced. 23.7. Transformers • Explain how a transformer works. • Calculate voltage, current, and/or number of turns given the other quantities.
    [Show full text]
  • Chapter 7 Magnetism and Electromagnetism
    Chapter 7 Magnetism and Electromagnetism Objectives • Explain the principles of the magnetic field • Explain the principles of electromagnetism • Describe the principle of operation for several types of electromagnetic devices • Explain magnetic hysteresis • Discuss the principle of electromagnetic induction • Describe some applications of electromagnetic induction 1 The Magnetic Field • A permanent magnet has a magnetic field surrounding it • A magnetic field is envisioned to consist of lines of force that radiate from the north pole to the south pole and back to the north pole through the magnetic material Attraction and Repulsion • Unlike magnetic poles have an attractive force between them • Two like poles repel each other 2 Altering a Magnetic Field • When nonmagnetic materials such as paper, glass, wood or plastic are placed in a magnetic field, the lines of force are unaltered • When a magnetic material such as iron is placed in a magnetic field, the lines of force tend to be altered to pass through the magnetic material Magnetic Flux • The force lines going from the north pole to the south pole of a magnet are called magnetic flux (φ); units: weber (Wb) •The magnetic flux density (B) is the amount of flux per unit area perpendicular to the magnetic field; units: tesla (T) 3 Magnetizing Materials • Ferromagnetic materials such as iron, nickel and cobalt have randomly oriented magnetic domains, which become aligned when placed in a magnetic field, thus they effectively become magnets Electromagnetism • Electromagnetism is the production
    [Show full text]
  • Chapter 22 Magnetism
    Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field 22.4 The Magnetic Force Exerted on a Current- Carrying Wire 22.5 Loops of Current and Magnetic Torque 22.6 Electric Current, Magnetic Fields, and Ampere’s Law Magnetism – Is this a new force? Bar magnets (compass needle) align themselves in a north-south direction. Poles: Unlike poles attract, like poles repel Magnet has NO effect on an electroscope and is not influenced by gravity Magnets attract only some objects (iron, nickel etc) No magnets ever repel non magnets Magnets have no effect on things like copper or brass Cut a bar magnet-you get two smaller magnets (no magnetic monopoles) Earth is like a huge bar magnet Figure 22–1 The force between two bar magnets (a) Opposite poles attract each other. (b) The force between like poles is repulsive. Figure 22–2 Magnets always have two poles When a bar magnet is broken in half two new poles appear. Each half has both a north pole and a south pole, just like any other bar magnet. Figure 22–4 Magnetic field lines for a bar magnet The field lines are closely spaced near the poles, where the magnetic field B is most intense. In addition, the lines form closed loops that leave at the north pole of the magnet and enter at the south pole. Magnetic Field Lines If a compass is placed in a magnetic field the needle lines up with the field.
    [Show full text]
  • Revision Pack Topic 7- Magnetism & Electromagnetism
    Revision Pack Topic 7- Magnetism & Electromagnetism Permanent and induced magnetism, magnetic forces and fields R/A/G Poles of a magnet The poles of a magnet are the places where the magnetic forces are strongest. When two magnets are brought close together they exert a force on each other. Two like poles repel each other. Two unlike poles attract each other. Attraction and repulsion between two magnetic poles are examples of non-contact force. A permanent magnet produces its own magnetic field. An induced magnet is a material that becomes a magnet when it is placed in a magnetic field. Induced magnetism always causes a force of attraction. When removed from the magnetic field an induced magnet loses most/all of its magnetism quickly. Magnetic fields The region around a magnet where a force acts on another magnet or on a magnetic material (iron, steel, cobalt and nickel) is called the magnetic field. The force between a magnet and a magnetic material is always one of attraction. The strength of the magnetic field depends on the distance from the magnet. The field is strongest at the poles of the magnet. The direction of the magnetic field at any point is given by the direction of the force that would act on another north pole placed at that point. The direction of a magnetic field line is from the north (seeking) pole of a magnet to the south (seeking) pole of the magnet. A magnetic compass contains a small bar magnet. The Earth has a magnetic field. The compass needle points in the direction of the Earth’s magnetic field.
    [Show full text]
  • Electricity and Magnetism Inductance Transformers Maxwell's Laws
    Electricity and Magnetism Inductance Transformers Maxwell's Laws Lana Sheridan De Anza College Dec 1, 2015 Last time • Ampere's law • Faraday's law • Lenz's law Overview • induction and energy transfer • induced electric fields • inductance • self-induction • RL Circuits Inductors A capacitor is a device that stores an electric field as a component of a circuit. inductor a device that stores a magnetic field in a circuit It is typically a coil of wire. 782 Chapter 26 Capacitance and Dielectrics ▸ 26.2 continued Categorize Because of the spherical symmetry of the sys- ϪQ tem, we can use results from previous studies of spherical Figure 26.5 (Example 26.2) systems to find the capacitance. A spherical capacitor consists of an inner sphere of radius a sur- ϩQ a Analyze As shown in Chapter 24, the direction of the rounded by a concentric spherical electric field outside a spherically symmetric charge shell of radius b. The electric field b distribution is radial and its magnitude is given by the between the spheres is directed expression E 5 k Q /r 2. In this case, this result applies to radially outward when the inner e sphere is positively charged. 820 the field Cbetweenhapter 27 the C spheresurrent and (a R esistance, r , b). b S Write an expression for the potential difference between 2 52 ? S 782 Chapter 26 Capacitance and DielectricsTable 27.3 CriticalVb TemperaturesVa 3 E d s a the two conductors from Equation 25.3: for Various Superconductors ▸ 26.2 continued Material Tc (K) b b dr 1 b ApplyCategorize the result Because of Example of the spherical 24.3 forsymmetry the electric ofHgBa the sys 2fieldCa- 2Cu 3O8 2 52134 52 Ϫ5Q Vb Va 3 Er dr ke Q 3 2 ke Q Tl—Ba—Ca—Cu—O 125a a r r a outsidetem, wea sphericallycan use results symmetric from previous charge studies distribution of spherical Figure 26.5 (Example 26.2) systems to findS the capacitance.
    [Show full text]
  • Electromagnetic Fields and Energy
    MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following citation format: Haus, Hermann A., and James R. Melcher, Electromagnetic Fields and Energy. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed [Date]). License: Creative Commons Attribution-NonCommercial-Share Alike. Also available from Prentice-Hall: Englewood Cliffs, NJ, 1989. ISBN: 9780132490207. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms 8 MAGNETOQUASISTATIC FIELDS: SUPERPOSITION INTEGRAL AND BOUNDARY VALUE POINTS OF VIEW 8.0 INTRODUCTION MQS Fields: Superposition Integral and Boundary Value Views We now follow the study of electroquasistatics with that of magnetoquasistat­ ics. In terms of the flow of ideas summarized in Fig. 1.0.1, we have completed the EQS column to the left. Starting from the top of the MQS column on the right, recall from Chap. 3 that the laws of primary interest are Amp`ere’s law (with the displacement current density neglected) and the magnetic flux continuity law (Table 3.6.1). � × H = J (1) � · µoH = 0 (2) These laws have associated with them continuity conditions at interfaces. If the in­ terface carries a surface current density K, then the continuity condition associated with (1) is (1.4.16) n × (Ha − Hb) = K (3) and the continuity condition associated with (2) is (1.7.6). a b n · (µoH − µoH ) = 0 (4) In the absence of magnetizable materials, these laws determine the magnetic field intensity H given its source, the current density J.
    [Show full text]