Bioactive Compounds and Acceptance of Cookies Made with Guava Peel

Total Page:16

File Type:pdf, Size:1020Kb

Bioactive Compounds and Acceptance of Cookies Made with Guava Peel Food Science and Technology ISSN 0101-2061 DDOI http://dx.doi.org/10.1590/fst.2014.0046 Bioactive compounds and acceptance of cookies made with Guava peel flour Silvana Maria Michelin BERTAGNOLLI1*, Márcia Liliane Rippel SILVEIRA2, Aline de Oliveira FOGAÇA1, Liziane UMANN1, Neidi Garcia PENNA2 Abstract The use of fruit industrial waste in the processing new foods represents an important new step for the food industry. This study aimed to develop cookie recipes using different amounts of guava peel flour (GPF) levels (30%, 50%, and 70%) to evaluate the proximate composition, and the phenolic compound, lycopene, and β-carotene levels in the cookies and flour and to evaluate the cookie sensory acceptance. The results demonstrated low moisture, lipid and carbohydrate contents in the flour and cookies. GPF was considered rich in fiber, ash, polyphenols, and β-carotene. The sensory analysis showed satisfactory acceptance of the cookies containing 30% GPF regarding the aroma, flavor, and texture attributes. The cookies containing 50% and 70% GPF received satisfactory acceptance regarding to aroma only. In conclusion, GPF can be used to partially replace wheat flour in the preparation of cookies to improve the nutritional quality without affecting the product sensory quality. Keywords: polyphenols; sensory analysis; proximate composition. 1 Introduction Currently, the food sector has to deal with a high rate of the flour prepared from passion fruit shell can be used in the food waste produced by industrial fruit processing of various enrichment of products such as breads, cookies, and Granola products such as jams, wines, juices, ice cream, sweets, and bars improving their nutritional and technological qualities, others. The use of waste from industrial processing of fruits besides being an alternative to reduce the by-product waste is an important new step for the food industry. Reuse guava in the food industry. Among the bakery products, biscuits are processing waste, such as guava peel, could increase the raw one the most commonly used products in the incorporation of material yield, thus minimizing the problems caused by the different ingredients for their nutritional diversification. This disposal of large amount of industrial waste and also expand is mainly due to factors such as ease of use, good nutritional alternative food production (Kobori & Jorge, 2005). An quality, availability of different varieties, and affordable cost. economically and technologically feasible alternative would Accordingly, products such as cookies are a good subject for the be to produce flour from guava peels in order to either make studies on mixed flour, due to economic or nutritional reasons new products, such as cookies, or partially replace wheat flour (Assis et al., 2009). to improve the product’s nutritional quality since guava has good antioxidant potential and high vitamin C and phenolic However, it is important that the waste selected to integrate compound levels and pigments such as β-carotene and lycopene mixed flours are evaluated in terms of chemical composition (Oliveira et al., 2011). and nutrition for the development of technology that enables its use in cookies efficiently, without any damage to the quality Numerous studies have been carried out in order to replace of products. Therefore, this study aimed to develop cookie wheat with flour made from waste from fruit residues in the recipes using different amounts of guava peel flour (GPF) preparation of bakery products such as biscuits like cookies and to evaluate its proximate composition and the content of due to economic constraints, business requirements, new polyphenols, lycopene, and β-carotenein the flour and in the consumption trends, and specific eating habits (Aquino et al., cookies, as well as to evaluate the cookie sensory acceptance. 2010; Perez & Germani, 2007). Fruit residues can be important sources of nutrients and, to satisfy consumer demand for 2 Materials and methods healthier products, many food industries are finding ways to add functional ingredients to their products (Assis et al., 2009). Guava (Psidium guajavaL. var. Paluma) fruits were acquired According to Aquino et al. (2010), when added to foods, such from the Polytechnic College of the Federal University of Santa ingredients are associated tohealthy products by customers since Maria (Universidade Federal de Santa Maria – UFSM) in the they are able to modify/enhance the taste, texture, aroma, color, municipality of Santa Maria, state of Rio Grande do Sul-RS, and nutritional value of the products produced. Santucci et al. Brazil. The fruits were washed under running water, disinfected (2003) stated that the mixture of flour made from unconventional with 200 ppm sodium hypochlorite (NaClO) for 15 minutes, products with wheat flour improves the nutritional quality of and rinsed. The peels were manually removed using stainless cookies and may even improve their palatability making them steel knives and were weighed to determine the yield. Material more accepted by consumers. Souza et al. (2008) concluded that preparation and the physicochemical analyses were performed Received 14 Jan., 2014 Accepted 19 Feb., 2014 (006272) 1 Pharmacy Program, Area of Health Sciences, Franciscan University Center – UNIFRA, Santa Maria, RS, Brazil, e-mail: [email protected] 2 Food Science and Technology Graduate Program, Federal University of Santa Maria – UFSM, Santa Maria, RS, Brazil *Corresponding author Food Sci. Technol, Campinas, 34(2): 303-308, Apr.-June 2014 303 Cookies made with Guava peel flour at the Laboratory of Food Science at the Franciscan University final volume with distilled water, placed into glass containers, Center (Centro Universitário Franciscano – UNIFRA), Santa and frozen (Rufino et al., 2007). Maria-RS, Brazil. The total polyphenol content was determined according After the peels were weighed, they were cut into small to the Singleton and Rossi method (Singleton & Rossi, 1965) pieces. The fractions were then dried in a convection drying using the Folin-Ciocalteau reagent. The absorbance was read oven at 55°C for 72 hours and ground using a mill (Tecnal using a spectrophotometer UV/VIS (Pro Analise UV 1100), Willye TE 650). The crushed material was then sieved through in triplicate, at a wavelength of 765 nm. Gallic acid was used a 35 mesh sieve to obtain flour (GPF) with maximum particle as a standard to construct the calibration curve, and the results size of 500 µm. The flour was again weighed to calculate were expressed in milligrams of gallic acid equivalent (mg GAE) the yield, packed in sealed glass containers, and stored at per 100 gram of product. room temperature 24h prior to cookie preparation. The The lycopene and β-carotene levels were determined characterization assays were performed in triplicate after two according to Nagata & Yamashita (1992).The reading was days of flour production. performed in a spectrophotometer UV/VIS (Pro Analise UV Starting with a basic cookie recipe (Ishimoto et al., 2007) 1100) at 453, 505, and 663 nm, and the results were expressed (Table 1), the cookies were prepared with different amounts of in µg.100 mL–1. wheat flour (WF) and GPF, as shown in Table 2. The sensory analysis of the cookies was performed according For determining the total polyphenol, lycopene, and to the standards of the Instituto Adolfo Lutz (2008) using an β-carotene levels in both the flour and cookies, an extract with affective test of acceptability based on a five-point hedonic scale 4 g of dry sample was prepared and added to 40 mL of 50% (from 1= “disliked” to 5= “liked a lot”) to evaluate the sensory methanol, followed by agitation, 60-minute rest period, and properties of color, aroma, flavor, texture, and appearance. centrifugation to separate the supernatant. Then, 40 mL of 70% The test was conducted with a total of 56 randomly selected acetone was added to the pellet, followed by agitation, 1-hour untrained tasters, who received the samples coded; they were rest period, and centrifugation. The supernatants were then also given an informed consent form and the sensory analysis filtered, transferred to a 100-mL volumetric flask, brought to the evaluation form. This study was approved by the Research Ethics Committee (Comitê de Ética e Pesquisa – CEP) of UNIFRA Table 1. Basic cookie recipe. under protocol no. 006.2012.2. Ingredients Quantities The experimental data were obtained using a simple Wheat flour 180 g completely randomized design (CRD) with three replicates. The Vanilla 2 mL results were expressed as the means ± standard deviations using Milk 35 mL a Microsoft Excel 2007 spreadsheet. An analysis of variance Butter 100 g (ANOVA) (p<0.05) was performed to test the differences Sugar 85 g between the results. For the statistical analysis, the Tukey’s test Salt 1 g (p<0.05) was applied using the SASM-Agri statistical software Baking powder 3.5 g (Canteri et al., 2001). Egg yolk 1 unit Source: Ishimoto et al. (2007). 3 Results and discussion Table 2. Content of Wheat flour (WF) and guava peel flour (GPF) used The proximate composition results of the GPF and the to prepare the cookies. cookies analyzed in this study are shown in Table 3. Formulations WF content (%) GPF content (%) There are few studies in the literature on the use of vegetable 1 70 30 peels for making flour. No studies were identified in the literature 2 50 50 reporting data of proximate composition of guava peel flour; 3 30 70 only a few studies on fresh fruit and guava pomace residues were The physicochemical
Recommended publications
  • Biochemical and Nutritional Assessment of Guava (Psidium Guajava)
    IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 4, Issue 5 (Sep. – Oct. 2018), PP 01-07 www.iosrjournals.org Biochemical And Nutritional Assessment Of Guava (Psidium Guajava) Dr. Jyoti D. Vora1, Ms. Gautami Mankame2, Mr. Pranay Madav3. 1Guide & Head, 2,3Student, Department of Biochemistry & Food Science and Quality Control Ramnarain Ruia College, Matunga, Mumbai – 400019 Corresponding Author: Dr. Jyoti D. Vora Abstract: Guava (Psidium guajava) is an evergreen shrub or small tree in the family Myrtaceae grown for its edible fruits. Analysis of proximate principles of guava was carried out and nutritional profiles of white and red pulp guava were established.Proximate analysis indicated that the carbohydrate content in the white pulp guava was found to behigher than the red pulp guava. The protein content varied significantly with more amount of proteins in the red pulp guava. The amount of crude fibres in red pulp guava was found to be more as compared to white pulp guava. The results for moisture content indicated that the red variety contains less amount of water. The mineral elements analysis indicated that the red pulp guava fruit was significantly higher in Calcium, Sodium and Phosphorous. The white variety was found to be rich in potassium. Sodium content in white guava was in very minute quantity and hence was not detectable. The value of ascorbic acid was higher in red guava, which indicated that the red pulp variety is richer in vitamin C.Isolation of pectin displayed that the white variety of guava exhibited more amount of pectin than the red one.There are a number of citied documents to prove the nutritional significance of guava, but in order to test this significance and hold between the two, most commonly found varieties of this fruit i.e.
    [Show full text]
  • The Effectivity of Tomato and Guava Combination
    ICHP The First International Conference on Health Profession Volume 2019 Conference Paper The Effectivity of Tomato and Guava Combination Juice and Guava Juice Administration on Blood Glucose Level in Patients with Type II Diabetes Mellitus Hasneli, Safyanti, and Ainil Mardhiyah Health Polytechnic of Ministry of Health Padang Abstract This study aims to determine the effectivity of tomato and guava juice combination with guava juice on blood glucose levels of patients with type II diabetes mellitus in the work area of Kuranji Padang Health Center in 2019. This quasi-experimental study used a pretest-posttest design with a control group. The population of this study was all patients with type II diabetes mellitus in the working area of Kuranji Health Center, Padang City. Sampling is done by purposive sampling. The number of samples was 24 people, divided into treatment groups and a control group. The data obtained were Corresponding Author: analyzed by two different dependent tests and an independent t-test. The results of Hasneli statistical tests showed that there were significant differences between the average Received: 23 September 2019 decrease in fasting blood glucose levels of respondents who were given tomato and Accepted: 18 November 2019 guava combination juice with respondents who were given guava juice (p = 0,026). Published: 22 December 2019 People with diabetes mellitus are expected to consume tomato and guava combination Publishing services provided by juice as a form of complementary therapy. Knowledge E Keywords: Diabetes mellitus, blood glucose level, tomato, guava Hasneli et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and 1.
    [Show full text]
  • Guava (Psidium Guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities
    foods Review Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities Manoj Kumar 1 , Maharishi Tomar 2, Ryszard Amarowicz 3,* , Vivek Saurabh 4 , M. Sneha Nair 5, Chirag Maheshwari 6, Minnu Sasi 7, Uma Prajapati 4, Muzaffar Hasan 8, Surinder Singh 9, Sushil Changan 10 , Rakesh Kumar Prajapat 11, Mukesh K. Berwal 12 and Varsha Satankar 13 1 Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India; [email protected] 2 ICAR—Indian Grassland and Fodder Research Institute, Jhansi 284003, India; [email protected] 3 Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland 4 Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; [email protected] (V.S.); [email protected] (U.P.) 5 Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad 121004, Haryana, India; [email protected] 6 Department of Agriculture Energy and Power, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India; [email protected] 7 Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; [email protected] 8 Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Citation: Kumar, M.; Tomar, M.; Bhopal 462038, India; [email protected] 9 Amarowicz, R.; Saurabh, V.; Nair, Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India; [email protected] M.S.; Maheshwari, C.; Sasi, M.; 10 Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR—Central Potato Research Prajapati, U.; Hasan, M.; Singh, S.; Institute, Shimla 171001, India; [email protected] et al.
    [Show full text]
  • Chapter 1 Definitions and Classifications for Fruit and Vegetables
    Chapter 1 Definitions and classifications for fruit and vegetables In the broadest sense, the botani- Botanical and culinary cal term vegetable refers to any plant, definitions edible or not, including trees, bushes, vines and vascular plants, and Botanical definitions distinguishes plant material from ani- Broadly, the botanical term fruit refers mal material and from inorganic to the mature ovary of a plant, matter. There are two slightly different including its seeds, covering and botanical definitions for the term any closely connected tissue, without vegetable as it relates to food. any consideration of whether these According to one, a vegetable is a are edible. As related to food, the plant cultivated for its edible part(s); IT botanical term fruit refers to the edible M according to the other, a vegetable is part of a plant that consists of the the edible part(s) of a plant, such as seeds and surrounding tissues. This the stems and stalk (celery), root includes fleshy fruits (such as blue- (carrot), tuber (potato), bulb (onion), berries, cantaloupe, poach, pumpkin, leaves (spinach, lettuce), flower (globe tomato) and dry fruits, where the artichoke), fruit (apple, cucumber, ripened ovary wall becomes papery, pumpkin, strawberries, tomato) or leathery, or woody as with cereal seeds (beans, peas). The latter grains, pulses (mature beans and definition includes fruits as a subset of peas) and nuts. vegetables. Definition of fruit and vegetables applicable in epidemiological studies, Fruit and vegetables Edible plant foods excluding
    [Show full text]
  • Chemical Composition, Fatty Acid Profile and Bioactive Compounds Of
    Food Science and Technology ISSN 0101-2061 DDOI http://dx.doi.org/10.1590/1678-457X.6339 Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.) Ana Maria Athayde UCHÔA-THOMAZ1*, Eldina Castro SOUSA1, José Osvaldo Beserra CARIOCA2, Selene Maia de MORAIS3, Alessandro de LIMA1, Clécio Galvão MARTINS3, Cristiane Duarte ALEXANDRINO3, Pablito Augusto Travassos FERREIRA3, Ana Livya Moreira RODRIGUES3, Suliane Praciano RODRIGUES3, José Celso de Albuquerque THOMAZ1, Jurandy do Nascimento SILVA1, Larissa Lages RODRIGUES1 Abstract This study aimed to characterize the chemical composition, determine the fatty acid profile, and quantify the bioactive compounds present in guava seed powder (Psidium guajava L.). The powder resulted from seeds obtained from guava pulp processing. The agro-industrial seeds from red guava cv. paluma were used, and they were donated by a frozen pulp fruit manufacturer. They contain varying amounts of macronutrients and micronutrients, with a high content of total dietary fiber (63.94 g/100g), protein (11.19 g/100g), iron (13.8 mg/100g), zinc (3.31 mg/100g), and reduced calorie content (182 kcal/100g). Their lipid profile showed a predominance of unsaturated fatty acids (87.06%), especially linoleic acid (n6) and oleic acid (n9). The powder obtained contained significant amounts of bioactive compounds such as ascorbic acid (87.44 mg/100g), total carotenoids (1.25 mg/100 g) and insoluble dietary fiber (63.55 g/100g). With regard to their microbiological quality, the samples were found suitable for consumption. Based on these results, it can be concluded that the powder produced has favorable attributes for industrial use, and that use of these seeds would be a viable alternative to prevent various diseases and malnutrition in our country and to reduce the environmental impact of agricultural waste.
    [Show full text]
  • Yellow Passionfruit Ideal for Florida Home Gardens
    320 FLORIDA STATE HORTICULTURAL SOCIETY, 1967 3. Lyon, T. T. 1897. Catalog of fruits. U.S. Dept. Agr. 7. Reasoner, P. W. 1887. Report on the condition of Divn. Pomol. Bui. No. 6: 36. tropical and semitropical fruits in the United States in 1887. 4. McAdow, M. A. 1914. Ornamentals. Proc. Fla. State U. S. Dept. Agr., Divn. Pomol. Bui. No. 1: 14. Hort. Soc. 27: 159-167. 8. Reitz, H. J., et al. 1964. Recommended fertilizers 5. Mowrey, et al. Rev. G. D. Ruehle. 1967. Miscellaneous and nutritional sprays for citrus. Fla. Agr. Exp. Sta. Bui. tropical and subtropical Florida fruits. Fla. Agr. Ext. Serv. 536B. Bui. 156A: 34-37. 9. Young, T. W. 1967. Fertilizing mango trees in 6. Popenoe, W. 1939. Manual of tropical and subtropical Florida. Sub-Tropical Exp. Sta. Mimeo. Rept. SUB 68-1. fruits. The MacMillan Co., New York: 340-343. YELLOW PASSIONFRUIT IDEAL FOR FLORIDA HOME GARDENS Julia F. Morton The nearly round fruit, 1% to 21/£ inches wide, has a tough rind, smooth, waxy and ranging in Morton Collectanea hue from light-yellow to pumpkin-color. Within University of Miami is an aromatic mass of membraneous sacs filled Coral Gables with orange-colored, pulpy juice and as many as 250 small, dark-brown seeds. The flavor is Over the past three years, Florida home musky, guava-like and very acid. owners have become increasingly distressed by the Caribbean fruit fly infestation of their door- History and Status yard fruits. Inasmuch as there is no immediate prospect of effective control of this insect, it The yellow passionfruit was, until recent seems appropriate to recommend a fruit that years, largely overshadowed by the purple pas appears to be unaffected by it—a fruit which sionfruit (Passiflora edulis Sims.), a native of provides an attractive and flavorful juice, and southern Brazil widely esteemed for its agree which is advancing horticulturally in other able, less acid flavor (101).
    [Show full text]
  • Africa Review Benin
    Afrlka Focus, Vol. 5. NR. 1-2 pp. 95-101 AFRICA REVIEW AN UP-TO-DATE GEOGRAPHICAL, HISTORICAL, POLITICAL AND ECONOMIC SUMMARY OF THE AFRICAN COUNTRIES Prepared by: F. Pauwels, P. Van Damme, D. Theeten, C. De Keyser, S. Hoste. BENIN 1. Official name: People's republic of Benin Republique Populaire du Benin 2. Geography: 2.1. Situation: Benin is situated between 0"40'E and 3"40'E, 6"N and 12"30'N, in the Gulf of Guinea, West-Africa. 2.2. Total area: 112 622 km2• 2.3. Natural regions: a 5 km wide sandy coastal strip is sepa- rated from the rest of the country by lagoons. North of these lagoons there are plains, reaching up to 10°N, where the Dassa plateaux divide the country into two hydro­ graphic zones. North of the Dassa plateaux is the Atacara Mountain range with rivers streaming NE to the Niger, while the rivers of the plain discharge in the lagoons or in the sea. 2.4. Climate: hot and moist in the south with two rainy seasons and two dry seasons. Rainfall decreases towards the north. The northern region has one dry season, during which the Harmattan blows, and one rainy season. 3. Population: 3.1. Total population: 4.0 mln (1986), urban population: 35%. 3.2. Population density: 35.9 per km2. 3.3. Population growth rate: 2.8% (1986). 3.4. Capital: PORTO NOVO, 144 000 inh. (1981). Commercial centre: COTONOU, 606 000 inh. (1987). 3.5. Principal languages: Bariba, Dendi, Fon, Mina, Yoruba, French (official), 95 Downloaded from Brill.com09/28/2021 02:36:46AM via free access English.
    [Show full text]
  • The Chemical Analysis of Sugars and Acids in Guava Juice from Varieties
    HE CHEMICAL ANALYSIS OF SUGARS AND ACIDS IN GUAVA JUICE •**> FROM VARIETIES GROWN IN KENYA By Mary Consolata Amoth A THESIS Submitted in part fulfilm ent for the Degree of MASTER OF SCIENCE in the University of Nairobi Department of Food Science and Technology This thesis is my original work and has no,;t been presented for a degree in any other University. IM’.C : .^kT?r\<:2 •. Mary Consoiata Amoth This thesis has been submitted with our approval as University Supervisors. Department of Food Science Department of Food Science and Technology and Technology University of Nairobi University of Nairobi ACKNOWLEDGEMENTS I sincerely wish to thank my supervisors Dr. P. Saint-Hi I aire of the Department of Food Science and Technology, University of Nairobi and Dr. P. Scheffeldt for their support and guidance throughout the work. I am very grateful to Mr. H. Tanner of Eidg. ForschungsanstaIt fuer 0bst-, Wein-, und Gartenbau in Waedenswil, Switzerland, for supplying me with useful information for carrying out the experimental work. Appreciation is due to Dr. H. Schweizer of the Swiss Federal Institute of Technology in Zurich and the staff members of the Department of Food Science and Technology Nairobi, for their technical and professional assistance. I am thankful to the National Horticultural Research Station, Thika, for supplying the Guava fru its . Lastly, I wish to thank the Swiss Government for the funds made available for the accomplishment of this work. TABLE OF CONTENTS PAGE LIST OF TABLES i v LIST OF FIGURES v 1. INTRODUCTION 2. LITERATURE REVIEW 3 2.1. Guava and its products 3 2.2.
    [Show full text]
  • RAPID Assessment of the HORTICULTURE SECTOR in Guinea
    RAPID ASSESSMENT OF THE HORTICULTURE SECTOR IN GUINEA OCTOBER 29, 2015 This publication was produced for review by the United States Agency for International Development. It was prepared by the Feed the Future Innovation Lab for Collaborative Research on Horticulture (Horticulture Innovation Lab) at the University of California, Davis. RAPID ASSESSMENT OF THE HORTICULTURE SECTOR IN GUINEA OCTOBER 29, 2015 This publication was produced for the United States Agency for International Development. It was prepared by the Feed the Future Innovation Lab for Collaborative Research on Horticulture (Horticulture Innovation Lab) at the University of California, Davis. CONTRIBUTORS: Amanda Crump, Brenda Dawson, Abdoul Khalighi Diallo, Britta Hansen, Kalifala Fofana, Bah Amadou Pita, Peter C. Shapland, Hatcheu Emil Tchawe, and Jason Tsichlis All photos by Peter C. Shapland. The views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. CONTENTS Acronyms 4 Executive Summary 5 Summary of Recommendations 6 Introduction 9 About Guinea 9 Methods: Rapid Assessment Methodology 13 Farmer Assessment Methods 13 Stakeholder Assessment Methodology 15 Market Assessment Methodology 15 Results and Discussion 16 Farmer and Village Leader Assessment of the Horticulture Sector in Guinea 16 Human and Institutional Capacity Assessment of the Horticulture Sector in Guinea 27 Market and Trade Assessment of the Horticulture Sector in Guinea 29 Nutrition and Horticulture
    [Show full text]
  • Effect of Cacl2 and Controlled Atmosphere Storage On
    a OSSN 0101-2061 (Print) OSSN 1678-457X (Dnline) Food Science and Technology DDO: https://doi.org/10.1590/1678-457X.05517 Effect of CaCl2 and controlled atmosphere storage on phytochemical attributes of Guava Muhammad Sameem JAVED1*, Muhammad Atif RANDHAWA2, Zulfiqar AHMAD1, Muhammad Wasim SAJOD3, Muhammad Adnan NASOR4, Muhammad Rizwan TAROQ1 Abstract Guava is very delicate and alluring fruit which is being ignored since very long time despite of highly nutritious fruit and rich source of Vitamin C. Ot contains Vitamin C 2-3 times more than orange. Naturally the guava fruit is enriched with vitamin C and polyphenoles. Guavas fruits after harvesting were dunked in solutions of CaCl2 (1, 2 and 3%) at room temperature for 5 minutes and stored for 24 days in 5% CD2 level at temperature of 10±1°C, while the humidity level of storage chamber were 80%. The stored fruits were analyzed at 6 days of interval for sugars (glucose, fructose and sucrose g/100g) total phenolic contents (mgGAE/100g), antioxidant activity (µmolTE/g), and organic acids (citric, tartaric, ascorbic, and malic acids mg/100 g). The total phenolic content and antioxidant activity of guava fruits were declined during progression in storage but in fewer amounts as compared to room storage condition. Citric acid and ascorbic acid contents were reduced with the progression in storage, however tartaric and malic acid values were amplified at end of storage but the rate of changes were slower. The pretreatments in combination with modified atmosphere storage escalate the shelf life of guava and slow down nutritional degradation process.
    [Show full text]
  • Whole Grain Iced Guava Strawberry Flip Individually Wrapped 3.2Oz
    1140IW - Whole Grain Iced Guava Strawberry Flip Individually Wrapped 3.2oz Nutrition Facts Ingredients Serving Size 1 Flip (91g) Whole Grain White Wheat Flour, Enriched Wheat Flour (Unbleached Wheat Flour, Malted Barley Flour, Niacin, Servings Per Container 45 Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid), Water, Guava Strawberry Filling (Sugar, Water, Guava, Strawberries, Modified Food Starch, Citric Acid, Gellan Gum, Natural Flavor, Potassium Sorbate [Preservative] and Food Coloring [Concentrate of Fruits and Vegetables]), Soybean Oil, Crystalline Fructose, Amount Per Serving Dough Conditioners (Guar and/or Arabic Gums, Calcium Sulfate, Soybean Oil, Enzymes, Ascorbic Acid, Sodium Stearoyl Lactylate [SSL]), Sugar, Egg Replacer (Whole Soy Flour, Wheat Gluten, Maltodextrin, Xanthan Gum), Calories 260 Contains less than 2% of: Yeast (Leavening), Vital Wheat Gluten, Corn Syrup, Stabilizer (Calcium Carbonate, Agar, Locust Bean Gum, Mono & Diglycerides), Shortening (Palm Oil and Soybean Oil, Mono & Diglycerides), Milk Powder Replacer (Soy Flour, Corn Flour), Salt, Natural Orange Flavoring, Soy Flour, Guar Gum, Malt Powder (Malted Barley, Dextrose), Calcium Propionate (Preservative), Soybean Lecithin, Vitamin A Palmitate. % Daily Value* Product Specifications Total Fat 7 g 9% Saturated Fat 1.5 g 7% GTIN 10070565002105 Case Gross Weight 10 lbs. Trans Fat 0 g UPC 070565002108 Cube 0.6 Cholesterol 0 mg 0% Case Pack 45/3.2oz Tie x High 9 x 12 Sodium 260 mg 11% Shelf Life Frozen 365 Days Smart Snack No Total Carbohydrate 45 g 16% Shelf Life Ambient 7 Days Dietary Fiber 3 g 11% Case Dimensions L 17.00”xW11.25”xH5.75” Sugars 19 g Ha ndling Incl. 18 g Added Sugars 35% Product delivered frozen and should be stored at 0 to -10 degrees Fahrenheit Protein 4 g Preparation Thaw & Serve.
    [Show full text]
  • Guava As a Superfruit
    Guava as a Superfruit Prof. S. K. Mitra Chairman Section Tropical and Subtropical Fruits International Society for Horticultural Sciences Guava : Psidium guajava L. Family : Myrtaceae Origin : Tropical America Growing : > 75 countries Major growing : India, Mexico, Brazil, Cuba, countries Thailand, Malaysia, Australia, South Africa, China, The Philippines, Sri Lanka, Venezuela, USA (Florida), Myanmar etc. Fruits - consumed fresh or in processed form. beverage, syrup, ice- cream, cheese, toffee, jam, juice, wine, and dehydrated and canned products. • and has many nutritional and health effects (Gutierrez et al., 2008; Abubakar, 2009; Antonio et al., 2011). In Taiwan - hypoglycemic agent in folk medicine. Leaves and skin of the fruit have greater effects. Guava tea, the infusion of dried guava fruit and leaves, has recently become popular as a drink in Taiwan (Chen and Yen, 2007). Nutritional Value per 100g Minerals Carbohydrate : 14-17g Iron : 0.26mg Sugar : 8-11g Calcium : 18mg Dietary fiber : 5-7g Magnesium : 22mg Fat : 0.95-1.2g Phosphorus : 40mg Protein : 2.5-3.0g Potassium : 417mg Sodium : 2mg Zinc : 0.23mg Contd…………. Vitamin A : 31µg Vitamin B6 : 0.11mg equivalent - Beta : 374µg Folate : 49µg carotene (Vitamin B6) Thiamine : 0.067mg Choline : 7.6mg (vitamin B1) Riboflavin : 0.04mg Vitamin C : 228.3mg (Vitamin B2) Niacin : 1.084mg Vitamin K : 2.2µg (Vitamin B3) Panthonic acid : 0.45mg Lycopene : 5204µg (Vitamin B5) Kumari et al. (2013) Photochemical in guava The main photochemical found in guava –Ascorbic acid (60-300mg/100g) –Antioxidant –containing dietary fiber –Carotenoids –polyphenoles Ascorbic acid and other antioxidant vitamins – Ascorbic acids (60-300mg/100g) – AA is concentrated in the skin, followed by mesocarp and endocarp – Alpha- tocopherol (vitamin E) – 1.7 -2.0mg/ 100g; is an important fat-soluble dietary antioxidant.
    [Show full text]