Biomems Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Miniaturization in Electronic Technology ENIAC: the "Electronic Numerical Integrator and Calculator“, 1943 ENIAC filled a 20 by 40 feet room, weighed 30 tons, and used more than 18,000 vacuum tubes. iPhone 6 A8 Chip, 2014 >109 transistor BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University Why Being Small ? Savings in time & cost Less materials and samples Short processing time Disposable Parallel processing Integration/Automation Gain from the unique microscopic features • Laminar Flow • High surface to volume ratio High single-to-noise ratio in transuding signals • Small thermal mass • Strong fields such as electric fields BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 2 Why Being Small ? Length Scale Matching • Manipulation of molecules and cells • High resolution / (Kim) sensitivity e.g. to facilitate single-molecule diagnostics, study of single-cell biology (Wang) >100 m 1 m 10-2 m 10-6 m 10-9 m Spacecraft Human Organ Tissue Cell DNA Micro/Nano Technology BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 3 Classes of BioMEMS (Bio-MicroElectroMechanicalSystem) Microfluidics & Microfluidic Devices Biosensors and Bioelectronics Neural Interface Devices Chromatography /Electrophoresis Devices Microsurgical Tools Bioreactors Tissue Engineering Devices Molecule /Cell Handling Devices Implantable Devices, Drug Delivery Devices BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 4 Examples of MEMS Devices Micro-mirrors Spider mite on gears (Sandia) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 5 Examples of Industrial MEMS Devices Air Bag Sensor Bubble Inkjet (Analog Device) (HP) Projector Motion & Orientation sensor (Wii) (Nintendo) (Texas Instruments) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 6 Apple iPhone 6 6-axis Gyro/Accel (Invensense) 3-axis Accelerometer(Bosch) 3-axis Magnetometer (AKM) 3 microphones (Knowles) Pressure Sensors (Bosch) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 7 MEMS Is Everywhere in Your Daily Life Internet of Things (IoT) Trillions of MEMS sensors coming soon ! BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 8 Capillary Electrophoresis BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 9 Micromachined Capillary Electrophoresis (m-CE) • Integrated with thermal cycling and CE for Sanger sequencing • High throughput • Off-chip optical detection • Low volume • Rapid analysis (Ra Mathies, PNAS 2006) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 10 Thermal Cycling for Polymerase Chain Reaction (PCR) PCR is an expensive and time-consuming technique BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 11 Continuous-flow Micro PCR Integration of CE and m-PCR (A. Manz, Science 2002) (M.A. Burns U Mich, Science) • PCR reaction • Gel electrophoresis • Microfluidics • On-line electrical detector BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 12 Microfluidic Digital PCR : Nanoliter-sized PCR arrays • 1176 chamber • 6.25 nL each chamber (J.R. Leadbetter, Science 2006) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 13 Droplet Digital PCR: Picoliter-sized PCR arrays Calcein Channel 2000 1000 0 0 2 4 6 8 10 ROX channel 1000 500 Photon Counts per 100usec per Counts Photon 0 0 2 4 6 8 10 Time (sec) Calcein Channel 1500 1000 500 0 2.35 2.4 2.45 ROX channel 1000 500 Photon Counts per 100usec per Counts Photon 0 2.35 2.4 2.45 Time (sec) (T. Rane, Lab Chip, 2015) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 14 Analysis of Single Cells Single-Molecule Detection Preparation of a single cell (R. Zare, Scinece 2006) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 15 Laminar Flow-Based Assay T-Sensor Separation (P. Yager) • Laminar flow – initiate reaction • Diffusion-based analysis Rapid Mixing BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 16 Flied Flow Fraction-DEP cell sorter • Field flow fraction using DEP force ( U. Texas, Houston) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 17 Free Solution Hydrodynamic Separation BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University Nano Fluidics Stretch of l DNA (48.6 kbp)fragment 100-nm-wide nanochannel array DNA is driven by E-field (R. Austin) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 19 Digital Microfluidics • Pump-free and valve-free • Each sample and reagent is individually addressable • Array-based analysis BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 20 Integrated DNA Preparation and PCR Detection Centralized & manual tube based PCR detection Sample Answer In Out Cell lysis DNA purification PCR reaction DNA amplification & concentration (thermal cycling) Sample 2 Sample 1 Lysis/Binding buffer Washing buffer 1 Using Silica Superparamagnetic Particles (SSP) as a solid phase within droplets BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University Surface topology assisted SSP and droplet manipulation Drops in Air a) a) SSP plug SSP Surface elevation Surface Drops in Oil b) SSP plug Surface elevation BioSensing & BioMEMS 530/580.672 Jeff Wang (Y Zhang, Johns Lab Hopkins Chip 2011) University On-Chip Real-Time PCR Detection Detection of E coli 16S gene from cell culture 1500 Marker Amplicon 300bp 1400 250bp 1300 200bp 1200 150bp 1100 100bp 1000 Fluorescence Intensity (AU) Intensity Fluorescence 900 0 10 20 30 40 Cycle (n) a) b) Detectiona) of Rsf-1 marker fromb) whole blood 1.0 Fluorescence 0.10 1600 Negative first derivative 0.8 0.08 1200 0.06 -dF/dT 0.6 800 0.04 0.4 0.02 400 0.2 Fluorescence Intensity (AU) Fluorescence Fluorescence Intensity (AU) Fluorescence 0.00 Normalized Fluorescence Intensity Intensity Fluorescence Fluorescence Normalized Normalized 0 0.0 0 5 10 15 20 25 30 35 40 50 60 70 80 90 100 BioSensing & BioMEMS 530/580.672Cycle (n) TemperatureJeff Wang (Celsius) Johns Hopkins University Microfluidic Droplet Technology for High-Throughput Analysis Features • Monodisperse droplets of sizes ranging from nL-pL • High speed droplet generation of > kHz Potential applications • Low-cost & High throughput screening • Biochemical synthesis • Digital PCR • Single-cell analysis Jeff Wang Johns Hopkins University BioSensing & BioMEMS 530/580.672 2424 Droplet Microfluidics for Monitoring of Kinetics BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University DNA Microarrays Affymetrix • Fabricated with lithographic technique • cDNA array • Gene expression profiling • Relative fluorescence measurement BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 26 Neural Probe/ Neuro Implant • Neuro-circuit interaction – neuro-recoding • Prosthesis research • Chemical delivery • Issues with long term implant – bio compatibility BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 27 Tissue Engineering / Cell Patterning • Patterning cells using microfluidics • Control of microenvironments using microfluidics • Single-cell (controlled small number of cells) patterning • High-throughput search for right cell conditions for controlling cell growth, differentiation, apoptosis) ( Whitesides) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 28 Corneal Microtissue Culture ( C. Puleo, Lab Chip. 2009) BioSensing & BioMEMS 530/580.672 Jeff Wang Johns Hopkins University 29 .