Sun Ultra 24 Workstation Service Manual Provides a Detailed Description of the Hardware and Software Applications Used to Support the Sun Ultra 24 Workstation

Total Page:16

File Type:pdf, Size:1020Kb

Sun Ultra 24 Workstation Service Manual Provides a Detailed Description of the Hardware and Software Applications Used to Support the Sun Ultra 24 Workstation Sun Ultra™ 24 Workstation Service Manual Sun Microsystems, Inc. www.sun.com Part No. 820-2480-12 June 2009, Revision A Submit comments about this document by clicking the Feedback[+] link at: http://docs.sun.com Copyright © 2007 - 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries. This distribution may include materials developed by third parties. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun Fire, Sun Solve, Sun Service, and SunVTS are trademarks or registered trademarks of Sun Microsystems, Inc., or its subsidiaries, in the U.S. and other countries. Microsoft is a trademark or registered trademark of Microsoft Corporation or its subsidiaries in the United States and Other countries. Windows is a trademark or registered trademark of Microsoft Corporation or its subsidiaries in the United States and Other countries. Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries. The Adobe logo is a registered trademark of Adobe Systems, Incorporated. Use of any spare or replacement CPUs is limited to repair or one-for-one replacement of CPUs in products exported in compliance with U.S. export laws. Use of CPUs as product upgrades unless authorized by the U.S. Government is strictly prohibited. DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. Copyright © 2007 - 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés. Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les autres pays. Cette distribution peut comprendre des composants développés par des tierces parties. Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd. Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun Fire, Sun Solve, Sun Service, et SunVTS sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Microsoft sont est marques de fabrique ou des marques déposées de Microsoft Corporation ou de sa filiale aux Etats-Unis et dans d’autres pays. Windows est une marque de fabrique ou une marques déposée de Microsoft Corporation ou de sa filiale aux Etats-Unis et dans d’autres pays. Intel est une marque déposée ou marque déposée d'Intel Corporation ou ses filiales aux Etats-Unis et à d'autres pays. Le logo Adobe est une marque déposée de Adobe Systems, Incorporated. L'utilisation de pieces detachees ou d'unites centrales de remplacement est limitee aux reparations ou a l'echange standard d'unites centrales pour les produits exportes, conformement a la legislation americaine en matiere d'exportation. Sauf autorisation par les autorites des Etats- Unis, l'utilisation d'unites centrales pour proceder a des mises a jour de produits est rigoureusement interdite. LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON. Contents Preface xiii 1. Sun Ultra 24 Workstation Hardware Features 1 Front Panel 2 Back Panel 3 Internal Components and Connectors 4 Internal Components 4 Power Supply Cables and Connections. 5 Component Cables and Connections 6 2. Unpacking, Cabling, and Powering the Sun Ultra 24 Workstation 7 Planning the Installation Process 8 Checking Package Contents 9 Connecting Devices and Cables to the Workstation 10 ▼ To Connect Devices and Cables to the Workstation 10 Powering On the Workstation 11 ▼ To Power on the Workstation 11 Powering Off the Workstation 12 ▼ To Power Off the Workstation 12 3. Troubleshooting 13 iii Troubleshooting Overview 13 Visual Inspection 14 ▼ To Perform an External Visual Inspection 14 ▼ To Perform an Internal Visual Inspection 14 Troubleshooting Procedures 15 Obtaining Technical Assistance 19 4. Running Diagnostics 21 Understanding the Diagnostic Partition 22 Starting Pc-Check Diagnostics 22 ▼ To Access the Pc-Check Diagnostics Main Menu 22 System Information Menu 23 Advanced Diagnostics 25 Hard Drive Testing 26 ▼ To Test the Hard Drive 26 Immediate Burn In Testing 28 Deferred Burn In Testing 30 Create Diagnostic Partition 31 Adding a Diagnostic Partition to the First Bootable Disk 31 ▼ To Add the Diagnostic Partition on the First Bootable Disk 31 Creating a Log File on the Diagnostic Partition 32 ▼ To Create a Log File on the Diagnositc Partition 32 Accessing the Diagnostic Partition Under Red Hat Linux 33 ▼ To Access the Diagnostic Partition Under Red Hat Linux 33 Accessing the Diagnostic Partition Under the Solaris 10 Operating System 34 ▼ To Access the Diagnostic Partition Under the Solaris 10 Operating System 34 Accessing the Diagnostic Partition Under Windows XP 35 ▼ To Access the Diagnostic Partition Under Windows XP 36 iv Sun Ultra 24 Workstation Product Notes • June 2009 Show Results Summary 36 Print Results Report 38 About Pc-Check 38 Exit to DOS 38 5. Maintaining the Workstation 39 Electrostatic Discharge (ESD) Precautions 40 Opening the Workstation 40 Tools and Supplies Needed 40 Powering Off the System and Removing the Left-Side Access Panel 41 ▼ To Power Off the System and Remove the Left-Side Access Panel 41 Removing the Front Bezel 42 ▼ To Remove the Front Bezel 42 Closing the Workstation 43 ▼ To Prepare for Service 44 ▼ To Install the Front Bezel 44 ▼ To Install the Left Side Access Panel 45 Removing or Adding a Hard Drive 46 ▼ To Remove a Hard Drive 47 ▼ To Install a Hard Drive 49 Installing SAS Card, Cables, and Hard Drives 50 ▼ To Convert from SATA to SAS 50 Replacing the Storage Backplane 53 ▼ To Remove the Storage Backplane 53 ▼ To Install the Storage Backplane 56 Replacing the DVD Drive 57 ▼ To Remove the DVD Drive 57 ▼ To Install the DVD Drive 59 Removing and Installing DIMMs 60 Contents v ▼ To Remove DIMMs 60 Installing DIMMs 61 ▼ To Install DIMMs 61 Reconfiguring the System Memory 62 Removing and Installing a PCIe Card 63 ▼ To Remove a PCIe Card 63 ▼ To Install a PCIe Card 65 Removing and Installing PCI Cards 66 ▼ To Remove a PCI Card 66 ▼ To Install a PCI Card 68 Replacing the System Battery 70 ▼ To Replace the System Battery 70 Replacing the System Fan 72 ▼ To Replace the System Fan 72 Replacing the Power Supply 74 ▼ To Remove the Power Supply 75 ▼ To Install the Power Supply 76 Replacing the I/O Board Assembly 78 ▼ To Remove the I/O Board Assembly 78 ▼ To Install the I/O Board Assembly 79 Replacing System Cables 80 ▼ To Replace the System Cables 81 Replacing the Heatsink and CPU 81 ▼ To Remove the Heatsink and CPU 82 ▼ To Install a Heatsink and CPU 84 Replacing the Motherboard 88 ▼ To Remove the Motherboard 88 ▼ To Install the Motherboard 89 vi Sun Ultra 24 Workstation Product Notes • June 2009 Managing the System BIOS and MEBx 93 Accessing the System BIOS Setup Utility 94 ▼ To Access the BIOS Setup Utility 94 Updating the System BIOS 94 ▼ To Update the System BIOS 94 Recovering From a Corrupted BIOS 95 ▼ To Recover the BIOS 95 Accessing Intel Management Engine BIOS Extension 96 ▼ To Access Intel MEBx 96 Enabling ME FW Local Update 96 ▼ To Enable ME FW Local Update 96 Setting ME Power Policies 97 ▼ To Set ME Power Policies 97 Recovering the Intel ME Firmware 97 ▼ To Recover the ME Firmware, Option 1 98 ▼ To Recover the ME Firmware, Option 2 98 A. System Specifications 103 System Components and Features 104 Memory Configurations 105 PCIe and PCI Expansion Slots 106 Physical Specifications 106 Power Specifications 107 Environmental Specifications 108 B. BIOS POST Codes 109 Index 119 Contents vii viii Sun Ultra 24 Workstation Product Notes • June 2009 Figures FIGURE 1-1 Front Panel Components 2 FIGURE 1-2 Back Panel Components 3 FIGURE 1-3 Internal System Components 4 FIGURE 1-4 Power Supply and Component Cable Connections to Motherboard 5 FIGURE 1-5 Internal Component Cables and Connections 6 FIGURE 2-1 External Cable Connections 10 FIGURE 2-2 Connecting the Monitor to the System Image 11 FIGURE 5-1 Removing the Side Access Panel 42 FIGURE 5-2 Removing the Front Bezel 43 FIGURE 5-3 Installing the Front Bezel 45 FIGURE 5-4 Installing the Left Side Access Panel 46 FIGURE 5-5 Removing a Hard Drive 48 FIGURE 5-6 Installing a Hard Drive 49 FIGURE 5-7 Installing a SAS Card 52 FIGURE 5-8 Location of the Storage Backplane 54 FIGURE 5-9 Removing the Storage Backplane 55 FIGURE 5-10 Installing the Storage Backplane 56 FIGURE 5-11 Location of DVD Cables.
Recommended publications
  • Datasheet Fujitsu SPARC M10-4S
    Datasheet Fujitsu SPARC M10-4S Datasheet Fujitsu SPARC M10-4S Everything your mission critical enterprise application needs in stability, scalability and asset protection Only the best with Fujitsu SPARC Enterprise A SPARC of steel Based on robust SPARC architecture and running the Fujitsu SPARC M10-4S server is the nearest thing you leading Oracle Solaris 11, Fujitsu SPARC M10-4S can get to an open mainframe. Absolutely rock servers are ideal for customers needing highly solid, dependable and sophisticated, but with the scalable, reliable servers that increase their system total Solaris binary compatibility necessary to both utilization and performance through virtualization. protect your investments and enhance your business. The combined leverage of Fujitsu’s expertise in mission-critical computing technologies and Its rich virtualization eco-system of extended high-performance processor design, with Oracle’s partitioning and Solaris Containers coupled with expertise in open, scalable, partition-based network dynamic reconfiguration, means non-stop operation computing, provides the overall flexibility to meet and total resource utilization at no extra cost. any task. Benchmark leading performance with the world’s best applications and outstanding processor scalability just add to the capabilities of this most expandable of system platform. Page 1 of 6 www.fujitsu.com/sparc Datasheet Fujitsu SPARC M10-4S Features and benefits Main features Benefits Supreme performance The supreme performance in all commercial servers Highest performance
    [Show full text]
  • Oracle Solaris and Oracle SPARC Systems—Integrated and Optimized for Mission Critical Computing
    An Oracle White Paper September 2010 Oracle Solaris and Oracle SPARC Servers— Integrated and Optimized for Mission Critical Computing Oracle Solaris and Oracle SPARC Systems—Integrated and Optimized for Mission Critical Computing Executive Overview ............................................................................. 1 Introduction—Oracle Datacenter Integration ....................................... 1 Overview ............................................................................................. 3 The Oracle Solaris Ecosystem ........................................................ 3 SPARC Processors ......................................................................... 4 Architected for Reliability ..................................................................... 7 Oracle Solaris Predictive Self Healing ............................................ 7 Highly Reliable Memory Subsystems .............................................. 9 Oracle Solaris ZFS for Reliable Data ............................................ 10 Reliable Networking ...................................................................... 10 Oracle Solaris Cluster ................................................................... 11 Scalable Performance ....................................................................... 14 World Record Performance ........................................................... 16 Sun FlashFire Storage .................................................................. 19 Network Performance ..................................................................
    [Show full text]
  • Threading SIMD and MIMD in the Multicore Context the Ultrasparc T2
    Overview SIMD and MIMD in the Multicore Context Single Instruction Multiple Instruction ● (note: Tute 02 this Weds - handouts) ● Flynn’s Taxonomy Single Data SISD MISD ● multicore architecture concepts Multiple Data SIMD MIMD ● for SIMD, the control unit and processor state (registers) can be shared ■ hardware threading ■ SIMD vs MIMD in the multicore context ● however, SIMD is limited to data parallelism (through multiple ALUs) ■ ● T2: design features for multicore algorithms need a regular structure, e.g. dense linear algebra, graphics ■ SSE2, Altivec, Cell SPE (128-bit registers); e.g. 4×32-bit add ■ system on a chip Rx: x x x x ■ 3 2 1 0 execution: (in-order) pipeline, instruction latency + ■ thread scheduling Ry: y3 y2 y1 y0 ■ caches: associativity, coherence, prefetch = ■ memory system: crossbar, memory controller Rz: z3 z2 z1 z0 (zi = xi + yi) ■ intermission ■ design requires massive effort; requires support from a commodity environment ■ speculation; power savings ■ massive parallelism (e.g. nVidia GPGPU) but memory is still a bottleneck ■ OpenSPARC ● multicore (CMT) is MIMD; hardware threading can be regarded as MIMD ● T2 performance (why the T2 is designed as it is) ■ higher hardware costs also includes larger shared resources (caches, TLBs) ● the Rock processor (slides by Andrew Over; ref: Tremblay, IEEE Micro 2009 ) needed ⇒ less parallelism than for SIMD COMP8320 Lecture 2: Multicore Architecture and the T2 2011 ◭◭◭ • ◮◮◮ × 1 COMP8320 Lecture 2: Multicore Architecture and the T2 2011 ◭◭◭ • ◮◮◮ × 3 Hardware (Multi)threading The UltraSPARC T2: System on a Chip ● recall concurrent execution on a single CPU: switch between threads (or ● OpenSparc Slide Cast Ch 5: p79–81,89 processes) requires the saving (in memory) of thread state (register values) ● aggressively multicore: 8 cores, each with 8-way hardware threading (64 virtual ■ motivation: utilize CPU better when thread stalled for I/O (6300 Lect O1, p9–10) CPUs) ■ what are the costs? do the same for smaller stalls? (e.g.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Sun Netra T5440 Server Architecture
    An Oracle White Paper March 2010 Sun Netra T5440 Server Architecture Oracle White Paper—Sun Netra T5440 Server Architecture Introduction..........................................................................................1 Managing Complexity ..........................................................................2 Introducing the Sun Netra T5440 Server .........................................2 The UltraSPARC T2 Plus Processor and the Evolution of Throughput Computing .....................................10 Diminishing Returns of Traditional Processor Designs .................10 Chip Multiprocessing (CMP) with Multicore Processors................11 Chip Multithreading (CMT) ............................................................11 UltraSPARC Processors with CoolThreads Technology ...............13 Sun Netra T5440 Servers ..............................................................21 Sun Netra T5440 Server Architecture................................................21 System-Level Architecture.............................................................21 Sun Netra T5440 Server Overview and Subsystems ....................22 RAS Features ................................................................................30 Carrier-Grade Software Support........................................................31 System Management Technology .................................................32 Scalability and Support for CoolThreads Technology....................35 Cool Tools for SPARC: Performance and Rapid Time to Market ..39 Java
    [Show full text]
  • Rock:Ahigh-Performance Sparc Cmt Processor
    ......................................................................................................................................................................................................................... ROCK:AHIGH-PERFORMANCE SPARC CMT PROCESSOR ......................................................................................................................................................................................................................... ROCK,SUN’S THIRD-GENERATION CHIP-MULTITHREADING PROCESSOR, CONTAINS 16 HIGH-PERFORMANCE CORES, EACH OF WHICH CAN SUPPORT TWO SOFTWARE THREADS. ROCK USES A NOVEL CHECKPOINT-BASED ARCHITECTURE TO SUPPORT AUTOMATIC HARDWARE SCOUTING UNDER A LOAD MISS, SPECULATIVE OUT-OF-ORDER RETIREMENT OF INSTRUCTIONS, AND AGGRESSIVE DYNAMIC HARDWARE PARALLELIZATION OF A SEQUENTIAL INSTRUCTION STREAM.IT IS ALSO THE FIRST PROCESSOR TO SUPPORT TRANSACTIONAL MEMORY IN HARDWARE. ......Designing an aggressive chip- even more aggressive simultaneous speculative Shailender Chaudhry multithreaded (CMT) processor1 involves threading (SST), which uses two checkpoints. many tradeoffs. To maximize throughput EA is an area-efficient way of creating a large Robert Cypher performance, each processor core must be virtual issue window without the large asso- highly area and power efficient, so that ciative structures. SST dynamically extracts Magnus Ekman many cores can coexist on a single die. Simi- parallelism, letting execution proceed in par- larly, if the processor is to perform well on a allel at
    [Show full text]
  • Ultrasparc T2 Processor
    UltraSPARC T2 Processor Vortrag im Rahmen des Seminars „Ausgewählte Themen in Hardwareentwurf und Optik“ HWS07 Universität Mannheim Janusz Schinke Inhalt Überblick Core Crossbar L2 Cache Internes Netzwerk PCI-Express Power Management System Status & Einsatz Bereich Zusammenfassung 09.10.07 Janusz Schinke 2 UltraSPARC T2 Processor Überblick Überblick 1/5 Zweite Generation eines Chip Multi-Threading (CMT) Prozessors 8 Sparc Cores, 4MB shared L2 Cache. Ausführung von 64 Threads (8 Threads pro Core). mehr als doppelte UltraSparc T1's Rechenleistung und Rechenleistung/Watt. mehr als zehn mal schnellere Floating Point Berechnung 09.10.07 Janusz Schinke 4 Überblick 2/5 Server-on-a-Chip Komponenten (SOC) zwei 10G Ethernet Anschlüsse Verschlüsselungseinheit On-chip PCI-Express FBDIMM Speicher 09.10.07 Janusz Schinke 5 Überblick 3/5 Block Diagramm 09.10.07 Janusz Schinke 6 Überblick 4/5 Niagara2 Die Micrograph 09.10.07 Janusz Schinke 7 Überblick 5/5 09.10.07 Janusz Schinke 8 UltraSPARC T2 Processor Core Core IFU – Instruction Fetch Unit EXU0/1 – Integer Execution Units LSU – Load/Store Unit FGU – Floating-Point/Graphics Unit SPU – Security Processing Unit TLU – Trap Logic Unit MMU – Memory Management Unit 09.10.07 Janusz Schinke 10 Core Pipeline 8-stufige Integer Pipeline 3-Taktzyklen load-use Latenz Speicher Bypass Writeback 09.10.07 Janusz Schinke 11 Core Pipeline 12-stufige Floating-Point Pipeline 6-Taktzyklen Latenz für abhnängige FP Operationen Längere Pipeline Stufe für Division/Quadratwurzel 09.10.07 Janusz
    [Show full text]
  • Oracle Solaris and Fujitsu SPARC Enterprise Systems — Integrated and Optimized for Enterprise Computing
    A Fujitsu White Paper May 2011 Oracle Solaris and Fujitsu SPARC Enterprise Systems — Integrated and Optimized for Enterprise Computing Oracle Solaris and Fujitsu SPARC Enterprise Systems—Integrated and Optimized for Enterprise Computing Executive Overview............................................................................. 2 Introduction—Datacenter Integration .................................................. 2 Overview ............................................................................................. 2 The Oracle Solaris Ecosystem........................................................ 2 SPARC Processors......................................................................... 3 Architected for Reliability..................................................................... 6 Oracle Solaris Predictive Self Healing ............................................ 7 Highly Reliable Memory Subsystems.............................................. 8 Oracle Solaris ZFS for Reliable Data .............................................. 9 Reliable Networking ........................................................................ 9 Scalable Performance....................................................................... 10 World Record Performance........................................................... 12 Network Performance ................................................................... 14 Security ............................................................................................. 14 Integrated with Fujitsu SPARC
    [Show full text]
  • Sun Fire Server X4200 M2 X4600 M2 Sun Fire Sun Fire X2100 M2 X2200 M2
    SUN SERVER, STORAGE AND VISUALIZATION SOLUTIONS FOR GRID COMPUTING Constantin Gonzalez Ambassador Technical Systems Sun Microsystems GmbH 1 What Sun Does Software Storage Services Systems SPARC 64 Network.com Microelectronics Sun Systems Software Storage Services SPARC 64 Network.com Systems Microelectronics How Applications Behave High Parallelism Proxy Caching Data Warehousing Data Analysis Web Serving Client Server Streaming Media OLTP Database Security File Server Directory SAP R3 J2EE Application Servers Storage Commercial Batch Network Centric Genomics Centric EAI Servers Structural Analysis Electronic Design Simulation Workgroup Compute Grid Application Development Financial Risk/Portfolio Analysis Monte Carlo Simulation Cheminformatics No Parallelism The Bad News... High Parallelism Storage Network Centric Centric There is no egg-laying, wool and milk pork! No Parallelism The Good News... High Parallelism SPARC64 - VI UltraSPARC T1/T2 Storage Network Centric x86 / x64 Centric There are good solutions for all situations! No Parallelism Sun’s Processor Strategy x86 / x64 SPARC64 - VI Single Thread With Chip Multi-Threading Mission Critical Processors 32 Threads / 8 Cores Today 128 Threads / 16 Cores in development Teams With Teams With The Innovation of Solaris on All of Them Back-End Datacenter Servers High Parallelism Proxy Caching Data Warehousing Data Analysis Web Serving Client Server Streaming Media OLTP Database Security File Server Directory SAP R3 J2EE Application Servers Storage Commercial Batch Network Centric Genomics
    [Show full text]
  • Sun's 'Rock' Shines a Little Brighter in First Test 2 May 2007
    Sun's 'Rock' Shines a Little Brighter in First Test 2 May 2007 The company completes the first test of its new which provides higher throughput for multithread UltraSPARC processor that includes a successful applications. boot of its own Solaris 10 operating system. Executives have said that Rock with its CMT Sun Microsystems is shining some new light on its architecture will offer vast improvement in high-end "Rock" processor. enterprise applications, such as CRM (customer relationship management), and offer support for On May 2, the Santa Clara, Calif., company is large databases. announcing that its new UltraSPARC multicore processor , called Rock, successfully booted Sun's So far, Sun executives have not offered additional own Solaris 10 operating system for the first time. details on how Rock will improve on its Niagara processors. Fadi Azhari, director of marketing for "This is the most complex thing we have ever built SPARC, said the company is not ready to detail at Sun," said Jeff Thomas, senior vice president for how many threads per core Rock will offer. He also engineering and microelectronics at Sun. "This test declined to offer any other specific performance showed that we were able to get the operating benchmarks. system up and running and all the basics are there. After this, we'll be running some additional Sun executives did note that Rock, which has been diagnostic tests and test other applications in order subject to past delays, will begin to appear in to validate what we have done." servers starting in the second half of 2008. Azhari added that Sun is working on several systems that On April 10, Sun CEO Jonathan Schwartz wrote on will support the new chip.
    [Show full text]
  • SPARC Enterprise Gives You a Choice of Platforms Optimized to Your Business, with a Full Lineup from Entry Level to High End
    The global standard in UNIX® servers CLASS 1 LASER PRODUCT Specifications are subject to change without notice. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited. SPARC64 is a trademark of SPARC International, Inc. in the United States and other countries and used under license. All SPARC trademarks are used under license from SPARC International, Inc. and are trademarks or registered trademarks of that company in the United States and other countries. Sun, Sun Microsystems, the Sun Logo, Solaris and all Solaris based marks and logos are trademarks or registered trade marks of Sun Microsystems, Inc. in the United States and other countries, and are used under license. All other company/product names mentioned may be trademarks or registered trademarks of their respective holders and are used for identifications purposes only. Fifth edition, October 2008 FUJITSU LIMITED 2008 Fujitsu Limited. http://www.fujitsu.com/sparcenterprise/ All rights reserved. Printed in Japan This brochure was produced by waterless printing and utilizes Soy ink on FSC-certified paper. No hazardous substances were discharged during the process. BK0141-5AP Specifications are subject to change without notice. 2007 Fujitsu Limited. All rights reserved UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited. SPARC is a trademark used under license from SPARC International, Inc. of the U.S.A. Printed in Japan Sun, Sun Microsystems, the Sun Logo, Solaris and all Solaris based marks and logos are trademarks or registered trade marks of Sun Microsystems, Inc, BK0141-1 in the U.S.
    [Show full text]
  • Niagara: a 32-Way Multithreaded SPARC Processor
    Niagara: a 32-Way Multithreaded SPARC Processor P. Kongetira, K. Aingaran, K.Olokotun Sun Microsystems Presented by Bogdan Romanescu Goal • Commercial server applications: – High thread level parallelism (TLP) • Large numbers of parallel client requests – Low instruction level parallelism (ILP) • High cache miss rates • Many unpredictable branches • Frequent load-load dependencies • Power, cooling, and space are major concerns for data centers Sun’s Solution • UltraSPARC T1 processor • “the highest-throughput and most eco- responsible processor ever created”® • Multicore • Fine-grain multithreading within core • Simple pipelines • Small L1 cache • Shared L2 • Metric: Performance/Watt Architecture Sparc pipe • UltraSPARC II style • Single issue 6 stage: F, S, D, E, M, W • Shared units: – L1 $ – TLB – X units – pipe registers • Hazards: –Data – Structural Integer Register file • One register file / thread • SPARC window: in, out, local registers • Highly integrated cell structure to support 4 threads: – 8 windows of 32 locations / thread – 3 read ports + 2 write ports – Read/write: single cycle latency • 1 Active Window Cell (copy of the architectural set window) Thread scheduling • Thread selection based on: – Previous long latency instruction in pipe – Instruction type – LRU status • Select & Fetch coupled Memory • 16 KB 4 way set assoc. I$/ core Write through • 8 KB 4 way set assoc. D$/ core • allocate LD • no-allocate ST • 3MB 12 way set assoc. L2 $ shared – 4 x 750KB independent banks – 2 cycle throughput, 8 cycle latency – Direct
    [Show full text]