Unsafe at Any Speed? Looking Under the Hood at Sun's Recent Server Engine Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ultrasparc Iii
UltraSparc IIi Kevin Normoyle and the Sabre cats One size doesn’t fit all SPARC chip technology available in three broad product categories: • S-Series (servers, highest performance) • I-Series (price/performance, ease-of-use) • E-Series (lowest cost) Tired: Marginal micro-optimizations Wired: Interfaces and integration. 2 of 26 Desktop/High end embedded system issues • Ease of design-in • Low-cost • Simple motherboard designs • Power • Higher performance graphics interfaces • Low latency to memory and I/O • Upgrades • The J word 3 of 26 UltraSPARC-IIi System Example Module 72-bit DIMM 72-bit DIMM SRAM SRAM UltraSPARC IIi SRAM 75MHz/72-bit XCVRs clocks 100MHz/64-bit 66 or 33 MHz UPA64S 32-bit device 3.3v example: Creator3D graphics APB Advanced PCI Bridge (optional) 33MHz/32-bit 33MHz/32-bit Can use PC-style SUPERIO chips 5v/3.3v 5v/3.3v (boot addressing / INT_ACK features) 4 of 26 Highlights • TI Epic4 GS2, 5-layer CMOS, 2.6v core, 3.3v I/O. • Sun’s Visual Instruction Set - VIS(TM) - 2-D, 3-D graphics, image processing, real-time compression/decompression, video effects - block loads and stores (64-byte blocks) sustain 300 MByte/s to/from main memory, with arbitrary src/dest alignment • Four-way superscalar instruction issue - 6 pipes: 2 integer, 2 fp/graphics, 1 load/store, 1 branch • High bandwidth / Low latency interfaces - Synchronous, external L2 cache, 0.25MB - 2MB - 8-byte (+parity) data bus to L2 cache (1.2 GByte/s sustained) - 8-byte (+ECC) data bus to DRAM XCVRs (400 MByte/s sustained) or UPA64S (800 Mbyte/s sustained) - 4-byte PCI/66 interface. -
Sun Fire E2900 Server
Sun FireTM E2900 Server Just the Facts February 2005 SunWin token 401325 Sun Confidential – Internal Use Only Just The Facts Sun Fire E2900 Server Copyrights ©2005 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun logo, Sun Fire, Netra, Ultra, UltraComputing, Sun Enterprise, Sun Enterprise Ultra, Starfire, Solaris, Sun WebServer, OpenBoot, Solaris Web Start Wizards, Solstice, Solstice AdminSuite, Solaris Management Console, SEAM, SunScreen, Solstice DiskSuite, Solstice Backup, Sun StorEdge, Sun StorEdge LibMON, Solstice Site Manager, Solstice Domain Manager, Solaris Resource Manager, ShowMe, ShowMe How, SunVTS, Solstice Enterprise Agents, Solstice Enterprise Manager, Java, ShowMe TV, Solstice TMNscript, SunLink, Solstice SunNet Manager, Solstice Cooperative Consoles, Solstice TMNscript Toolkit, Solstice TMNscript Runtime, SunScreen EFS, PGX, PGX32, SunSpectrum, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunStart, SunVIP, SunSolve, and SunSolve EarlyNotifier are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. All other product or service names mentioned -
Sun Ultratm 5 Workstation Just the Facts
Sun UltraTM 5 Workstation Just the Facts Copyrights 1999 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun logo, Ultra, PGX, PGX24, Solaris, Sun Enterprise, SunClient, UltraComputing, Catalyst, SunPCi, OpenWindows, PGX32, VIS, Java, JDK, XGL, XIL, Java 3D, SunVTS, ShowMe, ShowMe TV, SunForum, Java WorkShop, Java Studio, AnswerBook, AnswerBook2, Sun Enterprise SyMON, Solstice, Solstice AutoClient, ShowMe How, SunCD, SunCD 2Plus, Sun StorEdge, SunButtons, SunDials, SunMicrophone, SunFDDI, SunLink, SunHSI, SunATM, SLC, ELC, IPC, IPX, SunSpectrum, JavaStation, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunVIP, SunSolve, and SunSolve EarlyNotifier are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OpenGL is a registered trademark of Silicon Graphics, Inc. Display PostScript and PostScript are trademarks of Adobe Systems, Incorporated, which may be registered in certain jurisdictions. Netscape is a trademark of Netscape Communications Corporation. DLT is claimed as a trademark of Quantum Corporation in the United States and other countries. Just the Facts May 1999 Positioning The Sun UltraTM 5 Workstation Figure 1. The Ultra 5 workstation The Sun UltraTM 5 workstation is an entry-level workstation based upon the 333- and 360-MHz UltraSPARCTM-IIi processors. The Ultra 5 is Sun’s lowest-priced workstation, designed to meet the needs of price-sensitive and volume-purchase customers in the personal workstation market without sacrificing performance. -
The Interactive Performance of SLIM: a Stateless, Thin-Client Architecture ✽ ✽ ✝ Brian K
17th ACM Symposium on Operating Systems Principles (SOSP’99) Published as Operating Systems Review, 34(5):32–47, December 1999 The interactive performance of SLIM: a stateless, thin-client architecture ✽ ✽ ✝ Brian K. Schmidt , Monica S. Lam , J. Duane Northcutt ✽ Computer Science Department, Stanford University {bks, lam}@cs.stanford.edu ✝ Sun Microsystems Laboratories [email protected] Abstract 1 Introduction Taking the concept of thin clients to the limit, this paper Since the mid 1980’s, the computing environments of proposes that desktop machines should just be simple, many institutions have moved from large mainframe, stateless I/O devices (display, keyboard, mouse, etc.) that time-sharing systems to distributed networks of desktop access a shared pool of computational resources over a machines. This trend was motivated by the need to provide dedicated interconnection fabric — much in the same way everyone with a bit-mapped display, and it was made as a building’s telephone services are accessed by a possible by the widespread availability of collection of handset devices. The stateless desktop design high-performance workstations. However, the desktop provides a useful mobility model in which users can computing model is not without its problems, many of transparently resume their work on any desktop console. which were raised by the original UNIX designers[14]: This paper examines the fundamental premise in this “Because each workstation has private data, each system design that modern, off-the-shelf interconnection must be administered separately; maintenance is technology can support the quality-of-service required by difficult to centralize. The machines are replaced today’s graphical and multimedia applications. -
Just the Facts Sunwin Token #333632
Sun FireTM V480 Server Just the Facts SunWIN token #333632 September 2002 Version 2.7 Notice: This document continues to be restricted to internal usage only because of references to internal web pages. With the removal of these references, selected sections of the document may be provided to customers and/or selling channels as required. Competitive information and relative positioning should always remain as internal documentation only. Copyrights ©2000, 2001 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun logo, Sun Fire, Ultra, UltraComputing, Sun Enterprise, Sun Enterprise Ultra, Starfire, Solaris, Sun WebServer, OpenBoot, Solaris Web Start Wizards, Solstice, Solstice AdminSuite, Solaris Management Console, Sun Enterprise Authentication Mechanism, SunScreen, Solstice DiskSuite, Sun StorEdge, Sun StorEdge LibMON, Solstice Site Manager, Solstice Domain Manager, Solaris Resource Manager, ShowMe, ShowMe How, SunVTS, Solstice Enterprise Agents, Solstice Enterprise Manager, Java, ShowMe TV, Solstice TMNscript, SunLink, Solstice SunNet Manager, Solstice Cooperative Consoles, Solstice TMNscript Toolkit, Solstice TMNscript Runtime, SunScreen EFS, PGX, PGX32, SunSpectrum, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunStart, SunVIP, SunSolve, and SunSolve EarlyNotifier are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. Microsoft, Netware, Macintosh, Lotus, Oracle, Sybase, Intel, Veritas, Windows, Linux, HP-UX and AIX are the respective trademarks of their owners. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. -
Sun Ultratm 2 Workstation Just the Facts
Sun UltraTM 2 Workstation Just the Facts Copyrights 1999 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun Logo, Ultra, SunFastEthernet, Sun Enterprise, TurboGX, TurboGXplus, Solaris, VIS, SunATM, SunCD, XIL, XGL, Java, Java 3D, JDK, S24, OpenWindows, Sun StorEdge, SunISDN, SunSwift, SunTRI/S, SunHSI/S, SunFastEthernet, SunFDDI, SunPC, NFS, SunVideo, SunButtons SunDials, UltraServer, IPX, IPC, SLC, ELC, Sun-3, Sun386i, SunSpectrum, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunVIP, SunSolve, and SunSolve EarlyNotifier are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. OpenGL is a registered trademark of Silicon Graphics, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. Display PostScript and PostScript are trademarks of Adobe Systems, Incorporated. DLT is claimed as a trademark of Quantum Corporation in the United States and other countries. Just the Facts May 1999 Sun Ultra 2 Workstation Figure 1. The Sun UltraTM 2 workstation Sun Ultra 2 Workstation Scalable Computing Power for the Desktop Sun UltraTM 2 workstations are designed for the technical users who require high performance and multiprocessing (MP) capability. The Sun UltraTM 2 desktop series combines the power of multiprocessing with high-bandwidth networking, high-performance graphics, and exceptional application performance in a compact desktop package. Users of MP-ready and multithreaded applications will benefit greatly from the performance of the Sun Ultra 2 dual-processor capability. -
Sun Enterprisetm 220R Server Just the Facts
Sun EnterpriseTM 220R Server Just the Facts Copyrights 1998, 1999 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun logo, Sun Enterprise, Ultra, UltraComputing, Sun Enterprise Ultra, Starfire, Solaris, Solstice, Sun Enterprise SyMON, Sun WebServer, IPX, NFS, VIS, Sun StorEdge, OpenBoot, Solaris Web Start Wizards, Solstice AdminSuite, Solaris Management Console, Sun Enterprise Authentication Mechanism, SunScreen, Solstice DiskSuite, Solstice Backup, Sun StorEdge LibMON, Solstice Site Manager, Solstice Domain Manager, Solaris Resource Manager, ShowMe How, Solstice Enterprise Manager, Solstice Enterprise Agents, ShowMe TV, Java, SunLink, Solstice SunNet Manager, SunScreen EFS, Solstice Cooperative Consoles, Solstice TMNscript, Solstice TMNscript Runtime, SunCD, SunVTS, SunSpectrum, SunSwift, SunFastEthernet, SunFDDI, SunTRI/P, SunHSI/P, PGX, PGX32, SunATM, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunStart, SunVIP, SunSolve, and SunSolve EarlyNotifier are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and in other countries, exclusively licensed through X/Open Company, Ltd. Just the Facts November 1999 Positioning Figure 1. Sun EnterpriseTM 220R System Exceptional Processing Power in a Compact Footprint The Sun EnterpriseTM 220R server is the latest member of Sun’s powerful line of servers for enterprise network computing based on the UltraSPARCTM processor technology. This next-generation workgroup server brings multiprocessing power, UltraSCSI disks, and the industry-standard peripheral component interconnect (PCI) I/O bus to a highly modular, rack-optimized 4RU (rack unit) design. -
Dynamic Helper Threaded Prefetching on the Sun Ultrasparc® CMP Processor
Dynamic Helper Threaded Prefetching on the Sun UltraSPARC® CMP Processor Jiwei Lu, Abhinav Das, Wei-Chung Hsu Khoa Nguyen, Santosh G. Abraham Department of Computer Science and Engineering Scalable Systems Group University of Minnesota, Twin Cities Sun Microsystems Inc. {jiwei,adas,hsu}@cs.umn.edu {khoa.nguyen,santosh.abraham}@sun.com Abstract [26], [28], the processor checkpoints the architectural state and continues speculative execution that Data prefetching via helper threading has been prefetches subsequent misses in the shadow of the extensively investigated on Simultaneous Multi- initial triggering missing load. When the initial load Threading (SMT) or Virtual Multi-Threading (VMT) arrives, the processor resumes execution from the architectures. Although reportedly large cache checkpointed state. In software pre-execution (also latency can be hidden by helper threads at runtime, referred to as helper threads or software scouting) [2], most techniques rely on hardware support to reduce [4], [7], [10], [14], [24], [29], [35], a distilled version context switch overhead between the main thread and of the forward slice starting from the missing load is helper thread as well as rely on static profile feedback executed, minimizing the utilization of execution to construct the help thread code. This paper develops resources. Helper threads utilizing run-time a new solution by exploiting helper threaded pre- compilation techniques may also be effectively fetching through dynamic optimization on the latest deployed on processors that do not have the necessary UltraSPARC Chip-Multiprocessing (CMP) processor. hardware support for hardware scouting (such as Our experiments show that by utilizing the otherwise checkpointing and resuming regular execution). idle processor core, a single user-level helper thread Initial research on software helper threads is sufficient to improve the runtime performance of the developed the underlying run-time compiler main thread without triggering multiple thread slices. -
Datasheet Fujitsu SPARC M10-4S
Datasheet Fujitsu SPARC M10-4S Datasheet Fujitsu SPARC M10-4S Everything your mission critical enterprise application needs in stability, scalability and asset protection Only the best with Fujitsu SPARC Enterprise A SPARC of steel Based on robust SPARC architecture and running the Fujitsu SPARC M10-4S server is the nearest thing you leading Oracle Solaris 11, Fujitsu SPARC M10-4S can get to an open mainframe. Absolutely rock servers are ideal for customers needing highly solid, dependable and sophisticated, but with the scalable, reliable servers that increase their system total Solaris binary compatibility necessary to both utilization and performance through virtualization. protect your investments and enhance your business. The combined leverage of Fujitsu’s expertise in mission-critical computing technologies and Its rich virtualization eco-system of extended high-performance processor design, with Oracle’s partitioning and Solaris Containers coupled with expertise in open, scalable, partition-based network dynamic reconfiguration, means non-stop operation computing, provides the overall flexibility to meet and total resource utilization at no extra cost. any task. Benchmark leading performance with the world’s best applications and outstanding processor scalability just add to the capabilities of this most expandable of system platform. Page 1 of 6 www.fujitsu.com/sparc Datasheet Fujitsu SPARC M10-4S Features and benefits Main features Benefits Supreme performance The supreme performance in all commercial servers Highest performance -
Oracle Solaris and Oracle SPARC Systems—Integrated and Optimized for Mission Critical Computing
An Oracle White Paper September 2010 Oracle Solaris and Oracle SPARC Servers— Integrated and Optimized for Mission Critical Computing Oracle Solaris and Oracle SPARC Systems—Integrated and Optimized for Mission Critical Computing Executive Overview ............................................................................. 1 Introduction—Oracle Datacenter Integration ....................................... 1 Overview ............................................................................................. 3 The Oracle Solaris Ecosystem ........................................................ 3 SPARC Processors ......................................................................... 4 Architected for Reliability ..................................................................... 7 Oracle Solaris Predictive Self Healing ............................................ 7 Highly Reliable Memory Subsystems .............................................. 9 Oracle Solaris ZFS for Reliable Data ............................................ 10 Reliable Networking ...................................................................... 10 Oracle Solaris Cluster ................................................................... 11 Scalable Performance ....................................................................... 14 World Record Performance ........................................................... 16 Sun FlashFire Storage .................................................................. 19 Network Performance .................................................................. -
Threading SIMD and MIMD in the Multicore Context the Ultrasparc T2
Overview SIMD and MIMD in the Multicore Context Single Instruction Multiple Instruction ● (note: Tute 02 this Weds - handouts) ● Flynn’s Taxonomy Single Data SISD MISD ● multicore architecture concepts Multiple Data SIMD MIMD ● for SIMD, the control unit and processor state (registers) can be shared ■ hardware threading ■ SIMD vs MIMD in the multicore context ● however, SIMD is limited to data parallelism (through multiple ALUs) ■ ● T2: design features for multicore algorithms need a regular structure, e.g. dense linear algebra, graphics ■ SSE2, Altivec, Cell SPE (128-bit registers); e.g. 4×32-bit add ■ system on a chip Rx: x x x x ■ 3 2 1 0 execution: (in-order) pipeline, instruction latency + ■ thread scheduling Ry: y3 y2 y1 y0 ■ caches: associativity, coherence, prefetch = ■ memory system: crossbar, memory controller Rz: z3 z2 z1 z0 (zi = xi + yi) ■ intermission ■ design requires massive effort; requires support from a commodity environment ■ speculation; power savings ■ massive parallelism (e.g. nVidia GPGPU) but memory is still a bottleneck ■ OpenSPARC ● multicore (CMT) is MIMD; hardware threading can be regarded as MIMD ● T2 performance (why the T2 is designed as it is) ■ higher hardware costs also includes larger shared resources (caches, TLBs) ● the Rock processor (slides by Andrew Over; ref: Tremblay, IEEE Micro 2009 ) needed ⇒ less parallelism than for SIMD COMP8320 Lecture 2: Multicore Architecture and the T2 2011 ◭◭◭ • ◮◮◮ × 1 COMP8320 Lecture 2: Multicore Architecture and the T2 2011 ◭◭◭ • ◮◮◮ × 3 Hardware (Multi)threading The UltraSPARC T2: System on a Chip ● recall concurrent execution on a single CPU: switch between threads (or ● OpenSparc Slide Cast Ch 5: p79–81,89 processes) requires the saving (in memory) of thread state (register values) ● aggressively multicore: 8 cores, each with 8-way hardware threading (64 virtual ■ motivation: utilize CPU better when thread stalled for I/O (6300 Lect O1, p9–10) CPUs) ■ what are the costs? do the same for smaller stalls? (e.g. -
Day 2, 1640: Leveraging Opensparc
Leveraging OpenSPARC ESA Round Table 2006 on Next Generation Microprocessors for Space Applications G.Furano, L.Messina – TEC-EDD OpenSPARC T1 • The T1 is a new-from-the-ground-up SPARC microprocessor implementation that conforms to the UltraSPARC architecture 2005 specification and executes the full SPARC V9 instruction set. Sun has produced two previous multicore processors: UltraSPARC IV and UltraSPARC IV+, but UltraSPARC T1 is its first microprocessor that is both multicore and multithreaded. • The processor is available with 4, 6 or 8 CPU cores, each core able to handle four threads. Thus the processor is capable of processing up to 32 threads concurrently. • Designed to lower the energy consumption of server computers, the 8-cores CPU uses typically 72 W of power at 1.2 GHz. G.Furano, L.Messina – TEC-EDD 72W … 1.2 GHz … 90nm … • Is a cutting edge design, targeted for high-end servers. • NOT FOR SPACE USE • But, let’s see which are the potential spin-in … G.Furano, L.Messina – TEC-EDD Why OPEN ? On March 21, 2006, Sun made the UltraSPARC T1 processor design available under the GNU General Public License. The published information includes: • Verilog source code of the UltraSPARC T1 design, including verification suite and simulation models • ISA specification (UltraSPARC Architecture 2005) • The Solaris 10 OS simulation images • Diagnostics tests for OpenSPARC T1 • Scripts, open source and Sun internal tools needed to simulate the design and to do synthesis of the design • Scripts and documentation to help with FPGA implementation