New Prion Discovered on Gough Island Breeding on a Stack Off St Paul Island

Total Page:16

File Type:pdf, Size:1020Kb

New Prion Discovered on Gough Island Breeding on a Stack Off St Paul Island NEWS & VIEWS ROSS WANLESS BEN DILLEY a narrow margin Prions formerly were abundant at Amster- Paul Visser and Henk Louw found chicks in above, left A Broad-billed Prion, showing its dam and St Paul islands in the southern In- Prion Cave in January, several months after broad, blackish bill, incubating on a nest in PETER RYAN dian Ocean, but following the introduction Broad-billed Prion chicks fledge. In 2013, an outbuilding of the Gough Island weather of rats only a small number of birds survive, Ben was able to confirm that the narrow- station in mid-August. NEW PRION DISCOVERED ON GOUGH ISLAND breeding on a stack off St Paul Island. How- billed birds in Prion Cave and Gonydale lay ever, newly-fledged prions have narrower eggs in late November, three months later above By comparison, a medium-billed prion, eabirds comprise barely three per cent Fregetta maoriana. To discover a new species the Percy FitzPatrick Institute. When they bills than adults, so I was concerned that this than the broad-billed birds. This marked dif- incubating in Prion Cave in mid-December has of the world’s birds and, given their of prion breeding in vast numbers on Gough returned to Cape Town, I was sceptical when factor was confounding the local differences ference in breeding season argues strongly a narrower, blue-edged bill. popularity with scientists and birders Island almost beggars belief. they told me there were two types of prions in bill size at Gough Island. But I was suffi- that the narrow-billed birds are a new species alike,S it is surprising when an entirely new Gough Island, in the central South Atlan- on Gough. ciently intrigued to make this a top priority of prion, rather than just an example of bill prions there had two breeding seasons, one species is discovered. There was one such tic Ocean, is renowned as one of the most Until then, there had been no hint that when I next had a chance to visit the island in polymorphism. in September and one in November, so there surprise in 2013 when a new storm petrel important seabird breeding islands in the anything other than Broad-billed Prions September 2013. Ironically, the new species appears to have may have been two species there before they Oceanites pincoyae was described from cen- world. It is home to virtually all Tristan Al- Pachyptila vittata occurred on the island. Assisted by Ben Dilley and other members been overlooked in part because prions are were extirpated by introduced predators. tral Chile (Auk 130: 180–191). batrosses and Atlantic Petrels, the largest Indeed, Gough is the most important breed- of the relief team, I caught adult prions and the most abundant seabird breeding on There is no evidence that the small-billed In most cases, new species have resulted single-island population of Sooty Albatross- ing site for this species worldwide, with an collected carcasses of freshly-killed birds at Gough. Broad-billed Prions breed around prions breed at the Tristan archipelago, some from species splits (for example, the descrip- es, and globally significant populations of at estimated 10 million pairs on the island in six sites in the south-eastern sector of the the weather station and along the east coast 380 kilo metres away; all birds examined tion of Bryan’s Shearwater Puffinus bryani least 10 other seabird species. Unfortunately the 1950s. Despite the impacts of the mice, island. There shouldn’t be any fledglings at of the island, where all scientific expedi- there to date and all observations of the tim- from the Hawaiian islands in 2011) or the Gough has been in the news over the past Gough still supports between one and two that time of year because Broad-billed Pri- tions land. It seems that because prions are ing of breeding suggest that only Broad-billed rediscovery of species long thought ex- decade or so following the discovery that in- million pairs, making prions the most abun- ons breed in early spring at Gough, laying so abundant, ornithologists collected their Prions occur there. If the new prion is indeed tinct, such as the New Zealand Storm Petrel troduced house mice attack and kill seabird dant bird on the island. eggs mainly in August. At three sites birds specimens close to the landing sites and confined to Gough, it provides yet more mo- chicks on the island. The mice have slowly Karen and Sylvain collected skulls of had bills averaging 21 to 22 millimetres so failed to sample the narrow-billed birds tivation for eradicating mice from the island. been eroding the island’s vast burrowing pet- wide, typical of Broad-billed Prions, but at breeding nearby. PETER RYAN SoutH Gough prions killed by skuas and discovered that AmeRica AfRica Glen rel populations, and have had an especially the bills of birds collected in Gonydale at the other three sites their bills averaged only This begs the question as to why the two (old base) tristan (21.6) serious impact on Tristan Albatross chicks. 400 metres elevation were narrower than 18 to 19 millimetres wide, similar to Macgil- forms are segregated on the island, given that Reference: Ryan, P.G., Bourgeois, K., Gough The new prion was discovered by the those collected around the island’s weather livray’s Prion. all foraging occurs at sea. For now, we have Dromzée, S. & Dilley, B.J. 2014. ‘The occur- research team working to eradicate mice station, close to sea level. Interestingly, the difference was not linked no idea why this might be. We also need to rence of two bill morphs of prions Pachyptila Haularound from the island. Karen Bourgeois and Syl- Bill width is important in prion taxonomy to elevation. Narrow-billed birds predomi- assess the ranges of the two species on Gough vittata on Gough Island.’ Polar Biology, DOI Point vain Dromzée spent a year on the island in and links directly to their feeding ecology. nated in Prion Cave, which is close to the so that we can estimate their populations. 10.1007/s00300-014-1473-2 South Golden Peak Highway 2011/12 as field assistants for the RSPB and Broad-billed birds have more filtering lamel- weather station where prions often gather in Genetic data are required to determine the Gonydale (21.8) Hummocks(17.9) Admirals lae – akin to a whale’s baleen – than species spring. And north of the base, typical broad- relationships between the Gough birds and Green Hill above Prions are the most abundant seabirds with narrower bills, and their diets are more billed birds were found at 250 metres above other prions, especially those breeding in the WATCH & LISTEN Base (21.5) to the ‘new’ narrow- Gonydale breeding on Gough Island. The recent discov- specialised. While breeding, Broad-billed sea level. Indian Ocean. However, it may be that, like Seal Beach billed prion species Path (18.7) Prion ery that two species breed on the island three Prions on Gough feed mainly on two- to the recently discovered radiation of Band- Cave(19.2) interacting in the months apart came as a complete surprise. three-millimetre-long copepods and their ith hindsight, we should have rumped Storm Petrels Oceanodroma castro, depths of Prion Cavern Head Richmond Hill lamellae are perfectly spaced to filter these realised several years ago that species pairs have evolved independently Cave on Gough Rockhopper Point left The southern part of Gough Island, show- tiny crustaceans. something odd was going on. at Gough and islands in the Indian Ocean. Island www.youtube. ing where Broad-billed Prions (white circles) The birds from Gonydale had bills similar WBroad-billed Prions are supposed to have Temporal segregation in breeding seasons com/watch?v=aRduIhc1mxE, or scan N (22.0) and the smaller-billed birds (black circles) in size to those of the enigmatic Macgilli- blackish upper mandibles, yet the birds in reduces intraspecific competition, and thus the QR code to go directly to the South Point link. Courtesy Ben Dilley. 1 km occur. The numbers in parentheses show the vray’s Prion P. [salvini] macgillivrayi, a large- Prion Cave have variable amounts of blue on may facilitate speciation. Intriguingly, early average bill width in millimetres at each site. billed form of Salvin’s Prion. Macgillivray’s the sides of the upper mandible. And in 2009, visitors to St Paul Island reported that the 10 AFRICAN BIRDLIFE MAY/JUNE 2014 NEWS & VIEWS 11.
Recommended publications
  • First Record of a Broad-Billed Prion Pachyptila Vittata at Coronation Island, South Orkney Islands
    Blight & Woehler: First record of a Broad-billed Prion at Coronation Island 191 FIRST RECORD OF A BROAD-BILLED PRION PACHYPTILA VITTATA AT CORONATION ISLAND, SOUTH ORKNEY ISLANDS LOUISE K. BLIGHT1,2 & ERIC J. WOEHLER3 1Procellaria Research and Consulting, 944 Dunsmuir Road, Victoria, British Columbia, V9A 5C3, Canada 2Current address: Centre for Applied Conservation Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada ([email protected]) 3School of Zoology, University of Tasmania, Hobart, Tasmania, 7005, Australia Received 15 April 2008, accepted 2 August 2008 The known breeding distribution of Broad-billed Prions Pachyptila or as a bird blown out of its normal at-sea range by strong winds vittata is restricted to Tristan da Cunha and Gough Islands in the during poor weather. Alternatively, there may be low numbers of South Atlantic Ocean and to offshore islands around New Zealand Broad-billed Prions breeding at poorly-surveyed sub-Antarctic and the Snares and Chatham Islands, with the range at sea believed colonies, such as the South Orkney Islands. Antarctic Prions are one to extend to coastal South Africa in the South Atlantic Ocean and of the most numerous seabird species in the Antarctic (Marchant & near-shore waters around New Zealand (Marchant & Higgins 1990). Higgins 1990); they nest in the South Orkney Islands (Marchant & The taxonomy of prions remains controversial, with most authors Higgins 1990). It is possible that low numbers of breeding Broad- recognising up to six species, but varying numbers of subspecies. billed Prions have been overlooked amongst their congeners. The at-sea ranges of many Southern Ocean seabird species are Although no sympatric breeding sites are known for the two species still incompletely described, with relatively few surveys obtaining (Shirihai 2002) and the presence of this bird may have been an at-sea data for prions.
    [Show full text]
  • Birdlife Australia Rarities Committee Unusual Record Report Form
    BirdLife Australia Rarities Committee Unusual Record Report Form This form is intended to aid observers in the preparation of a submission for a major rarity in Australia. (It is not a mandatory requirement) Please complete all sections ensuring that you attach all relevant information including any digital images (email to [email protected] or [email protected]). Submissions to BARC should be submitted electronically wherever possible. Full Name: Rob Morris Office Use Address: Phone No: Robert P. Morris, Email: Full Name: Andrew Sutherland (first noticed the second bird) Address: Phone No: Email: Species Name: Broad-billed Prion Scientific Name: Pachyptila vittata Date(s) and time(s) of observation: 11 August 2019 First individual photographed at 12.22 – last bird photographed at 13.11. How long did you watch the bird(s)? c30+ minutes – multiple sightings of 2 birds (possibly 3) and then an additional sighting of 1 bird 20 minutes later whilst travelling, flying past and photographed. First and last date of occurrence: 11 August 2019 Distance to bird: Down to approximately 20-30 m Site Location: SE Tasmania. Approximately 42°50'36.30"S 148°24'46.23"E 22NM ENE of Pirates Bay, Eaglehawk Neck. We went north in an attempt to seek lighter winds and less swell and avoid heading straight into the strong SE winds and southerly swell. Habitat (describe habitat in which the bird was seen): Continental slope waters at a depth of approximately 260 fathoms. Sighting conditions (weather, visibility, light conditions etc.): Weather: Both days were mostly cloudy with occasional periods of bright sunshine.
    [Show full text]
  • DIET and ASPECTS of FAIRY PRIONS BREEDING at SOUTH GEORGIA by P.A
    DIET AND ASPECTS OF FAIRY PRIONS BREEDING AT SOUTH GEORGIA By P.A. PRINCE AND P.G. COPESTAKE ABSTRACT A subantarctic population of the Fairy Prion (Pachyprzla turtur) was studied at South Georgia in 1982-83. Full measurements of breeding birds are given, together with details of breeding habitat, the timing of the main breeding cycle events, and chick growth (weight and wing, culmen and tarsus length). Regurgitated food samples showed the diet to be mainly Crustacea (96% by weight), fish and squid comprising the rest. Of crustaceans, Antarctic krill made up 38% of items and 80% by weight. Copepods (four species, mostly Rhincalanus gigas) made up 39% of items but only 4% by weight; amphipods [three species, principally Themisto gaudichaudii made up 22% of items and 16% by weight. Diet and frequency of chick feeding are compared with those of Antarctic Prions and Blue Petrels at the same site; Fairy Prions are essentially intermediate. INTRODUCTION The Fairy Prion (Pachyptila turtur) is one of six members of a genus confined to the temperate and subantarctic regions of the Southern Hemisphere. With the Fulmar Prion (P. crassirostris), it forms the subgenus Pseudoprion. Its main area of breeding distribution is between the Antarctic Polar Front and the Subtropical Convergence. It is widespread in the New Zealand region, from the north of the North Island south to the Antipodes Islands and Macquarie Island, where only about 40 pairs survive (Brothers 1984). Although widespread in the Indian Ocean at the Prince Edward, Crozet and Kerguelen Islands, in the South Atlantic Ocean it is known to breed only on Beauchene Island (Falkland Islands) (Strange 1968, Smith & Prince 1985) and South Georgia (Prince & Croxall 1983).
    [Show full text]
  • Krill Caught by Predators and Nets: Differences Between Species and Techniques
    MARINE ECOLOGY PROGRESS SERIES Vol. 140: 13-20. 1996 Published September 12 Mar Ecol Prog Ser Krill caught by predators and nets: differences between species and techniques K. Reid*, P. N. Trathan, J. P. Croxall, H. J. Hill British Antarctic Survey, Natural Environment Research Council, High Cross. Madingley Road, Cambridge CB3 OET, United Kingdom ABSTRACT. Samples of Antarchc krill collected from 6 seabird species and Antarctic fur seal dunng February 1986 at South Georgia were compared to krill from scientific nets fished in the area at the same time. The length-frequency d~stributionof krill was broadly similar between predators and nets although the krill taken by diving species formed a homogeneous group wh~chshowed significant dif- ferences from knll taken by other predators and by nets There were significant differences In the maturity/sex stage composition between nets and predators; in particular all predator species showed a consistent sex bias towards female krill. Similarities in the knll taken by macaroni [offshore feeding) and gentoo (inshore feeding) penguins and differences between krill taken by penguins and alba- trosses suggest that foraging techniques were more important than foraging location in influencing the type of krill in predator diets. Most krill taken by predators were adult; most female krill were sexually active (particularly when allowance is made for lnisclassification bias arising from predator digestion). Because female krill are larger, and probably less manouverable, than males, the biased sex ratio In predator diets at thls t~meof year may reflect some comblnat~onof selectivity by predators and superior escape responses of male krill.
    [Show full text]
  • The Skull of a Fossil Prion (Aves: Procellariiformes) from the Neogene (Late Miocene) of Northern Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Sallaberry, Michel; Rubilar-Rogers, David; Suárez, Mario E.; Gutstein, Carolina S. The skull of a fossil Prion (Aves: Procellariiformes) from the Neogene (Late Miocene) of northern Chile Andean Geology, vol. 34, núm. 1, enero, 2007, pp. 147-154 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173918593008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative PALEONTOLOGICAL NOTE The skull of a fossil Prion (Aves: Procellariiformes) from the Neogene (Late Miocene) of northern Chile Michel Sallaberry Laboratorio de Zoología de Vertebrados, Universidad de Chile, Facultad de Ciencias, David Rubilar-Rogers Las Palmeras 3425, Ñuñoa, Santiago [email protected] [email protected] Mario E. Suárez Museo Paleontológico de Caldera, Av. Wheelwrigh 001, Caldera, Chile Carolina S. Gutstein [email protected] [email protected] ABSTRACT The fossil skull of a procellariid, Pachyptila sp., from Late Miocene marine sediments of the Bahía Inglesa Formation (Midde Miocene-Pliocene) of Northern Chile is described. The fossil is compared with extant species of the family Procellariidae. This discovery represents the first Neogene fossil record of the genus Pachyptila from South America. Key words: Fossil Prion, Pachyptila, Procellariiformes, Neogene, Chile. RESUMEN El cráneo de un Petrel-paloma fósil (Aves: Procellariiformes) del Neógeno (Mioceno Tardío) del norte de Chile. Se describe un cráneo fósil de un procelláriido, Pachyptila sp., proveniente de sedimentos marinos del Mioceno Tardío de la Formación Bahía Inglesa (Mioceno Medio-Plioceno) del norte de Chile.
    [Show full text]
  • 1 Spatial Distribution of Predator/Prey Interactions in the Scotia
    Spatial distribution of predator/prey interactions in the Scotia Sea: implications for measuring predator/ fisheries overlap. Keith Reid 1*, Michelle Sims 1, Richard W. White 2,3, Keith W. Gillon 2,3 1 British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, United Kingdom. 2 Falklands Conservation, Jetty Visitor Centre, Stanley, Falklands Islands. 3 Joint Nature Conservancy Committee, Monkstone House, City Road. Peterborough, PE1 1JY * Correspondence - email [email protected] Fax +44 1223 221259 1 Abstract The measurement of spatial overlap between predators and fisheries exploiting a common prey source is dependent upon the measurement scale used and the use of inappropriate scales may provide misleading results. Previous assessments of the level of overlap between predators and fisheries for Antarctic krill Euphausia superba in the South Shetland Islands have used different measurement scales and arrives at contradictory conclusions. At-sea data from observations of krill predators during the CCAMLR 2000 krill survey were used to identify the areas of potential overlap with fisheries in the Scotia Sea and to determine the scale at which such overlap should be measured. The relationship between auto-correlation and sampling distance was used to identify the characteristic scales of the distribution of predators, krill and krill fisheries and an effort- corrected index of relative abundance as a function of distance from land was used to identify the characteristics of areas of high potential for overlap. Despite distinct differences in foraging ecology a group of krill-dependent species including chinstrap penguin Pygoscelis antarctica, (Antarctic) fur seal Arctocephalus sp.
    [Show full text]
  • Salvin's Prion Pachyptila Salvini Captured Alive on Beach at Black Rocks, Victoria, 27Th July 1974
    1 Salvin’s Prion Pachyptila salvini captured alive on beach at Black Rocks, Victoria, 27th July 1974 by Mike Carter Fig. 1. Ailing Salvin’s Prion captured alive on beach at Black Rocks, Victoria, 27 July 1974 During a gale on 27th July 1974, a Salvin’s Prion was observed flying over the breakers just beyond the rocks on the beach at Black Rocks, Victoria. Obviously debilitated, it came ashore and sought refuge in rock pools. It was rescued but died within five hours. This observation was made by a group of local and international seabird enthusiasts that included Dr Bill Bourne (from the UK), Gavin Johnstone & Noels Kerry from the Australian Antarctic Division, Peter Menkhorst, Richard Loyn, Paul Chick and me. Overseas and interstate visitors had joined locals to attend an International Ornithological Congress in Melbourne. The attached photos are recent digital copies of transparencies taken immediately after capture. Dimensions in mm measured as described in Marchant & Higgins (1990) on 29-07-74. (L = left, R = right), Wing 191; Tail 94; Tarsus (L) 36.4, (R) 35.9; Middle toe (L) 45.2, (R) 45.7; Claw (L) 8.8, (R) 8.0. Culmen (C) 31.8; Width (W) 16.4; Ratio (C)/ (W) 1.94: Bill depth max 13.2; Bill depth min 7.2. Apparent bulk = 1/4CW(BDmax+BDmin) = 2661 cub mm. I find this generated number to be a good discriminator for identifying Victorian prion corpses. 2 Figs. 2 to 5. Ailing Salvin’s Prion captured alive on beach at Black Rocks, Victoria, 27 July 1974 Identification Identification at the time was based mainly on information in Serventy, Serventy & Warham (1971).
    [Show full text]
  • Densities of Antarctic Seabirds at Sea and the Presence of the Krill Eupha Usia Superba
    DENSITIES OF ANTARCTIC SEABIRDS AT SEA AND THE PRESENCE OF THE KRILL EUPHA USIA SUPERBA BRYAN S. OBST Departmentof Biology,University of California,Los Angeles, California 90024 USA ABSTRACT.--Theantarctic krill Euphausiasuperba forms abundant,well-organized schools in the watersoff the AntarcticPeninsula. Mean avian densityis 2.6 timesgreater in waters where krill schoolsare present than in waters without krill schools.Seabird density is a good predictorof the presenceof krill. Seabirddensity did not correlatewith krill density or krill schooldepth. Disoriented krill routinely were observedswimming near the surface above submergedschools, providing potential prey for surface-feedingbirds. Responsesof seabird speciesto the distribution of krill schoolsvaried. The small to me- dium-sizeprocellariiform species were the best indicatorsof krill schools;large procellari- iforms and coastalspecies were poor indicators.Pygoscelis penguins occurredat high den- sitiesonly in the presenceof krill schools.These responses are consistentwith the constraints imposedby the metabolicrequirements and reproductivestrategies of eachof thesegroups. Krill schoolswere detectednear the seasurface throughout the day. Correlationsbetween seabirddensity and the presenceof krill during daylight hourssuggest that diurnal foraging is important to the seabirdsof this region. Received19 December1983, accepted4 December 1984. RELATIVELY little is known about the factors birds depend on directly or indirectly for food influencing the distribution of seabirdsin the (Haury et al. 1978). These observationssuggest marine habitat. The past decade has produced that relatively small-scalephenomena, such as a number of studiesattempting to correlatepat- local concentrationsof prey, may be of major terns of avian abundance and distribution with importance in determining the patterns of sea- physical featuresof the oceansuch as currents bird distribution within the broad limits set by and convergences,water masses,and temper- featuresof the physical ocean.
    [Show full text]
  • Birds and Mammals of the Subantarctic Islands
    FALLA: BIRDS AND l\1AMMALS 63 General pollen analysis may not be fruitful in elucidat- ing the history of this noble composite in the The luxuriant growth of O. lyallii, and Auckland Islands. the large numbers of young plants, with germination even in cracks in the bark of ACKNOWLEDGEMENTS prostrate trunks, have often been noted-for instance by Cockayne (1904) and Dorrien- I am very grateful to Dr. R. A. Falla for a vegetation map of Ewing Island on which Fig. 4 is based and Smith (1908). Although Cockayne could see for his interest in these problems; and to Mr. K. R. no reason why it "should not be the dominant West for preparing the illustrations. forest of the Southern Islands", O. lyallii has always been considered as fighting a losing REFERENCES battle in the Auckland Islands. To Dorrien- Smith (1908) it was swamped out by rata, CHAPMAN, F. R., 1891. The outlying islands of New Zealand. Trans. N.Z. Inst. 23: 491-522. "hence its disappearance from the main COCKAYNE,L., 1904. A botanical excursion during mid- islands"; to Cockayne (1904) it was perhaps winter to the southern islands of New Zealand. a relic of a former primeval forest, "ousted by Trans. N.Z. Inst. 36: 225-333. a new formation as the conditions changed"; COCKAYNE, L., 1907. In southern seas. The Auckland Islands. N.Z. Times, 11 Dee. and he also considered "that the tree in question COCKAYNE,L., 1909. The ecological botany of the sub- may have been a member of the now vanished antarctic islands of New Zealand.
    [Show full text]
  • Flight of Auks (Alcidae) and Other Northern Seabirds Compared with Southern Procellariiformes: Ornithodolite Observations
    J. exp. Biol. 128, 335-34 7(1987) 335 Printed in Great Britain © The Company of Biologists Limited 1987 FLIGHT OF AUKS (ALCIDAE) AND OTHER NORTHERN SEABIRDS COMPARED WITH SOUTHERN PROCELLARIIFORMES: ORNITHODOLITE OBSERVATIONS BYC. J. PENNYCUICK Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, USA Accepted 17 November 1986 SUMMARY Airspeeds in flapping and flap-gliding flight were measured at Foula, Shetland for three species of auks (Alcidae), three gulls (Landae), two skuas (Stercorariidae), the fulmar (Procellariidae), the gannet (Sulidae) and the shag (Phalacrocoracidae). The airspeed distributions were consistent with calculated speeds for minimum power and maximum range, except that observed speeds in the shag were unexpectedly low in relation to the calculated speeds. This is attributed to scale effects that cause the shag to have insufficient muscle power to fly much faster than its minimum power speed. The wing adaptations seen in different species are considered as deviations from a 'procellariiform standard', which produce separate effects on flapping and gliding speeds. Procellariiformes and the gannet flap-glide in cruising flight, but birds that swim with their wings do not, because their gliding speeds are too high in relation to their flapping speeds. Other species in the sample also do not flap-glide, but the reason is that their gliding speeds are too low in relation to their flapping speeds. INTRODUCTION This paper records ornithodolite observations of flight speeds in 11 seabird species, comprising several different adaptive types. They are compared with earlier observations (Pennycuick, 19826) on a set of procellariiform species, which covered a wider range of body mass, but were more homogeneous in other ways.
    [Show full text]
  • Prion Island Boardwalk IEE 1
    Initial Environmental Evaluation for Proposed Installation of a Boardwalk on Prion Island, South Georgia Prepared for the Government of South Georgia and the South Sandwich Islands by Dr Liz Pasteur CONTENTS Non-technical summary..................................................................................................................4 1. Introduction ............................................................................................................................5 1.1 Purpose ...........................................................................................................................5 1.2 Legislation ......................................................................................................................5 1.2.1 South Georgia legislation .......................................................................................5 1.2.2 International treaties ...............................................................................................6 1.3 Background and consultation with stakeholders ............................................................6 1.4 Visitor management at Prion Island ...............................................................................6 1.4.1 Description of current route taken by visitors ........................................................7 1.5 Boardwalk research ........................................................................................................8 1.6 Project management structure.........................................................................................8
    [Show full text]
  • Salp/Krill Interactions in the Southern Ocean:Spatial Segregation and Implications for the Carbon flux
    Deep-Sea Research II 49 (2002) 1881–1907 Salp/krill interactions in the Southern Ocean:spatial segregation and implications for the carbon flux E.A. Pakhomova,*, P.W. Fronemanb, R. Perissinottoc a Department of Zoology, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa b Southern Ocean Group, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa c School of Life and Environmental Sciences, University of Natal, Durban 4041, South Africa Abstract Available data on the spatial distribution and feeding ecophysiology of Antarctic krill, Euphausia superba, and the tunicate, Salpa thompsoni, in the Southern Ocean are summarized in this study. Antarctic krill and salps generally display pronounced spatial segregation at all spatial scales. This appears to be the result of a clear biotopical separation of these key species in the Antarctic pelagic food web. Krill and salps are found in different water masses or water mass modifications, which are separated by primary or secondary frontal features. On the small-scale (o100 km), Antarctic krill and salps are usually restricted to the specific water parcels, or are well segregated vertically. Krill and salp grazing rates estimated using the in situ gut fluorescence technique are among the highest recorded in the Antarctic pelagic food web. Although krill and salps at times may remove the entire daily primary production, generally their grazing impact is moderate (p50% of primary production). The regional ecological consequences of years of high salp densities may be dramatic. If the warming trend, which is observed around the Antarctic Peninsula and in the Southern Ocean, continues, salps may become a more prominent player in the trophic structure of the Antarctic marine ecosystem.
    [Show full text]