The Caribbean: an Oroclinal Basin?

Total Page:16

File Type:pdf, Size:1020Kb

The Caribbean: an Oroclinal Basin? The Caribbean: an oroclinal basin? JOHN MILSOM* Department of Earth Sciences, University of Hong Kong, Hong Kong, China *Address for correspondence: The Camp, Gladestry, Kington HR5 3NY, UK (e-mail: [email protected]) Abstract: Tightly curved mountain belts are prominent features of global topography. Typically, these ‘oroclines’ occur in areas of regional compression but enclose basins where extension has been contemporaneous with outward directed thrusting in the orogens. Examples of such basin– orogen pairs include the Alboran Sea–Gibraltar Arc, Tyrrhenian Sea–Aeolian Arc, Aegean Sea–Hellenic Arc and Pannonian Basin–Carpathian Arc, all in the western Tethys but matched in the eastern Tethys by the Banda Sea and Outer Banda Arc. The development of the basins has been variously explained by gravitational collapse of rapidly elevated mountain blocks and by extrusion prompted by asthenopheric flows, but it is not even universally agreed that similar processes have operated in all cases. Critics have cited gross differences in volcanic activity (absent from the Gibraltar Arc, modest in the Carpathians but intense in other examples) and in the presence or absence of recognizable Wadati–Benioff Zones. The superficial similarities between the Caribbean Sea–Antilles Arcs and typical oroclinal basin–orocline pairs have recently been invoked in support of an in situ Caribbean evolutionary model, even though the disputed origins of oroclines limit their reliability as analogues. The Caribbean’s considerably greater area further emphasizes the need for caution, while the most obvious objection to identifying it as a member of the oroclinal group is its very long history. Oroclinal basins typically pass from initiation to effective stabilization in a few tens of millions of years, whereas the original Caribbean oceanic crust, which is now bounded to the east and west by active subduction zones, was probably formed in the Jurassic. Rather than invoking an overall common origin for the Caribbean and the Tethyan basins, it is more useful to look for shared causes of specific individual similarities. The impact of a rigid block might be as effective in imposing curvature on a mountain belt as rapid expansion in an adjacent area. However, it does seem that the case for the crust of the Caribbean being typical of oceanic large igneous provinces (LIPs) may have been overstated and, in the light of oroclinal analogues, that some features of the still poorly understood Beata Ridge and Lower Nicaragua Rise may be most easily explained by east–west extension promoted by the conver- gence between North and South America. The Caribbean comprises a deep, complex and which partly enclose the Po Basin, actually mainly oceanic basin that is partly enclosed by an exceed this value (Fig. 1). In every one of these intensely curved and fragmented mountain belt. cases, development of the internal basin was Comparisons with the sub-Antarctic Scotia Sea accompanied by outwards-directed thrusting in and the Indonesian Banda Sea have been so fre- the orogen. quently made as to be almost commonplace. Simi- Despite obvious similarities, it is not clear that larities can, in turn, be recognized between the the Caribbean could ever be properly regarded as Banda Sea and the Alboran, Tyrrhenian, Ligurian a member, even if an end member, of the group of and Aegean Seas. Also, and despite its location oroclinal basins. The point is important, since the within the European land mass north of the Mediter- fact that the basins listed above all developed in ranean (Fig. 1), the Pannonian Basin is widely very much their present locations with respect to regarded as conforming to the same pattern of exten- the surrounding major plates has been cited in sion within the zone of Tethyan collision (e.g. support of an in situ origin for the Caribbean and Horvath & Tari 1999). The mountain ranges encir- as evidence against the alternative, Pacific, origin cling such basins have come to be known as (James 2006). The question of the extent to which oroclines, and the internal depressions are con- comparisons with other basins can provide useful sequently referred to as oroclinal basins. The term insights into the processes involved in Caribbean ‘orocline’ seems to have been first used by Carey origin and evolution is therefore worth considering. (1955), who applied it to mountain chains exhibiting In this paper, significant features of the western at least 908 of curvature. Many are curved through Tethyan basins are mentioned where appropriate, angles approaching 1808, and the Western Alps, but the discussion focuses on the Banda Sea, as From:JAMES, K. H., LORENTE,M.A.&PINDELL, J. L. (eds) The Origin and Evolution of the Caribbean Plate. Geological Society, London, Special Publications, 328, 139–154. DOI: 10.1144/SP328.5 0305-8719/09/$15.00 # The Geological Society of London 2009. 140 J. MILSOM Fig. 1. Oroclines and topography in Europe and the Mediterranean. Inset: the Banda Sea, to the same scale. Topographic bases prepared in Global Mapper using the GTOPO30 global topographic grid. Bathymetries from the GEBCO digital atlas. See Figure 4 for depth scale. The dotted line defines the axis of the volcanic Inner Banda Arc. The essentially arbitrary boundary between this and the Sunda arc is conventionally placed immediately west of Alor. The arrow in the Arafura Sea indicates the direction of motion of Australia relative to Southeast Asia, after Genrich et al. (1996). CARIBBEAN: AN OROCLINAL BASIN? 141 being one of the two or three oroclinal basins most places on the far side of the orogens from the commonly cited as a Caribbean analogue, and also sources of stress. In the Carpathians at least, the the basin with which the author is most familiar. ocean has now been entirely eliminated and arc– continent collision has followed. Mediterranean oroclines The Banda Sea The Eurasia–Africa collision zone in the Mediterra- nean (Fig. 1) includes a number of basins that have Eastern Indonesia is the site of the oblique collision been formed by rapid extension within the regional between the Asian and Australasian (Australia and compressional setting (Jolivet et al. 1999; Jolivet & New Guinea) continental masses, which is a conse- Faccena 2000). In each case extension in the basin quence of the northward movement of the Indo-Aus- appears to have been accompanied by folding and tralian Plate towards an Asia that is almost stationary thrusting in the enclosing orocline, but there are in a global reference frame. The Banda Sea (Fig. 1, wide individual variations. Only in the Tyrrhenian inset) is the most important geographic element of and Ligurian seas has extension led to the creation this region, interposing as it does a number of of new oceanic crust (see Carminati et al. 1998; blocks of oceanic crust between the continental Se´ranne 1999). The Alboran and Aegean basins are masses of New Guinea to the east and Borneo–Sula- floored by highly extended continental crust (Platt wesi to the west. The sea is enclosed on three sides by & Vissers 1989; Hatzfield 1999) and this also seems a double arc. The inner arc consists of a chain of small to be true of the Pannonian basin (Horvath & Tari to medium sized volcanic islands, while the outer arc 1999), which is now infilled with thick sediments. isdominatedbythelargeislandsofTimor,Tanimbar, The relation of the Carpathian orocline to extension Kai, Seram and Buru. Igneous rocks in the outer arc appears particularly dramatic. The eastern Alps are pre-Neogene, and mainly pre-Cenozoic. were disrupted and ultimately separated into the There is no general consensus concerning the now distinct Dinarides and Carpathians by Panno- origin of the Banda Sea, but early hypotheses that nian expansion, in the course of which the Carpathian invoked the trapping of old Indian or other ocean part of the orogen seems to have been not only bent floor (e.g. Lee & McCabe 1986) have now been but detached from the Alpine chain by the opening generally discarded. Such ideas were largely of the Vienna Basin (Fig. 1). prompted by the depths of the Banda oceanic Volcanic activity in the European oroclines basins, which are more appropriate to Mesozoic varies widely, and links to subduction are in some than Cenozoic features. However, Cenozoic and, cases controversial. The Tyrrhenian and Aegean in fact, Late Cenozoic, ages are suggested by the seas are clearly back-arc to, respectively, the results of dredging and, in the case of the southern Aeolian and Hellenic arcs, but conflicting hypoth- basin, by analysis of linear magnetic anomalies eses have been presented for the Alboran Sea by (Hinschberger et al. 2001). Lonergan & White (1997) and by Platt & Vissers If the Banda Sea did not exist prior to the Late (1989). Only the Lonergan & White (1997) Cenozoic, it must have relatively recently displaced interpretation involves subduction. Volcanism may other crustal elements. The identification beneath it now have ceased in the Carpathians and, although of a scoop-shaped Wadati–Benioff Zone (Hamilton it was widespread during the Cenozoic and conti- 1979; Milsom 2001) indicates expansion over pre- nued into the Holocene (Seghedi et al. 2005), the existing oceanic crust, while the presence of Austra- past presence of a subduction zone is still disputed lasian continental fragments in the Outer Banda Arc (e.g. Knapp et al. 2005). The situation as regards to the north as well as to the south and east (Milsom the Ligurian Sea is uncertain, because of overprint- 2000 and references therein) strongly suggests that ing by more recent events (Se´ranne 1999). this subducted crust must have been part of the It is a common assumption that oroclinal curva- Indo-Australian Plate. Virtually all published tures were imposed on formerly much straighter palaeogeographies (e.g.
Recommended publications
  • Marine Mammals and Sea Turtles of the Mediterranean and Black Seas
    Marine mammals and sea turtles of the Mediterranean and Black Seas MEDITERRANEAN AND BLACK SEA BASINS Main seas, straits and gulfs in the Mediterranean and Black Sea basins, together with locations mentioned in the text for the distribution of marine mammals and sea turtles Ukraine Russia SEA OF AZOV Kerch Strait Crimea Romania Georgia Slovenia France Croatia BLACK SEA Bosnia & Herzegovina Bulgaria Monaco Bosphorus LIGURIAN SEA Montenegro Strait Pelagos Sanctuary Gulf of Italy Lion ADRIATIC SEA Albania Corsica Drini Bay Spain Dardanelles Strait Greece BALEARIC SEA Turkey Sardinia Algerian- TYRRHENIAN SEA AEGEAN SEA Balearic Islands Provençal IONIAN SEA Syria Basin Strait of Sicily Cyprus Strait of Sicily Gibraltar ALBORAN SEA Hellenic Trench Lebanon Tunisia Malta LEVANTINE SEA Israel Algeria West Morocco Bank Tunisian Plateau/Gulf of SirteMEDITERRANEAN SEA Gaza Strip Jordan Suez Canal Egypt Gulf of Sirte Libya RED SEA Marine mammals and sea turtles of the Mediterranean and Black Seas Compiled by María del Mar Otero and Michela Conigliaro The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. Published by Compiled by María del Mar Otero IUCN Centre for Mediterranean Cooperation, Spain © IUCN, Gland, Switzerland, and Malaga, Spain Michela Conigliaro IUCN Centre for Mediterranean Cooperation, Spain Copyright © 2012 International Union for Conservation of Nature and Natural Resources With the support of Catherine Numa IUCN Centre for Mediterranean Cooperation, Spain Annabelle Cuttelod IUCN Species Programme, United Kingdom Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the sources are fully acknowledged.
    [Show full text]
  • Pollution Monitoring of Bagnoli Bay (Tyrrhenian Sea, Naples, Italy), a Sedimentological, Chemical and Ecological Approach L
    Pollution monitoring of Bagnoli Bay (Tyrrhenian Sea, Naples, Italy), a sedimentological, chemical and ecological approach L. Bergamin, E. Romano,∗ M. Celia Magno, A. Ausili, and M. Gabellini Istituto Centrale per la Ricerca Scientifica e Tecnologica Applicata al Mare (ICRAM), Via di Casalotti 300, Roma, 00166 Italy ∗Corresponding author: Fax: +39.06.61561906; E-mail: [email protected] Many studies finalised to a reclamation project of the industrial area were carried out on the industrial site of Bagnoli (Naples). Among these studies, the sedimentological, chemical, and ecological characteristics of marine sediments were analysed. Seven short cores, located in the proximity of a steel plant, were analysed for grain- size, polychlorobiphenyls, polycyclic aromatic hydrocarbons and heavy metals. As well, benthic foraminiferal assemblages were investigated. Sediment pollution was mainly due to heavy metals; in particular,copper,mercury and cadmium showed a ‘spot’ (site-specific) distribution, while iron, lead, zinc and manganese showed a diffuse distribution, with a gradual decrease of concentration from coast to open sea. Heavy metals pollution seems to explain some of the variation in the foraminiferal abundance. The combined copper and iron contamination might be the cause for the complete absence of foraminifera in the four shallower cores. Moreover, the ratio between normal and deformed specimens of Miliolinella subrotunda and Elphidium advena could be indicative of heavy metal pollution. In particular, Miliolinella subrotunda could be a potential bioindicator for copper pollution, since the abundance of irregular specimens of this species could be related to copper concentrations. Keywords: steel plant, foraminifers, heavy metals, bioindicators Introduction In the context of the wide interdisciplinary research, a study on seven short cores from the inner shelf, in A recent law (decree n.468/2001—National the proximity of the Bagnoli plant, was carried out.
    [Show full text]
  • Archaeological Remains As Sea Level Change Markers: a Review
    Quaternary International 206 (2009) 134–146 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Archaeological remains as sea level change markers: A review Rita Auriemma a, Emanuela Solinas b,* a Dipartimento Beni Culturali, Universita` degli Studi del Salento, Via D. Birago 64, 73100 Lecce, Italy b Civico Museo Archeologico Sa Domu Nosta, via Scaledda, 09040 Senorbı` – CA, Italy article info abstract Article history: The Mediterranean Sea constitutes a unique basin from an historical and archaeological point of view, as Available online 24 December 2008 it has been a privileged way of communication for thousands of years for the people that dwelled on its shores. Their passage has left many traces on the seabeds in the areas where the ancient commercial routes passed, and remains of structures where moorings, havens or dwellings existed. Some of these structures, nowadays submerged, offer interesting indications aiding the reconstruction of the ancient coastlines. This contribution aims to examine recent work in coastal geo-archaeology, targeting both (1) gathering and discussion of the data, particularly those pertaining to the Italian coasts; and (2) commentary on the methodological debate and verification of the possibility of a protocol that may contain unequivocal referring elements. To investigate the archaeological evidence currently underwater because of the relative sea level vari- ations (harbour infrastructures, fishponds, villae maritimae, caves – nymphaei, private
    [Show full text]
  • Biblical World
    MAPS of the PAUL’SBIBLICAL MISSIONARY JOURNEYS WORLD MILAN VENICE ZAGREB ROMANIA BOSNA & BELGRADE BUCHAREST HERZEGOVINA CROATIA SAARAJEVO PISA SERBIA ANCONA ITALY Adriatic SeaMONTENEGRO PRISTINA Black Sea PODGORICA BULGARIA PESCARA KOSOVA SOFIA ROME SINOP SKOPJE Sinope EDIRNE Amastris Three Taverns FOGGIA MACEDONIA PONTUS SAMSUN Forum of Appius TIRANA Philippi ISTANBUL Amisos Neapolis TEKIRDAG AMASYA NAPLES Amphipolis Byzantium Hattusa Tyrrhenian Sea Thessalonica Amaseia ORDU Puteoli TARANTO Nicomedia SORRENTO Pella Apollonia Marmara Sea ALBANIA Nicaea Tavium BRINDISI Beroea Kyzikos SAPRI CANAKKALE BITHYNIA ANKARA Troy BURSA Troas MYSIA Dorylaion Gordion Larissa Aegean Sea Hadrianuthera Assos Pessinous T U R K E Y Adramytteum Cotiaeum GALATIA GREECE Mytilene Pergamon Aizanoi CATANZARO Thyatira CAPPADOCIA IZMIR ASIA PHRYGIA Prymnessus Delphi Chios Smyrna Philadelphia Mazaka Sardis PALERMO Ionian Sea Athens Antioch Pisidia MESSINA Nysa Hierapolis Rhegium Corinth Ephesus Apamea KONYA COMMOGENE Laodicea TRAPANI Olympia Mycenae Samos Tralles Iconium Aphrodisias Arsameia Epidaurus Sounion Colossae CATANIA Miletus Lystra Patmos CARIA SICILY Derbe ADANA GAZIANTEP Siracuse Sparta Halicarnassus ANTALYA Perge Tarsus Cnidus Cos LYCIA Attalia Side CILICIA Soli Korakesion Korykos Antioch Patara Mira Seleucia Rhodes Seleucia Malta Anemurion Pieria CRETE MALTA Knosos CYPRUS Salamis TUNISIA Fair Haven Paphos Kition Amathous SYRIA Kourion BEIRUT LEBANON PAUL’S MISSIONARY JOURNEYS DAMASCUS Prepared by Mediterranean Sea Sidon FIRST JOURNEY : Nazareth SECOND
    [Show full text]
  • Evolution of the Tyrrhenian Sea-Calabrian Arc System: the Past and the Present
    Rend. Online Soc. Geol. It., Vol. 21 (2012), pp. 11-15, 1 fig. © Società Geologica Italiana, Roma 2012 Evolution of the Tyrrhenian Sea-Calabrian Arc system: The past and the present ALBERTO MALINVERNO (*) Key words: Tyrrhenian Sea, Calabrian Arc, trench rollback, cross-sections are mainly constrained by seismic surveys and by orogen extension. the requirement of balancing cross-sectional areas. The onset of the extension in the Tyrrhenian Sea has been dated to the Tortonian (~10 Ma) from ODP drilling results INTRODUCTION (KASTENS & MASCLE, 1990). The 10 Ma cross-section of Fig. 1 follows a narrow oceanic seaway that separated the N margin of The Tyrrhenian Sea is an extensional basin that formed in the Africa and the SW margin of the Adriatic platform; the presently last 10 Ma in the broad suture between the African and European subducting slab in the SE Tyrrhenian and the deepest portion of plates. The convergent plate boundary is evident in the SE the Ionian Sea are the last remnants of this oceanic corridor corner of the Tyrrhenian Sea, which contains a funnel-shaped (CATALANO et alii, 2001). An alternative interpretation places in Benioff zone (CHIARABBA et alii, 2005), a subducting slab this oceanic seaway a sliver of continental crust underlying an imaged by seismic tomography (PIROMALLO & MORELLI, 2003), Apennine-Panormide carbonate platform that connects the and the Aeolian islands Quaternary calc-alkaline volcanic arc Apenninic and Maghrebian domains (ARGNANI, 2005). (SERRI, 1990; FRANCALANCI & MANETTI, 1994; SAVELLI, 2002). Many authors noted that the rifting of the Tyrrhenian took Extension in the Tyrrhenian Sea took place at the same time as shortening in the arcuate Apenninic-Maghrebian thrust belt that surrounds the basin to the E and S.
    [Show full text]
  • Levantine Intermediate Water Hydrodynamic and Bottom Water Ventilation in the Northern Tyrrhenian Sea Over the Past 56,000 Years
    1 Quaternary International A chimer January 2015, Volume 357, Pages 295-313 r http://dx.doi.org/10.1016/j.quaint.2014.11.038 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00245/35648/ © 2014 Elsevier Ltd and INQUA. All rights reserved. Levantine intermediate water hydrodynamic and bottom water ventilation in the northern Tyrrhenian Sea over the past 56,000 years: New insights from benthic foraminifera and ostracods Angue Minto'o C.M. 1, * , Bassetti M.A. 1, Morigi C. 2, 3, Ducassou E. 4, Toucanne Samuel 5, Jouet Gwenael 5, Mulder T. 2 1 Université de Perpignan Via Domitia, CEFREM, UMR 5110, 52 Avenue Paul Alduy, 66860 Perpignan, France 2 Geological Survey of Denmark and Greenland, Department of Stratigraphy, Copenhagen, Denmark 3 Università di Pisa, Dipartimento di Scienze della Terra, Italy 4 Université de Bordeaux, UMR 5805 EPOC, Avenue des Facultés, 33405 Talence cedex, France 5 IFREMER-Centre Bretagne, Laboratoire Environnements Sédimentaires, F-29280 Plouzané, France * Corresponding author : C.M. Angue Minto’o, email address : [email protected] Abstract : Foraminifera and ostracods have been quantitatively studied in core MD01-2472, from the upper continental slope (at water depth of 501 m), to evaluate their relationship with bottom water condition variability and decipher the control of the Levantine Intermediate Water (LIW) current on benthic faunas. The occurrence of reworked ostracod species (originating from the continental shelf) and, the presence of shallow water Elphidium/Ammonia benthic foraminifera are used to estimate the degree of along- slope transport at the core site. This has revealed two intervals of along-slope transport also associated with coarse-grained contourite deposits, deposited during the YD and HS2 episodes.
    [Show full text]
  • Adriatic and Ionian Region: Socio- Economic Analysis and Assessment of Transport and Energy Links
    DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES Regional Development RESEARCH FOR REGI COMMITTEE - ADRIATIC AND IONIAN REGION: SOCIO- ECONOMIC ANALYSIS AND ASSESSMENT OF TRANSPORT AND ENERGY LINKS STUDY This document was requested by the European Parliament’s Committee on Regional Development. AUTHORS Kovacevic Aleksandar, Pagella Paolo, Business Integration Partners SPA RESPONSIBLE ADMINISTRATOR Diána Haase Policy Department B: Structural and Cohesion Policies European Parliament B-1047 Brussels E-mail: [email protected] EDITORIAL ASSISTANCE Virginija Kelmelytė LINGUISTIC VERSIONS Original: EN ABOUT THE PUBLISHER To contact the Policy Department or to subscribe to its monthly newsletter please write to: [email protected] Manuscript completed in December 2015. © European Union, 2015 Print ISBN 978-92-823-8552-4 doi: 10.2861/230347 QA-01-16-022-EN-C PDF ISBN 978-92-823-8553-1 doi: 10.2861/2235 QA-01-16-022-EN-N This document is available on the Internet at: http://www.europarl.europa.eu/supporting-analyses DISCLAIMER The opinions expressed in this document are the sole responsibility of the author and do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are authorised, provided the source is acknowledged and the publisher is given prior notice and sent a copy. DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES Regional Development RESEARCH FOR REGI COMMITTEE - ADRIATIC AND IONIAN REGION: SOCIO- ECONOMIC ANALYSIS AND ASSESSMENT OF TRANSPORT AND ENERGY LINKS STUDY Abstract This study is aimed at describing the socio-economic situation and the state of play of energy, transport and tourism linkages in the Adriatic and Ionian Region.
    [Show full text]
  • 1. the Geological Evolution of the Tyrrhenian Sea: an Introduction to the Scientific Results of Odp Leg 1071
    Kastens, K. A., Mascle, J., et al., 1990 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 107 1. THE GEOLOGICAL EVOLUTION OF THE TYRRHENIAN SEA: AN INTRODUCTION TO THE SCIENTIFIC RESULTS OF ODP LEG 1071 Kim Kastens2 and Jean Mascle3 ABSTRACT The goal of this chapter is to integrate old and new data from the Tyrrhenian Sea into an internally consistent, chronologically ordered, interdisciplinary story that can serve as an overview of the highlights of Leg 107, or as an in• troduction to more detailed studies in this volume. Among the more intriguing aspects of this Tyrrhenian research are the following: 1. The extensional basin developed within thickened continental crust on the site of former orogenic belts. Exten• sion in the Tyrrhenian proceeded simultaneously with compression in the circum-Tyrrhenian. 2. The onset of major rifting in the Tyrrhenian (~9 Ma) coincided with a major CCW change in the direction of Africa/Europe motion such that the direction of major plate motion was more nearly parallel to the dip of the downgo- ing slab under Calabria. This coincidence suggests that the decrease in obliquity of convergence may have triggered or favored backarc extension. 3. Rifting was rapid and diachronous across the Sardinia margin: on the upper margin, subsidence and tilting of fault blocks were most active in the Tortonian to Messinian, whereas on the lower margin these symptoms of rifting are concentrated in the Messinian to Pliocene sequences. Such diachronous development is compatible with an evolution controlled by east-dipping, low-angle detachment faults, accompanying "rollback" of the hinge zone of the downgoing African plate.
    [Show full text]
  • Download File
    Quaternary Science Reviews 29 (2010) 3843e3860 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev North Atlantic influence on 19the20th century rainfall in the Dead Sea watershed, teleconnections with the Sahel, and implication for Holocene climate fluctuations Yochanan Kushnir a,*, Mordechai Stein a,b a Lamont-Doherty Earth Observatory, The Earth Institute, Columbia University, 61 Route 9W, Palisades, NY 10964, USA b Geological Survey of Israel, 30 Malkhe Israel Street, 95501 Jerusalem, Israel article info abstract Article history: The importance of understanding processes that govern the hydroclimate of the Mediterranean Basin is Received 14 February 2010 highlighted by the projected significant drying of the region in response to the increase in greenhouse Received in revised form gas concentrations. Here we study the long-term hydroclimatic variability of the central Levant region, 3 August 2010 situated in the eastern boundary of the Basin, as reveled by instrumental observations and the Holocene Accepted 9 September 2010 record of Dead Sea level variations. Observations of 19th and 20th century precipitation in the Dead Sea watershed region display a multidecadal, anti-phase relationship to North Atlantic (NAtl) sea surface temperature (SST) variability, such that when the NAtl is relatively cold, Jerusalem experiences higher than normal precipitation and vice versa. This association is underlined by a negative correlation to precipitation in the sub-Saharan Sahel and a positive correlation to precipitation in western North America, areas that are also affected by multidecadal NAtl SST variability. These observations are consistent with a broad range of Holocene hydroclimatic fluctuations from the epochal, to the millennial and centennial time scales, as displayed by the Dead Sea lake level, by lake levels in the Sahel, and by direct and indirect proxy indicators of NAtl SSTs.
    [Show full text]
  • Neogene and Quaternary Rollback Evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Queensland eSpace TECTONICS, VOL. 23, TC1013, doi:10.1029/2003TC001518, 2004 Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides Gideon Rosenbaum and Gordon S. Lister1 Australian Crustal Research Centre, School of Geosciences, Monash University, Melbourne, Victoria, Australia Received 7 March 2003; revised 14 October 2003; accepted 11 November 2003; published 3 February 2004. [1] Reconstruction of the evolution of the to processes associated with subduction of a west dipping Tyrrhenian Sea shows that the major stage of lithospheric slab, and simultaneously with back arc exten- rifting associated with the opening of this basin sion in the Tyrrhenian Sea [e.g., Malinverno and Ryan, began at 10 Ma. It involved two episodes of back 1986]. Both crustal and lithospheric processes are well arc extension, which were induced by the rollback documented by geological and geophysical data, making of a west dipping subducting slab. The first period of the Tyrrhenian-Apennine region an ideal natural laboratory for studying geodynamic interactions linking subduction extension (10–6 Ma) was prominent in the northern processes, collisional tectonics and back arc extension Tyrrhenian Sea and in the western part of the [e.g., Faccenna et al., 1996, 2001a, 2001b; Gvirtzman southern Tyrrhenian Sea. The second period of and Nur, 2001]. extension, mainly affected the southern Tyrrhenian [3] The Tyrrhenian Sea is a back arc basin associated Sea, began in the latest Messinian (6–5 Ma) and has with eastward ‘‘rollback’’ of a west dipping subduction zone been accompanied by subduction rollback at rates of [e.g., Malinverno and Ryan, 1986; Kastens et al., 1988; 60–100 km MyrÀ1.
    [Show full text]
  • Annex I Southern and Central Tyrrhenian Sea (GSA 10)
    BLUFISH PROJECT Stage 1.b – Deeper mapping/Annex I – GSA 10 Annex I Southern and Central Tyrrhenian Sea (GSA 10) Summary 4.1.1 Introduction ............................................................................................................................... 2 4.1.2 Status of target stocks exploited by the selected UoAs ............................................................ 4 4.1.3 List of species exploited by selected UoAs .............................................................................. 12 4.1.4 Environmental context ............................................................................................................ 25 4.1.5 Socio-economic context. Analysis of the main socio-economic indicators and of market trends in the 10 UoAs selected for the Deeper Mapping ........................................................................ 36 1 BLUFISH PROJECT Stage 1.b – Deeper mapping/Annex I – GSA 10 4.1.1 Introduction Based on the results of Fast-scan and interactions with stakeholders, the ten UoAs listed in Table 4.1.1 were identified in the GSA 10. In this list the UoAs using bottom otter trawl nets (OTB) target mainly two different types of target species: - demersal fish (DEF); - mixed group of demersal species and deep water species (MDD). These types were aggregated together in Tables 4.1.1.1 and 4.1.3.1, both in terms of landed volume and value. Considering trawlers landings, about 60% come from boats targeting demersal fish. Table 4.1.1.1 – List of the UoAs selected for Deeper-mapping in the
    [Show full text]
  • Finding Coastal Megaclast Deposits: a Virtual Perspective
    Journal of Marine Science and Engineering Article Finding Coastal Megaclast Deposits: A Virtual Perspective Dmitry A. Ruban K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004 Moscow, Russia; [email protected] Received: 7 February 2020; Accepted: 25 February 2020; Published: 3 March 2020 Abstract: Coastal megaclast deposits are dominated by detrital particles larger than 1 m in size. These attract significant attention of modern researchers because of the needs of sedimentary rock nomenclature development and interpretation of storm and tsunami signatures on seashores. If so, finding localities that exhibit coastal megaclast deposits is an important task. Field studies do not offer a quick solution, and, thus, remote sensing tools have to be addressed. The application of the Google Earth Engine has permitted to find four new localities, namely Hondarribia in northern Spain (Biscay Bay), the Ponza Island in Italy (Tyrrhenian Sea), the Wetar Island in eastern Indonesia (Banda Sea), and the Humboldt o Coredo Bay at the Colombia/Panama border (eastern Pacific). In these localities, coastal megaclast deposits consisting of blocks (1–10 m in size) and some megablocks (>10 m in size) are delineated and preliminary described in regard to the dominant size of particles, package density, mode of occurrence, etc. The limitations of such virtual surveys of coastal megaclast deposits are linked to an insufficiently high resolution of satellite images, as well as ‘masking’ effects of vegetation cover and cliff shadows. However, these limitations do not diminish the importance of the Google Earth Engine for finding these deposits. Consideration of some tourism-related information, including photos captured by tourists and bouldering catalogues, facilitates search for promising areas for subsequent virtual surveying of megaclast distribution.
    [Show full text]