University of Florida Thesis Or Dissertation Formatting

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation Formatting THE ROLE OF OTARINE HERPESVIRUS 1 IN CALIFORNIA SEA LION (ZALOPHUS CALIFORNIANUS) UROGENITAL CARCINOMA . By ALISSA C. DEMING A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Alissa C. Deming To my family ACKNOWLEDGMENTS I thank my parents for always supporting my educational endeavors and instilling in me a love, respect and curiosity of nature which has driven me along my path. I want to thank my mother, father, brother, sister-in-law, nanny, aunt, cousin and friends for encouraging me to follow my dreams. I also thank my primary advisors, James Wellehan and Frances Gulland, for their constant support throughout my career. Particular thanks go to Katie Colegrove for her constant support through this process. I am additionally grateful to the members of my committee: Rowan Milner, Rolf Renne, and Nancy Denslow, for their invaluable support and advice. Also, I want to thank Linda Archer and April Childress for their fearless leadership in the lab. I am also thankful to my friends and coworkers including Ashley Barratclough, Cara Field, Padraig Duignan, Christine Fontaine, Barbie Halaska, Tenaya Norris, Sophie Whoriskey, Sophie Guarasci, Jennifer Luff, Galaxia Cortes, and Jessica Jacobs for their personal and academic support. I am also indebted to The Marine Mammal Center (TMMC) for awarding me the Geoffrey Hughes Veterinary Research Fellowship, which provided financial support for my PhD research, without which this project would have never been possible. A huge thanks to all the incredible volunteers, veterinary technicians, research biologists, and staff that make the rehabilitation and research that is done at The Marine Mammal Center possible. And most importantly, a special thanks to all the California sea lions with and without cancer that made this study possible- even in your death you shed light. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 LIST OF ABBREVIATIONS ........................................................................................... 10 ABSTRACT ................................................................................................................... 12 CHAPTER 1 SEA LIONS, CANCER, AND VIRUSES.................................................................. 14 Urogenital Carcinoma in California Sea Lions ........................................................ 14 Cancer .................................................................................................................... 18 Oncogenic Viruses .................................................................................................. 20 Herpesviruses ......................................................................................................... 22 Latently Expressed Viral Proteins: LANA/EBNA1 and vFLIP ........................... 25 Host-derived Viral Genes: vBCL2 and vCDK4 ................................................. 26 Endogenous Viral Elements ............................................................................. 27 2 PREVALENCE OF UROGENITAL CARCINOMA IN STRANDED CALIFORNIA SEA LIONS (ZALOPHUS CALIFORNIANUS) FROM 2005-2015 ........................... 32 Background ............................................................................................................. 32 Materials and Methods............................................................................................ 33 Retrospective Data Collection .......................................................................... 33 Statistics ........................................................................................................... 34 Results .................................................................................................................... 34 Prevalence of Urogenital Carcinoma ................................................................ 34 Urogenital Carcinoma in Adults versus Subadults and Juviniles ...................... 34 Histologic Evaluation ........................................................................................ 35 Metastatic Lesions in Urogenital Carcinoma .................................................... 35 Temporal Trends in Prevalence of Urogenital Carcinoma ................................ 36 Discussion .............................................................................................................. 36 3 OTARINE HERPESVIRUS 1 GENOME AND ONCOGENES ................................. 43 Background ............................................................................................................. 43 Materials and Methods............................................................................................ 44 Sample Collection ............................................................................................ 44 DNA Extraction and PCR Screening ................................................................ 45 OtHV1 and OtHV4 qPCR for Viral Load Assessment ....................................... 46 5 OtHV1 Genome Sequencing ............................................................................ 48 OtHV4 Genome Sequencing ............................................................................ 50 Bioinformatics and De Novo Assemblies .......................................................... 51 Gene Comparisons: Percent Identity and Differences of Select Genes ........... 52 Phylogenic Analysis ......................................................................................... 52 Results .................................................................................................................... 54 Histological Classification ................................................................................. 54 PCR and qPCR Results ................................................................................... 54 OtHV1 Genome Assembly ............................................................................... 55 OtHV4 Genome Assembly ............................................................................... 56 OtHV1 and OtHV4 Annotation and Genome Comparison ................................ 58 OtHV1 and OtHV4 Percent Identity and Distance Comparisons ...................... 61 OtHV1 and OtHV4 Represent New Oceanic Gammaherpesvirus Genus ........ 62 Discussion .............................................................................................................. 62 4 OTHV1 GENE EXPRESSION IN UROGENITAL CARCINOMA ............................. 77 Background ............................................................................................................. 77 Materials and Methods............................................................................................ 81 Cases and Tissue Preparation ......................................................................... 81 Basescope in situ Hybridization ...................................................................... 83 Image Analysis ................................................................................................. 85 Data Analysis ................................................................................................... 86 Results .................................................................................................................... 86 Gross Findings ................................................................................................. 86 Histological Classification ................................................................................. 87 OtHV1 Gene Expression in Sea Lion Urogenital Carcinoma ............................ 88 Discussion .............................................................................................................. 90 5 CONCLUSION ...................................................................................................... 105 LIST OF REFERENCES ............................................................................................. 107 BIOGRAPHICAL SKETCH .......................................................................................... 116 6 LIST OF TABLES Table page 2-1 Prevalence of urogenital carcinoma in California sea lions (Zalophus californianus) of different age and sex classes ................................................... 38 2-2 Non-urogenital carcinoma cancer in California sea lions (Zalophus californianus) ...................................................................................................... 39 2-3 Number and prevalence of various stages of urogenital carcinoma diagnosed histologically in juvenile, subadult and adult California sea lions ........................ 40 3-1 Herpesvirus species list for concatenated phylogenetic tree. ............................. 66 3-2 Herpesvirus gene list for concatenated phylogenetic tree. ................................. 67 4-1 Normal cervical or vaginal cases from California sea lions ................................. 96 4-2 Urogenital carcinoma cases from California sea lions ........................................ 97 4-3 Basescope custom probes targeting
Recommended publications
  • (Muhv 4) Strains: a Role for Immunomodulatory Proteins Encoded by the Left (5’-)End of the Genome
    Cent. Eur. J. Biol. • 3(1) • 2008 • 19-30 DOI: 10.2478/s11535-008-0002-0 Central European Journal of Biology Comparison of pathogenic properties of the murid gammaherpesvirus (MuHV 4) strains: a role for immunomodulatory proteins encoded by the left (5’-)end of the genome Review Article Jela Mistríková1,2, Július Rajčáni2* 1 Department of Microbiology and Virology, Faculty of Microbiology and Natural Sciences, Comenius University, 84215 Bratislava, Slovakia 2 Institute of Virology, Slovak Academy of Sciences, 84505 Bratislava, Slovakia Received 13 September 2007; Accepted 4 January 2008 Abstract: The murid herpesvirus 4 (MuHV 4) species encompasses 7 isolates, out of which at least two (MHV-68, MHV-72) became in vitro propagated laboratory strains. Following intranasal inoculation, MuHV 4 induces an acute infectious mononucleosis-like syndrome with elevated levels of peripheral blood leukocytes, shifts in the relative proportion of lymphocytes along with the appearance of atypi- cal mononuclear cells. At least two isolates exhibited spontaneous deletions at the left hand (5´-end) of their genome, resulting in the absence of M1, M2, M3 genes (strain MHV-72) and also of the M4 gene (strain MHV-76). Based on DNA sequence amplifications only, another two isolates (MHV-Šum and MHV-60) were shown to possess similar deletions of varying length. During latency (until 24 months post-infection), the mice infected with any MuHV 4 isolate (except MHV-76) developed lymphoproliferative disorders. The lack of tumor formation in MHV-76 infected mice was associated with persistent virus production at late post-infection intervals. In addition to careful analysis of spontaneously occurring 5´-end genome defects, our knowledge of the function of 5´-end genes relies on the behaviour of mutants with corresponding deletions and/or insertions.
    [Show full text]
  • Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood
    pathogens Article Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood Mononuclear Cells in Horses during Equine Herpesvirus 1 Infection Lila M. Zarski 1, Patty Sue D. Weber 2, Yao Lee 1 and Gisela Soboll Hussey 1,* 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; [email protected] (L.M.Z.); [email protected] (Y.L.) 2 Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Abstract: Equine herpesvirus 1 (EHV-1) affects horses worldwide and causes respiratory dis- ease, abortions, and equine herpesvirus myeloencephalopathy (EHM). Following infection, a cell- associated viremia is established in the peripheral blood mononuclear cells (PBMCs). This viremia is essential for transport of EHV-1 to secondary infection sites where subsequent immunopathol- ogy results in diseases such as abortion or EHM. Because of the central role of PBMCs in EHV-1 pathogenesis, our goal was to establish a gene expression analysis of host and equine herpesvirus genes during EHV-1 viremia using RNA sequencing. When comparing transcriptomes of PBMCs during peak viremia to those prior to EHV-1 infection, we found 51 differentially expressed equine genes (48 upregulated and 3 downregulated). After gene ontology analysis, processes such as the interferon defense response, response to chemokines, the complement protein activation cascade, cell adhesion, and coagulation were overrepresented during viremia. Additionally, transcripts for EHV-1, EHV-2, and EHV-5 were identified in pre- and post-EHV-1-infection samples. Looking at Citation: Zarski, L.M.; Weber, P.S.D.; micro RNAs (miRNAs), 278 known equine miRNAs and 855 potentially novel equine miRNAs were Lee, Y.; Soboll Hussey, G.
    [Show full text]
  • Clinical Reviewer: [Joohee Lee ] STN: [125508/153 ]
    Clinical Reviewer: [Joohee Lee ] STN: [125508/153 ] Application sBLA Type STN 125508/153 CBER February 1, 2016 Received Date PDUFA Goal December 1, 2016 Date Division / DVRPA /OVRR Office Priority Review No Reviewer Joohee Lee Name(s) Review October 6, 2016 Completion Date / Stamped Date Supervisory Concurrence Lucia Lee, M.D., Team Leader, CRB1 Jeff Roberts, M.D., Chief, CRB1 Applicant Merck Established Human Papillomavirus 9-valent Vaccine, Recombinant Name (Proposed) Gardasil 9 Trade Name Pharmacologic Vaccine Class Page i Clinical Reviewer: [Joohee Lee ] STN: [125508/153 ] Formulation(s), A 0.5 mL dose contains: including Recombinant virus-like particles (VLPs) of the major capsid (L1) Adjuvants, etc protein of HPV types 6, 11, 16, 18, 31, 33, 45, 52, and 58)* adsorbed on preformed aluminum-containing adjuvant (Amorphous Aluminum Hydroxyphosphate Sulfate or AAHS) *Amounts of HPV type L1 protein are as follows: 30 mcg/40mcg/60mcg/40mcg/20mcg/20mcg/20mcg/20mcg/20mcg, respectively. Dosage 0.5-mL suspension for intramuscular injection as a single-dose Form(s) and vial and prefilled syringe Route(s) of Administration Dosing Two-dose regimen: 0 and 6 to 12 months Regimen A 3- dose regimen (0, 2 and 6 months) is approved for use in individuals 9 through 26 years of age (STN 125508/0) Page ii Clinical Reviewer: [Joohee Lee ] STN: [125508/153 ] Indication(s) and Intended This supplement introduces a 2-dose regimen in addition to the Population(s) licensed 3-dose regimen. The intended population for the 2- dose regimen is girls and boys 9 through 14 years of age.
    [Show full text]
  • Development of In-House Taqman Qpcr Assay to Detect Equine Herpesvirus-2 in Al-Qadisiyah City ﻟﺛﺎﻧﻲ ا ﻓﺎﯾرو
    Iraqi Journal of Veterinary Sciences, Vol. 34, No. 2, 2020 (365-371) Development of in-house Taqman qPCR assay to detect equine herpesvirus-2 in Al-Qadisiyah city M.H. Al-Saadi Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq, Email: [email protected] (Received September 6, 2019; Accepted October 1, 2019; Available online July 23, 2020) Abstract EHV-2 is distributed in horses globally. It is clustered within gamma-herpesvirus subfamily and percavirus genus. EHV-2 infection has two phases: latent and lytic. In the later, EHV-2 mainly associated with respiratory and genital symptoms. However, in the quiescent phase of infection, EHV-2 stay dormant in the host till viral reactivation. Our previous study has showed that EHV-2 can be harboured by equine tendons, suggesting that leukocytes possibly carrying EHV-2 for the systemic dissemination. So far, numerous PCR protocols have been performed targeting the gB gene. However, this gene is heterogenic. Therefore, there is a need to develop a quantitative diagnostic approach to detect the quiescent EHV-2 strains. To do this, Taqman qPCR assay was developed to quantify the virus. This was performed by targeting a highly conserved gene known as DNA polymerase (DPOL) gene using constructed plasmid as a standard curve calibrator. The obtained results showed an infection frequency of 33% in which the EHV-2 load reached 6647 copies/100 ng DNA whereas the minimum load revealed as 2 copies/100 ng DNA. The median quantification was found as 141 copies/ 100 ng DNA.
    [Show full text]
  • NCCN Guidelines for Patients Anal Cancer
    NCCN GUIDELINES FOR PATIENTS® 2021 Anal Cancer Presented with support from: Available online at NCCN.org/patients Ü Anal Cancer It's easy to get lost in the cancer world Let NCCN Guidelines for Patients® be your guide 9 Step-by-step guides to the cancer care options likely to have the best results 9 Based on treatment guidelines used by health care providers worldwide 9 Designed to help you discuss cancer treatment with your doctors NCCN Guidelines for Patients® Anal Cancer, 2021 1 About National Comprehensive Cancer Network® NCCN Guidelines for Patients® are developed by the National Comprehensive Cancer Network® (NCCN®) NCCN Clinical Practice NCCN Guidelines NCCN Guidelines in Oncology for Patients (NCCN Guidelines®) 9 An alliance of leading 9 Developed by doctors from 9 Present information from the cancer centers across the NCCN cancer centers using NCCN Guidelines in an easy- United States devoted to the latest research and years to-learn format patient care, research, and of experience 9 For people with cancer and education 9 For providers of cancer care those who support them all over the world Cancer centers 9 Explain the cancer care that are part of NCCN: 9 Expert recommendations for options likely to have the NCCN.org/cancercenters cancer screening, diagnosis, best results and treatment Free online at Free online at NCCN.org/patientguidelines NCCN.org/guidelines and supported by funding from NCCN Foundation® These NCCN Guidelines for Patients are based on the NCCN Guidelines® for Anal Cancer, Version 1.2021 — February 16, 2021. © 2021 National Comprehensive Cancer Network, Inc. All rights reserved.
    [Show full text]
  • Development and Application of a Quantitative Pcr Assay to Study the Pathogenicity of Equine Herpesvirus 5
    DEVELOPMENT AND APPLICATION OF A QUANTITATIVE PCR ASSAY TO STUDY THE PATHOGENICITY OF EQUINE HERPESVIRUS 5 By Lila Marek Zarski A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Comparative Medicine and Integrative Biology – Master of Science 2016 ABSTRACT DEVELOPMENT AND APPLICATION OF A QUANTITATIVE PCR ASSAY TO STUDY THE PATHOGENICITY OF EQUINE HERPESVIRUS 5 By Lila Marek Zarski Equine herpesvirus 5 (EHV-5) infection is associated with pulmonary fibrosis in horses, but further studies on EHV-5 persistence in equine cells are needed to fully understand viral and host contributions to disease pathogenesis. We developed a quantitative PCR (qPCR) assay to measure EHV-5 viral copy number in equine cell culture, blood lymphocytes, and nasal swabs of horses. The PCR primers and a probe were designed to target gene E11 of the EHV-5 genome. Specificity was verified by testing multiple isolates of EHV-5, as well as DNA from other equine herpesviruses. Four-week old, fully differentiated (mature) and newly seeded (immature) primary equine respiratory epithelial cell (ERECs) cultures were inoculated with EHV-5 and the cells and supernatants collected daily for 12-14 days. Blood lymphocytes and nasal swabs were collected from horses experimentally infected with EHV-1. The qPCR assay detected EHV-5 at concentrations around 104 intracellular genomes per cell culture in experimentally inoculated mature ERECs, and these values remained stable throughout 12 days. Intracellular EHV-5 copies detected in the immature cultures increased over 14 days and reached levels greater than 106 genomes per culture. EHV-5 was detected in the lymphocytes of 97% of horses and in the nasal swabs of 88% of horses both pre and post EHV-1 infection.
    [Show full text]
  • What Is Anal Cancer?
    cancer.org | 1.800.227.2345 About Anal Cancer Overview and Types If you've been diagnosed with anal cancer or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is Anal Cancer? Research and Statistics See the latest estimates for new cases of anal cancer and deaths in the US and what research is currently being done. ● Key Statistics for Anal Cancer ● What’s New in Anal Cancer Research? What Is Anal Cancer? Anal cancer is a type of cancer that starts in the anus. Cancer starts when cells in the body begin to grow out of control. To learn more about how cancers start and spread, see What Is Cancer?1 Normal structure and function of the anus 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 The anus is the opening at the lower end of the intestines. It's where the end of the intestines connect to the outside of the body. As food is digested, it passes from the stomach to the small intestine. It then moves from the small intestine into the main part of the large intestine (called the colon). The colon absorbs water and salt from the digested food. The waste matter that's left after going through the colon is known as feces or stool. Stool is stored in the last part of the large intestine, called the rectum. From there, stool is passed out of the body through the anus as a bowel movement. Gastrointestinal system (GI system) Structures of the anus The anus is connected to the rectum by the anal canal.
    [Show full text]
  • Pathology of Anal Cancer
    Pathology of Anal Cancer a b Paulo M. Hoff, MD, PhD , Renata Coudry, MD, PhD , a, Camila Motta Venchiarutti Moniz, MD * KEYWORDS Anal cancer Anal squamous intraepithelial neoplasia Squamous cell carcinoma Human papilloma virus (HPV) Molecular KEY POINTS Anal cancer is an uncommon tumor, squamous cell carcinoma (SCC) being the most frequent histology corresponding to 80% of all cases. Human papilloma virus (HPV) infection plays a key role in anal cancer development, en- coding at least three oncoproteins with stimulatory properties. SCC expresses CK5/6, CK 13/19, and p63. P16 is a surrogate marker for the presence of HPV genome in tumor cells. INTRODUCTION Anal cancer accounts for approximately 2.4% of gastrointestinal malignancies.1 Although anal cancer is a rare tumor, its frequency is increasing, especially in high- risk groups.2 Tumors in this location are generally classified as anal canal or anal margin. Squamous cell carcinoma (SCC) is the predominant type of tumor and shares many features with cervical cancer. Oncogenic human papilloma virus (HPV) infection plays a major role in both tumors.3 HIV infection is associated with a higher frequency of HPV-associated premalignant lesions and invasive tumors.4 Normal Anatomy of the Anus The anal canal is the terminal part of the large intestine and is slightly longer in male than in female patients. It measures approximately 4 cm and extends from the rectal ampulla (pelvic floor level) to the anal verge, which is defined as the outer open- ing of the gastrointestinal tract. The anal verge is at the level of the squamous- mucocutaneous junction with the perianal skin.5,6 The authors have nothing to disclose.
    [Show full text]
  • HPV, Anal Dysplasia and Anal Cancer
    HPV, anal dysplasia FACT and anal cancer SHEET Published 2016 Summary Anal cancer typically develops over a period of years, beginning with a precancerous condition called anal dysplasia. CONTACT US Anal dysplasia occurs when clusters of abnormal cells form by telephone lesions in the mucosa lining of the anal canal (between the 1-800-263-1638 anus and the rectum). The lesions typically form inside the anal 416-203-7122 canal or just outside the anal opening. by fax 416-203-8284 Although there are over 100 different types of the human papillomavirus (HPV), anal dysplasia is usually caused by certain by e-mail strains of HPV which can be transmitted sexually. HPV can shut [email protected] off the proteins that help prevent dysplasia and cancer cells from developing, therefore leading to HPV-associated diseases by mail such as anal dysplasia. 555 Richmond Street West Suite 505, Box 1104 It is difficult to screen for anal dysplasia since the lesions are Toronto ON M5V 3B1 not detectable by routine examinations. As a result, anal dysplasia is often not detected until it has developed into anal cancer, which can be difficult to treat depending on the severity. Specific screening tests can detect dysplasia or precancerous changes. If these precancers are treated, anal cancer may be prevented. Anal cancer is usually treated with radiation and chemotherapy or with surgery. Although anal dysplasia may be treated successfully, individuals with HIV are at increased risk of it recurring and may need to be monitored closely by a trained physician. Consistent condom use reduces, but does not eliminate, the risk of transmitting HPV.
    [Show full text]
  • Insights Into the Management of Anorectal Disease in the Coronavirus 2019 Disease Era
    University of Massachusetts Medical School eScholarship@UMMS COVID-19 Publications by UMMS Authors 2021-07-09 Insights into the management of anorectal disease in the coronavirus 2019 disease era Waseem Amjad Albany Medical Center Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/covid19 Part of the Digestive System Diseases Commons, Gastroenterology Commons, Infectious Disease Commons, Telemedicine Commons, and the Virus Diseases Commons Repository Citation Amjad W, Haider R, Malik A, Qureshi W. (2021). Insights into the management of anorectal disease in the coronavirus 2019 disease era. COVID-19 Publications by UMMS Authors. https://doi.org/10.1177/ 17562848211028117. Retrieved from https://escholarship.umassmed.edu/covid19/285 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in COVID-19 Publications by UMMS Authors by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. TAG0010.1177/17562848211028117Therapeutic Advances in GastroenterologyW Amjad, R Haider 1028117research-article20212021 Advances and Future Perspectives in Colorectal Cancer Special Collection Therapeutic Advances in Gastroenterology Review Ther Adv Gastroenterol Insights into the management of anorectal 2021, Vol. 14: 1–13 https://doi.org/10.1177/17562848211028117DOI: 10.1177/ disease in the coronavirus 2019 disease era https://doi.org/10.1177/1756284821102811717562848211028117 © The Author(s), 2021. Article reuse guidelines: Waseem Amjad, Rabbia Haider, Adnan Malik and Waqas T. Qureshi sagepub.com/journals- permissions Abstract: Coronavirus 2019 disease (COVID-19) has created major impacts on public health.
    [Show full text]
  • A Scoping Review of Viral Diseases in African Ungulates
    veterinary sciences Review A Scoping Review of Viral Diseases in African Ungulates Hendrik Swanepoel 1,2, Jan Crafford 1 and Melvyn Quan 1,* 1 Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; [email protected] (H.S.); [email protected] (J.C.) 2 Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium * Correspondence: [email protected]; Tel.: +27-12-529-8142 Abstract: (1) Background: Viral diseases are important as they can cause significant clinical disease in both wild and domestic animals, as well as in humans. They also make up a large proportion of emerging infectious diseases. (2) Methods: A scoping review of peer-reviewed publications was performed and based on the guidelines set out in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. (3) Results: The final set of publications consisted of 145 publications. Thirty-two viruses were identified in the publications and 50 African ungulates were reported/diagnosed with viral infections. Eighteen countries had viruses diagnosed in wild ungulates reported in the literature. (4) Conclusions: A comprehensive review identified several areas where little information was available and recommendations were made. It is recommended that governments and research institutions offer more funding to investigate and report viral diseases of greater clinical and zoonotic significance. A further recommendation is for appropriate One Health approaches to be adopted for investigating, controlling, managing and preventing diseases. Diseases which may threaten the conservation of certain wildlife species also require focused attention.
    [Show full text]
  • The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency
    fmicb-09-03315 January 4, 2019 Time: 17:18 # 1 REVIEW published: 09 January 2019 doi: 10.3389/fmicb.2018.03315 The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency Océane Sorel1,2 and Benjamin G. Dewals1* 1 Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium, 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent Edited by: Michael Nevels, infection. Among these functions, GMPs have acquired an intriguing capacity to evade University of St Andrews, the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen United Kingdom presentation, further ensuring virus persistence in the infected host. In this review, we Reviewed by: Neil Blake, provide an updated overview of the main functions of gammaherpesvirus GMPs during University of Liverpool, latency with an emphasis on their immune evasion properties. United Kingdom James Craig Forrest, Keywords: herpesvirus, viral latency, genome maintenance protein, immune evasion, antigen presentation, viral University of Arkansas for Medical proteins Sciences, United States *Correspondence: Benjamin G.
    [Show full text]