Repurposing the Human Immunodeficiency Virus (Hiv) Integrase

Total Page:16

File Type:pdf, Size:1020Kb

Repurposing the Human Immunodeficiency Virus (Hiv) Integrase REPURPOSING THE HUMAN IMMUNODEFICIENCY VIRUS (HIV) INTEGRASE INHIBITOR RALTEGRAVIR FOR THE TREATMENT OF FELID ALPHAHERPESVIRUS 1 (FHV-1) OCULAR INFECTION A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Matthew Robert Pennington August 2018 © 2018 Matthew Robert Pennington REPURPOSING THE HUMAN IMMUNODEFICIENCY VIRUS (HIV) INTEGRASE INHIBITOR RALTEGRAVIR FOR THE TREATMENT OF FELID ALPHAHERPESVIRUS 1 (FHV-1) OCULAR INFECTION Matthew Robert Pennington, Ph.D. Cornell University 2018 Herpesviruses infect many species, inducing a wide range of diseases. Herpesvirus- induced ocular disease, which may lead to blindness, commonly occurs in humans, dogs, and cats, and is caused by human alphaherpesvirus 1 (HHV-1), canid alphaherpesvirus (CHV-1), and felid alphaherpesvirus 1 (FHV-1), respectively. Rapid and effective antiviral therapy is of the utmost importance to control infection in order to preserve the vision of infected people or animals. However, current treatment options are suboptimal, in large part due to the difficulty and cost of de novo drug development and the lack of effective models to bridge work in in vitro cell cultures and in vivo. Repurposing currently approved drugs for viral infections is one strategy to more rapidly identify new therapeutics. Furthermore, studying ocular herpesviruses in cats is of particular importance, as this condition is a frequent disease manifestation in these animals and FHV-1 infection of the cat is increasingly being recognized as a valuable natural- host model of herpesvirus-induced ocular infection First, the current models to study ocular herpesvirus infections were reviewed. Next, the efficacy of raltegravir was evaluated using a novel corneal explant model. Raltegravir is a human immunodeficiency virus (HIV) integrase inhibitor that was recently shown to poses antiviral activity against human herpesviruses. Then, electric cell-substrate impedance sensing (ECIS) was evaluated as a novel methodology to study the replication kinetics of herpesviruses. It was also used to characterize a fluorescently labeled FHV-1, created using CRISPR/Cas9 genome. Next, it was found that raltegravir inhibits both viral DNA synthesis initiation and late gene expression, a mechanism consistent with inhibition of viral ICP8. Finally, RNA sequencing was used to explore the indirect effects of raltegravir on the host. It was found that raltegravir treatment promoted the expression of anti-angiogenic factors and altered the metabolism of the host cells, both of which may be beneficial therapeutically. These results, combined with a recent in vivo study in experimentally infected cats, demonstrates that raltegravir is a viable treatment option for FHV-1 and warrants further investigations into its clinical potential against other herpesviruses. BIOGRAPHICAL SKETCH Matthew Pennington was born in Shawnee, KS, where he grew up. He first attended St. Joseph’s Catholic School and Good Shepherd Catholic School for grade school and then Rockhurst High School (Kansas City, MO). Matthew pursued his baccalaureate degree at Seton Hall University in South Orange, NJ. At Seton Hall, Matthew majored in Biological Sciences, minored in Chemistry, and participated in the both the Biological Sciences and the University Honors Programs. While there, he began research as a freshman studying the effects of the P- TEFb inhibitor flavopiridol on human gammaherpesvirus 8 transcription and replication, leading to his interest in antiviral drug development. During his undergraduate studies, Matthew studied adolescent elephant behavior at the Pongal Game Reserve (KwaZulu-Natal, South Africa), their ecological impacts on their habitat, and methods of population management for his senior theses, driving his interest in animal biology. He graduated in 2013, Summa cum laude, and was awarded the Biology Department Honors Citation by the College of Arts and Sciences and the Charles F. and Hannah Chelius Stark Prize by the University Honors Program Faculty. Matthew then enrolled at Cornell University as a graduate student in Immunology and Infectious Diseases to pursue is interest in study the pathology and treatment of animal viruses. He joined the lab of Dr. Gerlinde Van de Walle in the summer of 2014 to study animal herpesviruses, including felid alphaherpesvirus 1 and equid gammaherpesviruses 2 and 5. Following completion of his graduate studies, Matthew accepted a Post-Doctoral Fellowship at Massachusetts Eye and Ear Infirmary (Massachusetts General Hospital, Harvard Medical School) in the lab of Dr. James Chodosh. There he will study the immunopathogenesis of human ocular adenovirus infection. iii ACKNOWLEDGEMENTS There are many people who have helped me throughout my time at Cornell University and without whom I would not have been able to complete this degree. First and foremost, I would like to thank my mentor, Dr. Gerlinde Van de Walle, who allowed me to explore and to take this research in the direction I found interesting, as well as providing the opportunities to dive into other, unrelated, projects. She has provided me with unwavering support over the years and has always been there to provide help and advice. I also owe a special thanks to my special committee, Drs. Colin Parrish, Bettina Wagner, and Eric Ledbetter, for their support, collaborations, enthusiasm, and useful insights to my work. All of the members of our lab, both past and present, including Melissa Ledet, Becky Harman, Gat Rauner, Joy Tomlinson, Lauren Tofano, Mike Fort, and other members, visiting researchers, and undergraduate students, have made this time an enjoyable and intellectually stimulating experience. In particular, I have to thank Becky for always happily answering my myriad of questions on everything from help with western blots and flow cytometry to opinions on where I should go hiking. Another special thanks is due to Heather Callaway for her help with protein expression, revising papers and grants, random side projects and ideas that never led anywhere, and more. Thanks to Jen Grenier of the Cornell University RNAseq core for patiently teaching me the basics of RNA sequencing and helping me to analyze and reanalyze my data. Additionally, thanks to Don Millar for help designing cloning constructs, Ashley Roloson and Liberty Research for tissue collection, and the staff of Applied BioPhysics for their assistance optimizing the ECIS assays and analyzing the data. Additionally, I owe a debt of gratitude to the Cornell University Feline Health Center for its continued funding of me and our studies over the duration of my Ph.D. iv Lastly, I would like to thank all of my friends and family for their support on this journey. I have enjoyed our hikes, dog play-dates, brewery and winery trips, knitting nights, and more immensely. You all have made my time at Cornell more enjoyable and rewarding. I will always be grateful to these friends and future colleagues for their help and support during my time at Cornell University. v TABLE OF CONTENTS BIOGRAPHICAL SKETCH iii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS vi LIST OF FIGURES x LIST OF TABLES xiii LIST OF ABBREVIATIONS xiv CHAPTER ONE: AN INTRODUCTION TO OCULAR HERPESVIRUS INFECTION AND THE CHALLENGES OF ANTIVIRAL DRUG DEVELOPMENT 1.1. Herpesvirus-associated ocular disease 2 1.2. Current vaccines and therapies for human and animal patients with ocular herpes 7 1.2.1. Humans 7 1.2.2. Dogs 8 1.2.3. Cats 9 1.3. Strategies to accelerate antiviral drug development 11 1.4. Repurposing raltegravir as a therapy for ocular herpesvirus infection 15 1.5. References 17 CHAPTER TWO: NEW PARADIGMS FOR THE STUDY OF OCULAR ALPHAHERPESVIRUS INFECTIONS: INSIGHTS INTO THE USE OF NON- TRADITIONAL HOST MODEL SYSTEMS 2.1. Summary 26 2.2. Introduction 27 2.3. In vitro 2D cell culture systems 30 2.3.1. Immortalized cell lines 30 2.3.2. Primary corneal epithelial cells 31 2.3.3. Limitations of 2D cell culture systems 33 2.4. In vitro 3D cell culture/explant systems 34 vi 2.4.1. Corneal facsimiles 34 2.4.2. Explants 35 2.4.3. Limitations of 3D cell culture/explant systems 39 2.5. In vivo systems 41 2.5.1. Mice 41 2.5.2. Rabbits 42 2.5.3. Dogs 43 2.5.4. Cats 49 2.5.5. Limitations of non-traditional in vivo models 51 2.6. Conclusions and future prospects 53 2.7. References 55 CHAPTER THREE: A NOVEL CORNEA EXPLANT MODEL SYSTEM TO EVALUATE ANTIVIRALS AGAINST FELID ALPHAHERPESVIRUS TYPE 1 (FHV-1) 3.1. Summary 75 3.2. Introduction 76 3.3. Results 78 3.4. Discussion 89 3.5. Methods 94 3.6. References 100 CHAPTER FOUR: ELECTRIC CELL-SUBSTRATE IMPEDANCE SENSING (ECIS) TO MONITOR VIRAL GROWTH AND STUDY CELLULAR RESPONSES TO INFECTION WITH ALPHAHERPESVIRUSES IN REAL-TIME 4.1. Summary 105 4.2. Introduction 107 4.3. Results 109 4.4. Discussion 120 4.5. Methods 123 4.6. References 130 vii CHAPTER FIVE: THE HIV INTEGRASE INHIBITOR RALTEGRAVIR INHIBITS FELID ALPHAHERPESVIRUS 1 (FHV-1) REPLICATION BY TARGETING BOTH DNA REPLICATION AND LATE GENE EXPRESSION 5.1. Summary 135 5.2. Introduction 137 5.3. Results 139 5.4. Discussion 153 5.5. Methods 157 5.6. References 167 CHAPTER SIX: TRANSCRIPTOME PROFILING OF ALPHAHERPESVIRUS- INFECTED CELLS TREATED WITH THE HIV-INTEGRASE INHIBITOR RALTEGRAVIR REVEALS PRFOUND AND SPECIFIC ALTERATIONS IN HOST TRANSCRIPTION 6.1. Summary 176 6.2. Introduction 177 6.3. Results 179 6.4. Discussion 197 6.5. Methods 202 6.6. References 212 CHAPTER SEVEN: DISCUSSION: SUMMARY AND IMPLICATIONS FOR FUTURE ANTIVIRAL DEVELOPMENT 7.1. Summary of Findings 220 7.2. Prospects for raltegravir as a therapy for herpesvirus infections 221 7.2.1. Evaluation of raltegravir in vivo 221 7.2.2. Comparison of raltegravir to current FHV-1 therapies 223 7.2.3. Considerations for the practical implementation of oral and topical raltegravir 225 therapy 7.2.4. Intellectual property and cost considerations 226 7.3.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 8,993,581 B2 Perrine Et Al
    US00899.3581B2 (12) United States Patent (10) Patent No.: US 8,993,581 B2 Perrine et al. (45) Date of Patent: Mar. 31, 2015 (54) METHODS FOR TREATINGVIRAL (58) Field of Classification Search DSORDERS CPC ... A61K 31/00; A61K 31/166; A61K 31/185: A61K 31/233; A61K 31/522: A61K 38/12: (71) Applicant: Trustees of Boston University, Boston, A61K 38/15: A61K 45/06 MA (US) USPC ........... 514/263.38, 21.1, 557, 565, 575, 617; 424/2011 (72) Inventors: Susan Perrine, Weston, MA (US); Douglas Faller, Weston, MA (US) See application file for complete search history. (73) Assignee: Trustees of Boston University, Boston, (56) References Cited MA (US) U.S. PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this 3,471,513 A 10, 1969 Chinn et al. patent is extended or adjusted under 35 3,904,612 A 9/1975 Nagasawa et al. U.S.C. 154(b) by 0 days. (Continued) (21) Appl. No.: 13/915,092 FOREIGN PATENT DOCUMENTS (22) Filed: Jun. 11, 2013 CA 1209037 A 8, 1986 CA 2303268 A1 4f1995 (65) Prior Publication Data (Continued) US 2014/OO45774 A1 Feb. 13, 2014 OTHER PUBLICATIONS Related U.S. Application Data (63) Continuation of application No. 12/890,042, filed on PCT/US 10/59584 Search Report and Written Opinion mailed Feb. Sep. 24, 2010, now abandoned. 11, 2011. (Continued) (60) Provisional application No. 61/245,529, filed on Sep. 24, 2009, provisional application No. 61/295,663, filed on Jan. 15, 2010. Primary Examiner — Savitha Rao (74) Attorney, Agent, or Firm — Nixon Peabody LLP (51) Int.
    [Show full text]
  • Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood
    pathogens Article Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood Mononuclear Cells in Horses during Equine Herpesvirus 1 Infection Lila M. Zarski 1, Patty Sue D. Weber 2, Yao Lee 1 and Gisela Soboll Hussey 1,* 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; [email protected] (L.M.Z.); [email protected] (Y.L.) 2 Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Abstract: Equine herpesvirus 1 (EHV-1) affects horses worldwide and causes respiratory dis- ease, abortions, and equine herpesvirus myeloencephalopathy (EHM). Following infection, a cell- associated viremia is established in the peripheral blood mononuclear cells (PBMCs). This viremia is essential for transport of EHV-1 to secondary infection sites where subsequent immunopathol- ogy results in diseases such as abortion or EHM. Because of the central role of PBMCs in EHV-1 pathogenesis, our goal was to establish a gene expression analysis of host and equine herpesvirus genes during EHV-1 viremia using RNA sequencing. When comparing transcriptomes of PBMCs during peak viremia to those prior to EHV-1 infection, we found 51 differentially expressed equine genes (48 upregulated and 3 downregulated). After gene ontology analysis, processes such as the interferon defense response, response to chemokines, the complement protein activation cascade, cell adhesion, and coagulation were overrepresented during viremia. Additionally, transcripts for EHV-1, EHV-2, and EHV-5 were identified in pre- and post-EHV-1-infection samples. Looking at Citation: Zarski, L.M.; Weber, P.S.D.; micro RNAs (miRNAs), 278 known equine miRNAs and 855 potentially novel equine miRNAs were Lee, Y.; Soboll Hussey, G.
    [Show full text]
  • (Epstein- Barr Virus) No Líquido Cefalorraquidiano De Crianças Com Suspeita De Meningoencefalite No Estado De Minas
    1 Universidade Federal de Minas Gerais Programa de Pós-Graduação em Microbiologia Detecção de human gammaherpesvirus 4 (Epstein- Barr virus) no líquido cefalorraquidiano de crianças com suspeita de meningoencefalite no estado de Minas Gerais Belo Horizonte 2020 2 NATHALIA MARTINS QUINTÃO Detecção de human gammaherpesvirus 4 (Epstein- Barr virus - EBV) no líquido cefalorraquidiano de crianças com suspeita de meningoencefalite no estado de Minas Gerais Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito à obtenção do título de Mestre em Microbiologia. Orientadora: Prof.ª. Dr.ª Erna Gessien Kroon Belo Horizonte 2020 3 4 5 RESUMO Epstein-Barr virus pertence à subfamília Gammaherpesvirinae da família Herpesviridae e é o agente etiológico da mononucleose infecciosa. A transmissão de EBV geralmente é pela saliva, sendo o quadro clássico de infecção primária a mononucleose apenas 5% dos casos evoluem para quadros de meningoencefalites. Os grupos de risco são principalmente crianças na primeira infância e pacientes imunocomprometidos. No Brasil, nos últimos 10 anos foram registrados aproximadamente 22 mil casos de meningites e encefalites virais, sendo 52% dos casos em crianças com até 14 anos de idade. O ensaio de PCR em tempo real (qPCR) revoluciona o diagnóstico de neuroinfecções virais. O objetivo deste trabalho foi detectar a presença de DNA genômico e de mRNA de EBV por qPCR para casos de meningoencefalites em pacientes de Minas Gerais e construir, com base na análise de prontuário dos pacientes e dados disponíveis no DATASUS, um breve panorama dos casos de meningoencefalites por EBV.
    [Show full text]
  • Valproic Acid and Its Amidic Derivatives As New Antivirals Against Alphaherpesviruses
    viruses Review Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses Sabina Andreu 1,2,* , Inés Ripa 1,2, Raquel Bello-Morales 1,2 and José Antonio López-Guerrero 1,2 1 Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; [email protected] (I.R.); [email protected] (R.B.-M.); [email protected] (J.A.L.-G.) 2 Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] Academic Editor: Maria Kalamvoki Received: 14 November 2020; Accepted: 25 November 2020; Published: 26 November 2020 Abstract: Herpes simplex viruses (HSVs) are neurotropic viruses with broad host range whose infections cause considerable health problems in both animals and humans. In fact, 67% of the global population under the age of 50 are infected with HSV-1 and 13% have clinically recurrent HSV-2 infections. The most prescribed antiherpetics are nucleoside analogues such as acyclovir, but the emergence of mutants resistant to these drugs and the lack of available vaccines against human HSVs has led to an imminent need for new antivirals. Valproic acid (VPA) is a branched short-chain fatty acid clinically used as a broad-spectrum antiepileptic drug in the treatment of neurological disorders, which has shown promising antiviral activity against some herpesviruses. Moreover, its amidic derivatives valpromide and valnoctamide also share this antiherpetic activity. This review summarizes the current research on the use of VPA and its amidic derivatives as alternatives to traditional antiherpetics in the fight against HSV infections.
    [Show full text]
  • Development of In-House Taqman Qpcr Assay to Detect Equine Herpesvirus-2 in Al-Qadisiyah City ﻟﺛﺎﻧﻲ ا ﻓﺎﯾرو
    Iraqi Journal of Veterinary Sciences, Vol. 34, No. 2, 2020 (365-371) Development of in-house Taqman qPCR assay to detect equine herpesvirus-2 in Al-Qadisiyah city M.H. Al-Saadi Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq, Email: [email protected] (Received September 6, 2019; Accepted October 1, 2019; Available online July 23, 2020) Abstract EHV-2 is distributed in horses globally. It is clustered within gamma-herpesvirus subfamily and percavirus genus. EHV-2 infection has two phases: latent and lytic. In the later, EHV-2 mainly associated with respiratory and genital symptoms. However, in the quiescent phase of infection, EHV-2 stay dormant in the host till viral reactivation. Our previous study has showed that EHV-2 can be harboured by equine tendons, suggesting that leukocytes possibly carrying EHV-2 for the systemic dissemination. So far, numerous PCR protocols have been performed targeting the gB gene. However, this gene is heterogenic. Therefore, there is a need to develop a quantitative diagnostic approach to detect the quiescent EHV-2 strains. To do this, Taqman qPCR assay was developed to quantify the virus. This was performed by targeting a highly conserved gene known as DNA polymerase (DPOL) gene using constructed plasmid as a standard curve calibrator. The obtained results showed an infection frequency of 33% in which the EHV-2 load reached 6647 copies/100 ng DNA whereas the minimum load revealed as 2 copies/100 ng DNA. The median quantification was found as 141 copies/ 100 ng DNA.
    [Show full text]
  • Shared Ancestry of Herpes Simplex Virus 1 Strain Patton with Recent Clinical Isolates from Asia and with Strain KOS63
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Virology Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 December 01. Published in final edited form as: Virology. 2017 December ; 512: 124–131. doi:10.1016/j.virol.2017.09.016. Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63 Aldo Pourcheta, Richard Copinb, Matthew C. Mulveyc, Bo Shopsina,b, Ian Mohra, and Angus C. Wilsona,# aDepartment of Microbiology, New York University School of Medicine, New York, New York, USA bDepartment of Medicine, New York University School of Medicine, New York, New York, USA cBeneVir Biopharm, Inc., Gaithersburg, Maryland, USA Abstract Herpes simplex virus 1 (HSV-1) is a widespread pathogen that persists for life, replicating in surface tissues and establishing latency in peripheral ganglia. Increasingly, molecular studies of latency use cultured neuron models developed using recombinant viruses such as HSV-1 GFP- US11, a derivative of strain Patton expressing green fluorescent protein (GFP) fused to the viral US11 protein. Visible fluorescence follows viral DNA replication, providing a real time indicator of productive infection and reactivation. Patton was isolated in Houston, Texas, prior to 1973, and distributed to many laboratories. Although used extensively, the genomic structure and phylogenetic relationship to other strains is poorly known. We report that wild type Patton and the GFP-US11 recombinant contain the full complement of HSV-1 genes and differ within the unique regions at only eight nucleotides, changing only two amino acids. Although isolated in North America, Patton is most closely related to Asian viruses, including KOS63.
    [Show full text]
  • Faculdade De Medicina Veterinária
    UNIVERSIDADE DE LISBOA Faculdade de Medicina Veterinária FIBROPAPILLOMATOSIS AND THE ASSOCIATED CHELONID HERPESVIRUS 5 IN GREEN TURTLES FROM WEST AFRICA JESSICA CORREIA MONTEIRO CONSTITUIÇÃO DO JÚRI ORIENTADORA Doutor Luís Manuel Morgado Tavares Doutora Ana Isabel Simões Pereira Duarte Doutora Ana Isabel Simões Pereira Duarte CO-ORIENTADORA Doutor José Alexandre da Costa Perdigão e Doutora Ana Rita Caldas Patrício Cameira Leitão 2019 LISBOA This thesis was financed by Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA) of the Faculty of Veterinary Medicine, University of Lisbon. The fieldwork was funded by a grant from the MAVA foundation attributed to the Institute of Biodiversity and Protected Areas from Guinea-Bissau. The investigation was carried out at the Virology Laboratory of Instituto Nacional de Investigação Agrária e Veterinária (INIAV) under the supervision of Doctor Margarida Duarte and Doctor Ana Duarte. UNIVERSIDADE DE LISBOA Faculdade de Medicina Veterinária FIBROPAPILLOMATOSIS AND THE ASSOCIATED CHELONID HERPESVIRUS 5 IN GREEN TURTLES FROM WEST AFRICA JESSICA CORREIA MONTEIRO DISSERTAÇÃO DE MESTRADO INTEGRADO EM MEDICINA VETERINÁRIA CONSTITUIÇÃO DO JÚRI ORIENTADORA Doutor Luís Manuel Morgado Tavares Doutora Ana Isabel Simões Pereira Duarte Doutora Ana Isabel Simões Pereira Duarte CO-ORIENTADORA Doutora Ana Rita Caldas Patrício Doutor José Alexandre da Costa Perdigão e Cameira Leitão 2019 LISBOA To my mother and grandfather, for giving me everything ii ACKNOWLEGDEMENTS First of all I’d like to thank my mother, not only for taking care of me all these years, but also for pushing me in the right direction. If it wasn’t for you I wouldn’t have been able to fulfil my life long dream.
    [Show full text]
  • Supplementary Material
    SUPPLEMENTARY MATERIAL Appendix; Search strategy MEDLINE 1. Herpes Labialis/ 2. Stomatitis, Herpetic/ 3. ((herpe* adj3 (labial* or stomatiti* or gingivostomatiti*)) or cold-sore* or fever-blister*).tw,kf. 4. 1 or 2 or 3 5. Herpes Simplex/ 6. Simplexvirus/ or herpesvirus 1, human/ or herpesvirus 2, human/ 7. (hsv-1 or hsv1 or hsv-2 or hsv2 or simplexvirus or simplex-virus or herpes-simplex or herpe*).tw,kf. 8. exp Mouth/ 9. (lip*1 or mouth or labial* or orolabial* or oro-labial* or perioral or peri-oral or extraoral or extra-oral or intraoral or intra-oral or gingiva* or gingivo*).tw,kf. 10. (5 or 6 or 7) and (8 or 9) 11. 4 or 10 12. Secondary Prevention/ 13. exp Recurrence/ 14. (prevention or recurren* or prophyla*).tw,kf. 15. pc.fs. 16. 12 or 13 or 14 or 15 17. 11 and 16 18. exp animals/ not human*.sh. 19. 17 not 18 EMBASE 1. herpes labialis/ 2. herpetic stomatitis/ 3. ((herpe* adj3 (labial* or stomatiti* or gingivostomatiti*)) or cold-sore* or fever-blister*).tw,kw,dq. 4. 1 or 2 or 3 5. herpes simplex/ 6. simplexvirus/ or exp human alphaherpesvirus 1/ or exp herpes simplex virus 2/ 7. (hsv-1 or hsv1 or hsv-2 or hsv2 or simplexvirus or simplex-virus or herpes-simplex or herpe*).tw,kw,dq. 8. mouth/ or exp cheek/ or exp lip/ or exp mouth cavity/ or exp mouth floor/ or exp mouth mucosa/ or exp palate/ or oral blister/ 9. (lip*1 or mouth or labial* or orolabial* or oro-labial* or perioral or peri-oral or extraoral or extra-oral or intraoral or intra-oral or gingiva* or gingivo*).tw,kw,dq.
    [Show full text]
  • A Scoping Review of Viral Diseases in African Ungulates
    veterinary sciences Review A Scoping Review of Viral Diseases in African Ungulates Hendrik Swanepoel 1,2, Jan Crafford 1 and Melvyn Quan 1,* 1 Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; [email protected] (H.S.); [email protected] (J.C.) 2 Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium * Correspondence: [email protected]; Tel.: +27-12-529-8142 Abstract: (1) Background: Viral diseases are important as they can cause significant clinical disease in both wild and domestic animals, as well as in humans. They also make up a large proportion of emerging infectious diseases. (2) Methods: A scoping review of peer-reviewed publications was performed and based on the guidelines set out in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. (3) Results: The final set of publications consisted of 145 publications. Thirty-two viruses were identified in the publications and 50 African ungulates were reported/diagnosed with viral infections. Eighteen countries had viruses diagnosed in wild ungulates reported in the literature. (4) Conclusions: A comprehensive review identified several areas where little information was available and recommendations were made. It is recommended that governments and research institutions offer more funding to investigate and report viral diseases of greater clinical and zoonotic significance. A further recommendation is for appropriate One Health approaches to be adopted for investigating, controlling, managing and preventing diseases. Diseases which may threaten the conservation of certain wildlife species also require focused attention.
    [Show full text]
  • (Title of the Thesis)*
    INVESTIGATING THE ROLES OF HERPES SIMPLEX VIRUS TYPE 2 PROTEINS UL21 AND US3 IN REGULATION OF THE NUCLEAR EGRESS COMPLEX by Jamil H. Muradov A thesis submitted to the Graduate Program in Microbiology and Immunology in the Department of Biomedical and Molecular Sciences In conformity with the requirements for the degree of Master of Sciences Queen’s University Kingston, Ontario, Canada (May, 2021) Copyright © Jamil H. Muradov, 2021 Abstract Herpes Simplex Virus 2 (HSV-2) nuclear egress is mediated by viral nuclear egress complex (NEC) proteins, pUL31 and pUL34, found at the inner nuclear membrane of infected cells (INM). Nuclear egress requires successful primary envelopment of a capsid at the INM, budding of the resulting capsid-containing vesicle into the perinuclear space (PNS), de-envelopment of the perinuclear virion at the outer nuclear membrane and release of the capsid into the cytoplasm. In this work, we demonstrate that HSV-2 pUL31 and pUL34 are phosphorylated by a viral protein kinase, called pUs3, which serves to prevent excessive INM deformation and accumulation of the primary enveloped virions (PEVs) in PNS after successful primary envelopment of capsids. It was found that a tegument protein, pUL21, modulates pUs3 dependent pUL31 and pUL34 phosphorylation. We also determined that in UL21-knockout infected cells, pUs3 is differentially modified, and this modification is likely an autophosphorylation. Higher levels of pUs3 phosphorylation were shown to result in augmentation of pUs3/PKA substrate phosphorylation levels, including pUL31 and pUL34. Excessive phosphorylation of the NEC components caused their aberrant distribution at the INM, extravagation of the nuclear envelope and failure of the capsids to undergo primary envelopment at the INM.
    [Show full text]
  • The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency
    fmicb-09-03315 January 4, 2019 Time: 17:18 # 1 REVIEW published: 09 January 2019 doi: 10.3389/fmicb.2018.03315 The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency Océane Sorel1,2 and Benjamin G. Dewals1* 1 Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium, 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent Edited by: Michael Nevels, infection. Among these functions, GMPs have acquired an intriguing capacity to evade University of St Andrews, the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen United Kingdom presentation, further ensuring virus persistence in the infected host. In this review, we Reviewed by: Neil Blake, provide an updated overview of the main functions of gammaherpesvirus GMPs during University of Liverpool, latency with an emphasis on their immune evasion properties. United Kingdom James Craig Forrest, Keywords: herpesvirus, viral latency, genome maintenance protein, immune evasion, antigen presentation, viral University of Arkansas for Medical proteins Sciences, United States *Correspondence: Benjamin G.
    [Show full text]
  • Wednesday Slide Conference 2008-2009
    PROCEEDINGS DEPARTMENT OF VETERINARY PATHOLOGY WEDNESDAY SLIDE CONFERENCE 2008-2009 ARMED FORCES INSTITUTE OF PATHOLOGY WASHINGTON, D.C. 20306-6000 2009 ML2009 Armed Forces Institute of Pathology Department of Veterinary Pathology WEDNESDAY SLIDE CONFERENCE 2008-2009 100 Cases 100 Histopathology Slides 249 Images PROCEEDINGS PREPARED BY: Todd Bell, DVM Chief Editor: Todd O. Johnson, DVM, Diplomate ACVP Copy Editor: Sean Hahn Layout and Copy Editor: Fran Card WSC Online Management and Design Scott Shaffer ARMED FORCES INSTITUTE OF PATHOLOGY Washington, D.C. 20306-6000 2009 ML2009 i PREFACE The Armed Forces Institute of Pathology, Department of Veterinary Pathology has conducted a weekly slide conference during the resident training year since 12 November 1953. This ever- changing educational endeavor has evolved into the annual Wednesday Slide Conference program in which cases are presented on 25 Wednesdays throughout the academic year and distributed to 135 contributing military and civilian institutions from around the world. Many of these institutions provide structured veterinary pathology resident training programs. During the course of the training year, histopathology slides, digital images, and histories from selected cases are distributed to the participating institutions and to the Department of Veterinary Pathology at the AFIP. Following the conferences, the case diagnoses, comments, and reference listings are posted online to all participants. This study set has been assembled in an effort to make Wednesday Slide Conference materials available to a wider circle of interested pathologists and scientists, and to further the education of veterinary pathologists and residents-in-training. The number of histopathology slides that can be reproduced from smaller lesions requires us to limit the number of participating institutions.
    [Show full text]