A Generic Revision--And Phylogenetic Study of the Family Kaloter- Mitidae (Isoptera)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endospore-Forming Filamentous Bacteria Symbiotic in Termites: Ultrastructure and Growth in Culture of a Rthromitus
Symbiosis, 8 (1990) 95-116 95 Balaban, Philadelphia/Rehovot Endospore-Forming Filamentous Bacteria Symbiotic in Termites: Ultrastructure and Growth in Culture of A rthromitus LYNN MARGULIS1·*, LORRAINE OLENDZENSKI1 and BJORN A. AFZELIUS2 1 Botany Department, University of Massachusetts, Amherst, MA 01003, USA 2 Department of Ultrastructure Research, University of Stockholm S-106 91 Stockholm, Sweden Received November 30, 1989; Accepted March 6, 1990 Abstract Many morphologically distinguishable filamentous spore-forming bacteria symbiotic in the paunch (hypertrophied hindguts) of wood-eating insects have been seen since Arihromitus was first described and named as a plant by Leidy in 1850. Previous descriptions were inadequate for acceptance of the group in modern bacteriological literature. Twenty-two distinguishable arthromitids in nine different arthropod hosts are recorded on the basis of microscopic studies. Five are named, including two whose ultrastructure are detailed: Arihromitus chasei sp. nov. that lives in the damp wood-eating termite Zootermopsis angusticollis (from the west coast of North America) and Arthromitus reticulitermitidis sp. nov. from the subter• ranean west coast termite Reiiculitermes tibialis. A. pterotermitidis from the desert termite Pterotermitidis occidentis; A. zootermopsidis, also from Z. an• qusticollis: and A. cristatus (Leidy, 1881) from Reticulitermes ftavipes of east• ern North America are also named here. Characterized by trichomes that show a morphogenetic sequence from no spores through immature spores to mature spores with spore filaments, Arihromitus symbionts can be identified as mem• bers of the genus by light microscopy and habitat. Electron microscopy reveals their remarkable complexity. They attach by spore filaments to various objects including the host gut wall; their maturation extends distally toward the termite lumen. -
Overview and Current Status of Non-Native Termites (Isoptera) in Florida§
Scheffrahn: Non-Native Termites in Florida 781 OVERVIEW AND CURRENT STATUS OF NON-NATIVE TERMITES (ISOPTERA) IN FLORIDA§ Rudolf H. Scheffrahn University of Florida, Fort Lauderdale Research & Education Center, 3205 College Avenue, Davie, Florida 33314, U.S.A E-mail; [email protected] §Summarized from a presentation and discussions at the “Native or Invasive - Florida Harbors Everyone” Symposium at the Annual Meeting of the Florida Entomological Society, 24 July 2012, Jupiter, Florida. ABSTRACT The origins and status of the non-endemic termite species established in Florida are re- viewed including Cryptotermes brevis and Incisitermes minor (Kalotermitidae), Coptotermes formosanus, Co. gestroi, and Heterotermes sp. (Rhinotermitidae), and Nasutitermes corniger (Termitidae). A lone colony of Marginitermes hubbardi (Kalotermitidae) collected near Tam- pa was destroyed in 2002. A mature colony of an arboreal exotic, Nasutitermes acajutlae, was destroyed aboard a dry docked sailboat in Fort Pierce in 2012. Records used in this study were obtained entirely from voucher specimen data maintained in the University of Flori- da Termite Collection. Current distribution maps of each species in Florida are presented. Invasion history suggests that established populations of exotic termites, without human intervention, will continue to spread and flourish unabatedly in Florida within climatically suitable regions. Key Words: Isoptera, Kalotermitidae, Rhinotermitidae, Termitidae, non-endemic RESUMEN Se revisa el origen y el estatus de las especies de termitas no endémicas establecidas en la Florida incluyendo Cryptotermes brevis y Incisitermes menor (Familia Kalotermitidae); Coptotermes formosanus, Co. gestroi y Heterotermes sp. (Familia Rhinotermitidae) y Nasu- titermes corniger (Familia Termitidae). Una colonia individual de Marginitermes hubbardi revisada cerca de Tampa fue destruida en 2002. -
Taxonomy, Biogeography, and Notes on Termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the Bahamas and Turks and Caicos Islands
SYSTEMATICS Taxonomy, Biogeography, and Notes on Termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the Bahamas and Turks and Caicos Islands RUDOLF H. SCHEFFRAHN,1 JAN KRˇ ECˇ EK,1 JAMES A. CHASE,2 BOUDANATH MAHARAJH,1 3 AND JOHN R. MANGOLD Ann. Entomol. Soc. Am. 99(3): 463Ð486 (2006) ABSTRACT Termite surveys of 33 islands of the Bahamas and Turks and Caicos (BATC) archipelago yielded 3,533 colony samples from 593 sites. Twenty-seven species from three families and 12 genera were recorded as follows: Cryptotermes brevis (Walker), Cr. cavifrons Banks, Cr. cymatofrons Schef- Downloaded from frahn and Krˇecˇek, Cr. bracketti n. sp., Incisitermes bequaerti (Snyder), I. incisus (Silvestri), I. milleri (Emerson), I. rhyzophorae Herna´ndez, I. schwarzi (Banks), I. snyderi (Light), Neotermes castaneus (Burmeister), Ne. jouteli (Banks), Ne. luykxi Nickle and Collins, Ne. mona Banks, Procryptotermes corniceps (Snyder), and Pr. hesperus Scheffrahn and Krˇecˇek (Kalotermitidae); Coptotermes gestroi Wasmann, Heterotermes cardini (Snyder), H. sp., Prorhinotermes simplex Hagen, and Reticulitermes flavipes Koller (Rhinotermitidae); and Anoplotermes bahamensis n. sp., A. inopinatus n. sp., Nasuti- termes corniger (Motschulsky), Na. rippertii Rambur, Parvitermes brooksi (Snyder), and Termes http://aesa.oxfordjournals.org/ hispaniolae Banks (Termitidae). Of these species, three species are known only from the Bahamas, whereas 22 have larger regional indigenous ranges that include Cuba, Florida, or Hispaniola and beyond. Recent exotic immigrations for two of the regional indigenous species cannot be excluded. Three species are nonindigenous pests of known recent immigration. IdentiÞcation keys based on the soldier (or soldierless worker) and the winged imago are provided along with species distributions by island. Cr. bracketti, known only from San Salvador Island, Bahamas, is described from the soldier and imago. -
Termites (Isoptera) in the Azores: an Overview of the Four Invasive Species Currently Present in the Archipelago
Arquipelago - Life and Marine Sciences ISSN: 0873-4704 Termites (Isoptera) in the Azores: an overview of the four invasive species currently present in the archipelago MARIA TERESA FERREIRA ET AL. Ferreira, M.T., P.A.V. Borges, L. Nunes, T.G. Myles, O. Guerreiro & R.H. Schef- frahn 2013. Termites (Isoptera) in the Azores: an overview of the four invasive species currently present in the archipelago. Arquipelago. Life and Marine Sciences 30: 39-55. In this contribution we summarize the current status of the known termites of the Azores (North Atlantic; 37-40° N, 25-31° W). Since 2000, four species of termites have been iden- tified in the Azorean archipelago. These are spreading throughout the islands and becoming common structural and agricultural pests. Two termites of the Kalotermitidae family, Cryp- totermes brevis (Walker) and Kalotermes flavicollis (Fabricius) are found on six and three of the islands, respectively. The other two species, the subterranean termites Reticulitermes grassei Clemént and R. flavipes (Kollar) of the Rhinotermitidae family are found only in confined areas of the cities of Horta (Faial) and Praia da Vitória (Terceira) respectively. Due to its location and weather conditions the Azorean archipelago is vulnerable to coloni- zation by invasive species. The fact that there are four different species of termites in the Azores, all of them considered pests, is a matter of concern. Here we present a comparative description of these species, their known distribution in the archipelago, which control measures are being used against them, and what can be done in the future to eradicate and control these pests in the Azores. -
Arthrop and Insects2014
Kingdom Animalia Phylum Arthropoda Bilateral vs radial symmetry • Most abundant group of animals. Notable Animals from the • Ancient group of organisms. Some fossils date from the Southwest Cambrian period (500 Million Years old). • Bilaterally symmetrical. Insects and other arthropods Exoskeleton Arthropoda: Crustaceans • Consists of layers of chitin (a • Arthropods have a polysaccharide) and • Most species segmented body. proteins. are aquatic. • Many limbs. • It is a hard covering • Bodies covered with a that protects the though exoskeleton (no animal and provides backbone) points ot attachment • Jointed legs to muscles. • Requires molting Arthopoda: Arachnids • Body divided Arthropoda: Diplopods Arthopoda: Chilopods into two • Centipedes sections. • Millipedes • Body divided in • Four pairs of segments, each legs. • Body divided in with 1 pair of • Most of them many legs. are carnivorous • Head with long pedipalps segments, each antennae one bearing 2 • First pairs of legs modified as pairs of legs. poison fangs 1 • Scorpions are ancient, climbing out of the thorax Sonoran Desert Arthropods Arthropoda: Insects sea 400 million years ago. abdomen head • Scorpions – Three species are common in the Arizona Upland (30 • Scorpions are eaten by elf owls, lizards, some snakes, grasshopper mice, desert • Body with three main species are known from Arizona). sections shrews, and pallid bats. • Bark scorpion • Head with 1 pair of • They have live young which ride on their antennae and 1 pair of • Stripe tailed scorpion eyes. mother’s back until their first molt in 1 – 3 • Thorax with 3 pairs of legs. • Giant hairy scorpion. weeks. • Many of them with wings. • The most diverse and abundant group of organisms on Earth. -
Insect-Mediated Nitrogen Dynamics in Decomposing Wood
Ecological Entomology (2015), 40 (Suppl. 1), 97–112 DOI: 10.1111/een.12176 INSECTS AND ECOSYSTEM SERVICES SPECIAL ISSUE Insect-mediated nitrogen dynamics in decomposing wood MICHAEL D. ULYSHEN USDA Forest Service, Athens, Georgia, U.S.A. Abstract. 1. Wood decomposition is characterised by complex and poorly understood nitrogen (N) dynamics with unclear implications for forest nutrient cycling and productivity. Wood-dwelling microbes have developed unique strategies for coping with the N limitations imposed by their substrate, including the translocation of N into wood by cord-forming fungi and the fixation of atmospheric nitrogen2 (N ) by bacteria and Archaea. 2. By accelerating the release of nutrients immobilised in fungal tissues and promoting N2 fixation by free-living and endosymbiotic prokaryotes, saproxylic insects have the potential to influence N dynamics in forests. 3. Prokaryotes capable of fixing N2 appear to be commonplace among wood-feeding insects, with published records from three orders (Blattodea, Coleoptera and Hymenoptera), 13 families, 33 genera and at least 60 species. These organisms appear to play a significant role in the N economies of their hosts and represent a widespread solution to surviving on a diet of wood. 4. While agricultural research has demonstrated the role that termites and other insects can play in enhancing crop yields, the importance of saproxylic insects to forest productivity remains unexplored. Key words. Arthropods, diazotroph, ecosystem services, Isoptera, mineralisation, saproxylic, symbiosis. Introduction the N-rich tissues of particular insect and fungal species. For example, Baker (1969) reported that Anobium punctatum (De Nitrogen (N) is the limiting nutrient in many systems (Vitousek Geer) developing in dry wood acquired 2.5 times the amount & Howarth, 1991; LeBauer & Treseder, 2008) and this is espe- of N provided by the wood itself. -
Roisinitermes Ebogoensis Gen. & Sp. N., an Outstanding Drywood Termite
A peer-reviewed open-access journal ZooKeys 787: 91–105Roisinitermes (2018) ebogoensis gen. & sp. n., an outstanding drywood termite... 91 doi: 10.3897/zookeys.787.28195 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae) Rudolf H. Scheffrahn1, Thomas Bourguignon2,3, Pierre Dieudonné Akama4, David Sillam-Dussès5,6, Jan Šobotník3 1 Fort Lauderdale Research and Education Center, Institute for Food and Agricultural Sciences, 3205 College Avenue, Davie, Florida 33314, USA 2 Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan 3 Faculty of Forestry and Wood Sciences, Czech Uni- versity of Life Sciences, Prague, Czech Republic 4 Département des sciences biologiques, Ecole normale supérieu- re, Université de Yaoundé I, BP 47 Yaoundé, Cameroon 5 University Paris 13 - Sorbonne Paris Cité, LEEC, EA4443, Villetaneuse, France 6 IRD – Sorbonne Universités, iEES-Paris, Bondy, France Corresponding author: Rudolf H. Scheffrahn ([email protected]) Academic editor: P. Stoev | Received 5 July 2018 | Accepted 27 August 2018 | Published 2 August 2018 http://zoobank.org/C6973DAD-84F4-4C54-87D0-4EDFBEDFF161 Citation: Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787: 91–105. https://doi.org/10.3897/zookeys.787.28195 Abstract Termites have developed a wide array of defensive mechanisms. One of them is the mandibulate soldier caste that crushes or pierces their enemies. However, in several lineages of Termitinae, soldiers have long and slender mandibles that cannot bite but, instead, snap and deliver powerful strikes to their opponents. -
2008-ASD.Pdf
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Arthropod Structure & Development 37 (2008) 273e286 www.elsevier.com/locate/asd Distribution of corazonin and pigment-dispersing factor in the cephalic ganglia of termites Radka Za´vodska´ a,b, Chih-Jen Wen c, Ivan Hrdy´ d, Ivo Sauman b, How-Jing Lee c, Frantisˇek Sehnal b,* a Pedagogical Faculty, University of South Bohemia, Jerony´mova 10, 371 15 Ceske ´ Budeˇjovice, Czech Republic b Biology Centre AVCR, Institute of Entomology, Branisˇovska´ 31, 370 05 Ceske ´ Budeˇjovice, Czech Republic c Department of Entomology, National Taiwan University, Roosevelt Rd. 1, Sec. 4, Taipei 106, Taiwan d Institute of Organic Chemistry and Biochemistry AVCR, Flemingovo na´m. 2, 160 00 Praha, Czech Republic Received 9 May 2007; received in revised form 24 January 2008; accepted 24 January 2008 Abstract Distribution of neurones detectable with antisera to the corazonin (Crz) and the pigment-dispersing factor (PDF) was mapped in the workers or pseudergates of 10 species representing six out of seven termite families. -
Insecticide KEEP out of REACH of CHILDREN. CAUTION
SPECIMEN LABEL Optigard™ ZT 1 PRECAUTIONARY STATEMENTS Hazards to Humans and Domestic Animals CAUTION Harmful if inhaled or absorbed through skin. Do not breathe vapor or spray mist. Avoid contact with eyes, skin, or clothing. Wash thoroughly with soap and water after handling. Remove and wash contaminated clothing before reuse. Insecticide Personal Protection Equipment (PPE) To be applied only by or under the supervision of commercial applicators responsible for pest control programs. Applicators and other handlers must wear: For Remedial Control of Localized Infestations of Drywood • Long-sleeved shirt and long pants Termites. • Chemical-resistant gloves made of any waterproof mate- For Control of Certain Nuisance Pests in Void Areas of rial—Category A (e.g., barrier laminate, butyl rubber, nitrile rub- Structures. ber, neoprene rubber, natural rubber, polyethylene, polyvinyl chloride [PVC] or viton) Active Ingredient: • Shoes plus socks Thiamethoxam1 (CAS No. 153719-23-4) . 21.6% Follow manufacturer’s instructions for cleaning/maintaining PPE. Other Ingredients: 78.4% If no such instructions exist for washables, use detergent and hot water. Keep and wash PPE separately from other laundry. Total: 100.0% 1 a thianicotinyl neonicotinoid insecticide User Safety Recommendations: Optigard ZT is a suspension concentrate formulation that con- • Wash hands thoroughly before eating, drinking, chewing gum, tains 2 lbs. thiamethoxam per gal. formulated product (244 using tobacco, or using the toilet. grams thiamethoxam per liter formulated product). • Remove clothing immediately if pesticide gets inside. Then KEEP OUT OF REACH OF CHILDREN. wash thoroughly and put on clean clothing. CAUTION Environmental Hazards Si usted no entiende la etiqueta, busque a alguien para que se la This pesticide is toxic to wildlife and highly toxic to aquatic inver- explique a usted en detalle. -
\4/Iwrwan Mueum
\4/iwrwan Mueum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N. Y. 10024 NUMBER 2 359 FEBRUARY I 7, I 969 A Revision of the Tertiary Fossil Species of the Kalotermitidae (Isoptera) BY ALFRED E. EMERSON1 INTRODUCTION The present article belongs in a series that attempts to redescribe named species, to describe new species, and to classify those species of fossil Tertiary termites that have been available for firsthand study. Preceding the present article, one (Emerson, 1965) dealt with the Mastotermitidae, one (Emerson, 1968a) described a new genus of the Hodotermitidae from Cretaceous rocks of Labrador, and one (Emerson, 1968b) dealt with the genus Ulmeriella of the Hodotermitidae. Weidner (1967) also revised Ulmeriella and described a new species from the Pliocene of Germany. Earlier (Emerson, 1933), the fossil species of the subfamily Termopsinae, family Hodotermitidae, were revised. All known termite fossils are found in Cretaceous and Tertiary deposits with the exception of some that are found in Pleistocene copal from tropical Africa and the New World, which have not been studied by the author. Of the nine genera and 16 named species of Tertiary Kalotermitidae, including those described herein, the author has examined specimens of 12 species. The remaining four are mentioned for bibliographical com- pleteness. Type specimens have been studied when available, and lectotypes or neotypes have been selected if the holotypes were not 1 Research Associate, Department of Entomology, the American Museum of Natural History, and Professor Emeritus of Biology, the University of Chicago. 2 AMERICAN MUSEUM NOVITATES NO. -
CAUTIONARY STATEMENTS Per Gallon Formulated Product (244 Grams Thiamethoxam Hazards to Humans and Domestic Animals Per Liter Formulated Product)
FIRST AID If inhaled • Move person to fresh air. GROUP 4A INSECTICIDE • If person is not breathing, call 911 or an ambulance, then give artificial respiration, preferably mouth-to-mouth, if possible. • Call a poison control center or doctor for treatment advice. If in eyes • Hold eye open and rinse slowly and gently with water for 15-20 minutes. • Remove contact lenses, if present, after the Insecticide first 5 minutes, then continue rinsing eye. • Call a poison control center or doctor for • For control of listed pests: including cockroaches, ants treatment advice. (except carpenter ants and Pharaoh ants), fire ants, yellow jackets, wasps and beetles If on skin or • Take off contaminated clothing. clothing • Rinse skin immediately with plenty of water • For control of localized infestations of drywood termites, for 15-20 minutes. subterranean termites, carpenter bees, and wood- • Call a poison control center or doctor for destroying beetles and borers treatment advice. Do not use this product as the sole source of control for If swallowed • Call a poison control center or doctor imme- active, structural infestations by subterranean termites; the diately for treatment advice. purpose of this application is to kill workers or winged • Have person sip a glass of water if able to reproductive forms of termites which are present at the time of swallow. treatment. It is not intended to provide structural pest control. • Do not induce vomiting unless told to do so It is not a substitute for mechanical alteration, soil and by a poison control center or doctor. foundation treatment, but merely a supplement. -
Xerox University Microfilms 300 North Zeeb Road Ann Arbor
INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Pagg(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black marl<, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal section~; with a small overlap. If necessai":', .sectioning is continued again - beginning below the first row and concinuing on until complete. 4. The majority of users indicate that the textual cont~nt is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.