Highly Seasonal Reproduction in Desmophyllum Dianthus from the Northern Patagonian Fjords Keri Feehan University of Maine, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Highly Seasonal Reproduction in Desmophyllum Dianthus from the Northern Patagonian Fjords Keri Feehan University of Maine, Keriafeehan@Gmail.Com The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Spring 3-10-2016 Highly Seasonal Reproduction in Desmophyllum dianthus from the Northern Patagonian Fjords Keri Feehan University of Maine, [email protected] Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Marine Biology Commons Recommended Citation Feehan, Keri, "Highly Seasonal Reproduction in Desmophyllum dianthus from the Northern Patagonian Fjords" (2016). Electronic Theses and Dissertations. 2433. http://digitalcommons.library.umaine.edu/etd/2433 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. HIGHLY SEASONAL REPRODUCTION IN DESMOPHYLLUM DIANTHUS FROM THE NORTHERN PATAGONIAN FJORDS By Keri A. Feehan B.S. University of Maine, 2013 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) The Graduate School The University of Maine May 2016 Advisory Committee: Rhian G. Waller, Professor of Marine Sciences, Advisor Kevin Eckelbarger, Professor of Marine Sciences Bob Steneck, Professor of Marine Sciences and Oceanography THESIS ACCEPTANCE STATEMENT On behalf of the graduate Committee for Keri A. Feehan I affirm that this manuscript is the final and accepted thesis. Signatures of all committee members are on file with the Graduate School at the University of Maine, 42 Stodder Hall, Orono, Maine. Dr. Rhian G. Waller, Associate Professor March 2nd, 2016 ii © 2016 Student’s name All Right Reserved iii LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for an advanced degree at the University of Maine, I agree that the Library shall make it freely available for inspection. I further agree that permission for “fair use” copying of this thesis for scholarly purposes may be granted by the Librarian. It is understood that any copy or publication of this thesis for financial gain shall not be allowed without my written permission. Signature: Date: HIGHLY SEASONAL REPRODUCTION IN DESMOPHYLLUM DIANTHUS FROM THE NORTHERN PATAGONIAN FJORDS By: Keri A. Feehan Thesis Advisor: Dr. Rhian G. Waller An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) May 2016 The purpose of this study was to determine the basic reproductive biology and seasonality of the Patagonian fjord coral Desmophyllum dianthus. Desmophyllum dianthus is a deep-sea solitary scleractinian found throughout the world’s oceans and an important benthic habitat builder. The Chilean Patagonian fjords are the only known location where this species occurs >50 m and thus are the only place to collect samples efficiently, effectively and economically. Corals were collected via SCUBA approximately every three months (when conditions permitted) from August 2012 to September 2013 from three sites within the Northern Patagonian fjords – Lilihuape (n=76) and Punta Huinay (n=59) in the Comau fjord, and Punta Mamurro (n=44) in Reñihue fjord. The objectives of this study were to determine sexuality, reproductive mode, oocyte size, fecundity and seasonality using histological techniques. Environmental data (temperature, salinity and light) was also analyzed to compare to seasonal reproductive trends and bring reproductive data into context. This study determined that Desmophyllum dianthus is dioecious (gonochoristic), having both male and female individuals. This species is also highly seasonal, spawning in the austral winter (August) and beginning gamete production in early spring. The fjord was coolest and most saline in August 2012, potentially cueing spawning. No planula larvae were found in any of the 8,000 histological sections. Due to the presence of late stage oocytes in August 2012, it is likely D. dianthus’s mode of reproduction is spawning rather than brooding. However this distinction could not be determined in this study. Oogenesis starts in September producing previtellogenic oocytes (size range: 25 – 200 μm) that slowly developed into vitellogenic oocytes by June. Vitellogenic oocytes ranged from 200 – 380 μm. Fecundity is relatively high compared to other deep-sea scleractinians, ranging from 2,448 (± 5.13 SE) to 172,328 (±103.67 SE) average potential oocytes per polyp. This research provides the first insight into Desmophyllum dianthus reproductive biology and yields an important baseline for continuing work on this benthic habitat builder in the Chilean fjords, and in the deep ocean. ACKNOWLEDGEMENTS This research would not have been possible without the collaboration between the University of Maine and the Punta Huinay Scientific Field Station. I would like to thank National Geographic and the National Science Foundation for the finical support for this project. A tremendous thank you to Rhian G. Waller, Laura Grange, Chris Riguad, Vreni Haussermann, Gunter Forsterra and all divers & scientists at the Punta Huinay scientific field station who collected the samples for this study. I would also like to thank undergraduates M. Halfman, A. Rossin, and E. Hartill for their help with decalcifications and staining. I would like to thank Damian Brady for over a 9,000 data points worth of salinity conversions. I am deeply grateful to my friends, family and fiancé Travis Conley for their support and love over the last two years. To my committee, Kevin Ecklebarger and Bob Steneck it has been a joy to know you and learn from you over the last several years, thank you for the all the great conversations and inspiration. To my advisor and mentor Rhian Waller, thank you for cultivating my passion for marine biology, thank you for every opportunity you have put my way, and thank you for your patience, kindness and forthright honesty. It is a pleasure to know you; you have helped me learn but most importantly you have helped me grow into the scientist I am today. I will be forever grateful for you and all who I have meet on my journey at the University of Maine. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS…………………………………………………………………………………iv LIST OF TABLES………………………………………………………………………………………….…vii LIST OF FIGURES……………………………………………………………………………………….…viii CHAPTER 1. INTRODUCTION……………………………………………………….………………………………….1 2. HYPOTHESIS……………………………………………………………………….……………………….8 3. MATERIALS AND METHODS……………………………………………………………..............9 4. RESULTS……………………………………………………………………………...….…………………14 4.1. Environmental Analysis…………………………………………………………….…………14 4.1.1. Lilihuape………………………………………………………………………………........14 4.1.2. Punta Huinay………………………………………………………….………………..….14 4.1.3. Punta Mamurro……………………………………………………………………….…..15 4.2. Gametogenesis…………….………………………………………………………………….….18 4.3. Fecundity…………………………………………………………………………………….………22 4.4. Size and fecundity………………………………………………………………………….……23 5. DISCUSSION……………………………………………………………………….…....…….……......27 REFERENCES………………………………………………………………………………..…………….34 v APPENDIX A. SUMMARY OF REPRODUCTIVE DATA BY SITE………….…….……..40 APPENDIX B. SUMMARY OF FECUNDITY DATA……………………………....………….47 APPENDIX C. SUMMARY OF COLD-WATER SCLERACTINIAN REPRODUCTIVE DATA………….…………………………………………………………………….48 BIOGRAPHY OF THE AUTHOR…………………………………………………….….…………..50 vi LIST OF TABLES Table A.1. Summary of size parameters and sex of Desmophyllum dianthus individuals collected at Lilihuape in the Comau fjord….…………..….40 Table A.2. Summary of size parameters and sex of Desmophyllum dianthus individuals collected at Punta Huinay in the Comau fjord.…….…….43 Table A.3. Summary of size parameters and sex of Desmophyllum dianthus individuals collected at Punta Mammuro in the Renihue fjord..…..45 Table A.4. Summary of size parameters and sex of Desmophyllum dianthus individuals collected at Cabudahue in the Renihue fjord……………..46 Table B.1. Summary of fecundity (opp), average oocyte diameter, polyp area and number of reproductive mesenteries in females from all locations……………………………………………………………………………………….47 Table C.1. Summary of sexuality, mode of reproduction and maximum oocytes sizes in all deep-sea Scleractinians published to date………………………………………………………………………………………………………48 vii LIST OF FIGURES Figure 1. Map of study sites in the Comua and Reñihue fjords, Southern Chile ……………………………………………………………………………………..…..10 Figure 2. Height (H), length (L) and width (W) measurement specifications for Desmophyllum dianthus..……………………………..…………..…..12 Figure 3. Histological sections of Desmophyllum dianthus reproductive anatomy………………………………………………….…………………………...13 Figure 4. Seasonality at Lilihuape in terms of environmental and reproductive data from August 2012 to September 2013….……………………...16 Figure 5. Seasonality at Punta Huniay in terms of environmental and reproductive data from August 2012 to September 2013……………….....17 Figure 6. Seasonality at Punta Mamurro in terms of environmental and reproductive data from August 2012 to September 2013…………………..18 Figure 7. Percent frequency of oocyte diameter per month from females collected in the Comau fjord (Lilihuape and Punta Huinay collection sites)……………………………………………………………..…....21 viii Figure 8. Percent frequency of oocyte diameter per month from females collected in the Comau fjord (Lilihuape and Punta Huinay collection sites)……..….…………………………………………………..…...22 Figure 9. Average potential fecundity by month at Lilihuape..…………………..24 Figure 10. Average potential fecundity in the Comau fjord in June 2013………………………………………………………………………………………………………....24
Recommended publications
  • Tree Coral, Primnoa Pacifica
    Sexual Reproduction and Seasonality of the Alaskan Red Tree Coral, Primnoa pacifica Rhian G. Waller1*, Robert P. Stone2, Julia Johnstone3, Jennifer Mondragon4 1 University of Maine, School of Marine Sciences, Darling Marine Center, Walpole, Maine, United States of America, 2 Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, Alaska, United States of America, 3 University of Maine, Darling Marine Center, Walpole, Maine, United States of America, 4 Alaska Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, Alaska, United States of America Abstract The red tree coral Primnoa pacifica is an important habitat forming octocoral in North Pacific waters. Given the prominence of this species in shelf and upper slope areas of the Gulf of Alaska where fishing disturbance can be high, it may be able to sustain healthy populations through adaptive reproductive processes. This study was designed to test this hypothesis, examining reproductive mode, seasonality and fecundity in both undamaged and simulated damaged colonies over the course of 16 months using a deepwater-emerged population in Tracy Arm Fjord. Females within the population developed asynchronously, though males showed trends of synchronicity, with production of immature spermatocysts heightened in December/January and maturation of gametes in the fall months. Periodicity of individuals varied from a single year reproductive event to some individuals taking more than the 16 months sampled to produce viable gametes. Multiple stages of gametes occurred in polyps of the same colony during most sampling periods. Mean oocyte size ranged from 50 to 200 mm in any season, and maximum oocyte size (802 mm) suggests a lecithotrophic larva.
    [Show full text]
  • Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill
    diversity Article Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill Janessy Frometa 1,2,* , Peter J. Etnoyer 2, Andrea M. Quattrini 3, Santiago Herrera 4 and Thomas W. Greig 2 1 CSS Dynamac, Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA 2 Hollings Marine Laboratory, NOAA National Centers for Coastal Ocean Sciences, National Ocean Service, National Oceanic and Atmospheric Administration, 331 Fort Johnson Rd, Charleston, SC 29412, USA; [email protected] (P.J.E.); [email protected] (T.W.G.) 3 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave NW, Washington, DC 20560, USA; [email protected] 4 Department of Biological Sciences, Lehigh University, 111 Research Dr, Bethlehem, PA 18015, USA; [email protected] * Correspondence: [email protected] Abstract: Mesophotic coral ecosystems (MCEs) are recognized around the world as diverse and ecologically important habitats. In the northern Gulf of Mexico (GoMx), MCEs are rocky reefs with abundant black corals and octocorals, including the species Swiftia exserta. Surveys following the Deepwater Horizon (DWH) oil spill in 2010 revealed significant injury to these and other species, the restoration of which requires an in-depth understanding of the biology, ecology, and genetic diversity of each species. To support a larger population connectivity study of impacted octocorals in the Citation: Frometa, J.; Etnoyer, P.J.; GoMx, this study combined sequences of mtMutS and nuclear 28S rDNA to confirm the identity Quattrini, A.M.; Herrera, S.; Greig, Swiftia T.W.
    [Show full text]
  • The Effects of In-Vitro Ph Decrease on the Gametogenesis of the Red Tree Coral, Primnoa Pacifica
    RESEARCH ARTICLE The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica 1 2 3 Ashley M. RossinID *, Rhian G. Waller , Robert P. Stone 1 University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fairbanks, Alaska, United States of America, 2 University of Maine, School of Marine Sciences, Darling Marine Center, Walpole, Maine, United States of America, 3 Alaska Fisheries Science Center, National Marine Fisheries Services, National Oceanic a1111111111 and Atmospheric Administration, Juneau, Alaska, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Primnoa pacifica is the most ecologically important coral species in the North Pacific Ocean and provides important habitat for commercially important fish and invertebrates. Ocean OPEN ACCESS acidification (OA) is more rapidly increasing in high-latitude seas because anthropogenic Citation: Rossin AM, Waller RG, Stone RP (2019) CO2 uptake is greater in these regions. This is due to the solubility of CO2 in cold water and The effects of in-vitro pH decrease on the the reduced buffering capacity and low alkalinity of colder waters. Primnoa pacifica colonies gametogenesis of the red tree coral, Primnoa pacifica. PLoS ONE 14(4): e0203976. https://doi. were cultured for six to nine months in either pH 7.55 (predicted Year 2100 pH levels) or pH org/10.1371/journal.pone.0203976 7.75 (Control). Oocyte development and fecundity in females, and spermatocyst stages in Editor: Erik Caroselli, University of Bologna, ITALY males were measured to assess the effects of pH on gametogenesis. Oocyte diameters were 13.6% smaller and fecundities were 30.9% lower in the Year 2100 samples.
    [Show full text]
  • The 2006 Triennial Aleutian Islands Golden King Crab Survey. Alaska Department of Fish and Game, Fishery Management Report No
    Fishery Management Report No. 07-07 The 2006 Triennial Aleutian Islands Golden King Crab Survey by Leslie J. Watson March 2007 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Measures (fisheries) centimeter cm Alaska Administrative fork length FL deciliter dL Code AAC mideye-to-fork MEF gram g all commonly accepted mideye-to-tail-fork METF hectare ha abbreviations e.g., Mr., Mrs., standard length SL kilogram kg AM, PM, etc. total length TL kilometer km all commonly accepted liter L professional titles e.g., Dr., Ph.D., Mathematics, statistics meter m R.N., etc. all standard mathematical milliliter mL at @ signs, symbols and millimeter mm compass directions: abbreviations east E alternate hypothesis HA Weights and measures (English) north N base of natural logarithm e cubic feet per second ft3/s south S catch per unit effort CPUE foot ft west W coefficient of variation CV gallon gal copyright © common test statistics (F, t, χ2, etc.) inch in corporate suffixes: confidence interval CI mile mi Company Co. correlation coefficient nautical mile nmi Corporation Corp.
    [Show full text]
  • Deep-Sea Coral Taxa in the Alaska Region: Depth and Geographical Distribution (V
    Deep-Sea Coral Taxa in the Alaska Region: Depth and Geographical Distribution (v. 2020) Robert P. Stone1 and Stephen D. Cairns2 1. NOAA Auke Bay Laboratories, Alaska Fisheries Science Center, Juneau, AK 2. National Museum of Natural History, Smithsonian Institution, Washington, DC This annex to the Alaska regional chapter in “The State of Deep-Sea Coral Ecosystems of the United States” lists deep-sea coral species in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the U.S. Alaska region (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is an update of the peer-reviewed 2017 list (Stone and Cairns 2017) and includes taxa recognized through 2020. Records are drawn from the published literature (including species descriptions) and from specimen collections that have been definitively identified by experts through examination of microscopic characters. Video records collected by the senior author have also been used if considered highly reliable; that is, in situ identifications were made based on an expertly identified voucher specimen collected nearby. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by suborder (if applicable), family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution, and are numbered accordingly. In summary, we have confirmed the presence of 142 unique coral taxa in Alaskan waters, including three species of alcyonaceans described since our 2017 list.
    [Show full text]
  • State of Deep‐Sea Coral and Sponge Ecosystems of the Alaska Region
    State of Deep‐Sea Coral and Sponge Ecosystems of the Alaska Region Chapter 3 in The State of Deep‐Sea Coral and Sponge Ecosystems of the United States Report Recommended citation: Stone RP, Rooper CN (2017) State of Deep‐Sea Coral and Sponge Ecosystems of the Alaska Region. In: Hourigan TF, Etnoyer, PJ, Cairns, SD (eds.). The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 36 p. Available online: http://deepseacoraldata.noaa.gov/library. Red tree coral with a school of juvenile Pacific cod. Courtesy of the Deepwater Exploration of Glacier Bay National Park expedition and UCONN‐ NURTEC. STATE OF DEEP‐SEA CORAL AND SPONGE ECOSYSTEMS OF THE ALASKA REGION STATE OF DEEP-SEA CORAL AND SPONGE Robert P. ECOSYSTEMS THE Stone1* and OF Chris N. ALASKA REGION Rooper2 1 NOAA Auke Bay Laboratories, Alaska Fisheries Science Center, I. Introduction Juneau, AK The marine environment of the Alaska Region can be divided into * Corresponding author: [email protected] three major geographical subregions – the Gulf of Alaska, the Bering Sea including the Aleutian Island Archipelago, and the 2 Resource Assessment Chukchi and Beaufort Seas in the Arctic. Deep corals are and Conservation widespread throughout Alaska, including the continental shelf and Engineering Division, upper slope of the Gulf of Alaska, the Aleutian Islands, the eastern Alaska Fisheries Science Center, Seattle, WA Bering Sea, and extending as far north as the Beaufort Sea. The Aleutian Islands have the highest diversity of deep corals in Alaska, and possibly in the northern North Pacific Ocean, including representatives of all major taxonomic groups and at least 50 species or subspecies that may be endemic to that region (Stone and Shotwell 2007).
    [Show full text]
  • A Tale of Two Corals Christopher T
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Spring 5-11-2018 Polyp to Population: A Tale of Two Corals Christopher T. Fountain University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Environmental Health and Protection Commons, Marine Biology Commons, and the Population Biology Commons Recommended Citation Fountain, Christopher T., "Polyp to Population: A Tale of Two Corals" (2018). Electronic Theses and Dissertations. 2856. https://digitalcommons.library.umaine.edu/etd/2856 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. POLYP TO POPULATION: A TALE OF TWO CORALS By C. Tyler Fountain B. A. Capital University, 2013 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) The Graduate School The University of Maine May 2018 Advisory Committee: Dr. Rhian Waller, Associate Professor of Marine Science, Advisor Dr. Peter Auster, Research Professor Emeritus of Marine Science, University of Connecticut Dr. Robert Steneck, Professor of Oceanography, Marine Biology, and Marine Policy POLYP TO POPULATION: A TALE OF TWO CORALS By C. Tyler Fountain Thesis Advisor: Dr. Rhian Waller An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) May 2018 Deep-sea corals are of conservation concern in the North Atlantic due to prolonged disturbances associated with the exploitation of natural resources and a changing environment.
    [Show full text]
  • Omnibus Deep-Sea Coral Amendment
    Omnibus Deep-Sea Coral Amendment DRAFT: November 4, 2016 Sections that are substantially complete and may be of interest include: Background and Purpose, section 2, page 7 Management Alternatives, section 3, page 13 o Includes No Action (page 14), broad zones (page 16), discrete zones (page 21), fishing restriction measures (page 83) Description of the Affected Environment, section 5, page 94 o Includes coral habitat suitability (page 124), species richness and distribution (page 99) o Background on fishing gear interactions and vulnerability (page 124) o Managed resources and fisheries (page 143) Prepared by the New England Fishery Management Council DEEP-SEA CORAL AMENDMENT COVER IMAGES, CLOCKWISE FROM UPPER RIGHT: A large black coral and two Paramuricea corals in Oceanographer Canyon. Image courtesy of NOAA Okeanos Explorer Program, 2013 Northeast U.S. Canyons Expedition. Close-up of a sea pen colony at 2,023 meters depth on Retriever Seamount. Sea pens are octocorals and the characteristic eight pinnate tentacles are plainly visible in this image. The dark line running down below the tentacles of each polyp is the pharynx, connecting the mouth to the bag-like digestive cavity. A mysid shrimp (“possum shrimp”) is swimming by the colony. Image courtesy of NOAA Okeanos Explorer Program, Our Deepwater Backyard: Exploring Atlantic Canyons and Seamounts. Cup corals and a sea star a mile underwater in Heezen Canyon. Image courtesy of NOAA Okeanos Explorer Program, 2013 Northeast U.S. Canyons Expedition. A Paramuricea coral in Nygren Canyon which 165 nautical miles southeast of Cape Cod, Massachusetts. Image courtesy of NOAA Okeanos Explorer Program, 2013 Northeast U.S.
    [Show full text]
  • (Primnoa Pacifica) in the North Pacific Ocean
    UC Irvine UC Irvine Previously Published Works Title Understanding growth and age of red tree corals (Primnoa pacifica) in the North Pacific Ocean. Permalink https://escholarship.org/uc/item/8xt1z6t7 Journal PloS one, 15(12) ISSN 1932-6203 Authors Choy, Emma Watanabe, Kelly Williams, Branwen et al. Publication Date 2020 DOI 10.1371/journal.pone.0241692 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PLOS ONE RESEARCH ARTICLE Understanding growth and age of red tree corals (Primnoa pacifica) in the North Pacific Ocean 1 1 1 2 3 Emma Choy , Kelly Watanabe , Branwen WilliamsID *, Robert Stone , Peter Etnoyer , Ellen Druffel4, Thomas Lorenson5, Mary Knaak1 1 W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, United States of America, 2 Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Juneau, AK, United States of America, 3 NOAA National Centers for Coastal Ocean Science, Charleston, SC, United States of America, 4 Department of Earth System Science, University of California Irvine, Irvine, a1111111111 CA, United States of America, 5 USGS Pacific Coastal and Marine Science Center, Santa Cruz, CA, United a1111111111 States of America a1111111111 * [email protected] a1111111111 a1111111111 Abstract Massive, long-lived deep-sea red tree corals (Primnoa pacifica) form a solid, layered axis OPEN ACCESS comprised of calcite and gorgonin skeleton. They are abundant on the outer continental Citation: Choy E, Watanabe K, Williams B, Stone R, shelf and upper slope of the Northeast Pacific, providing habitat for fish and invertebrates. Etnoyer P, Druffel E, et al. (2020) Understanding Yet, their large size and arborescent morphology makes them susceptible to disturbance growth and age of red tree corals (Primnoa from fishing activities.
    [Show full text]
  • Deep-Sea Coral Taxa in the Alaska Region: Depth and Geographical Distribution
    Deep-sea Coral Taxa in the Alaska Region: Depth and Geographical Distribution by Robert P. Stone1 and Stephen D. Cairns2 1. NOAA Fisheries, Alaska Fisheries Science Center 2. Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. This annex to the Alaska regional chapter in “State of Deep-Sea Coral Ecosystems of the United States” lists deep-sea coral species in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the U.S. Alaska region (Figure 1). The list covers azooxanthellate, heterotrophic coral species that occur predominantly deeper than 50 m in U.S. waters around Alaska. Details are provided on depth ranges and known geographic distribution within the region (Table 1). The list is adapted from Stone and Shotwell (2007) and has been drawn from the published literature (including species descriptions) and from recent specimen collections that have been definitively identified by experts through examination of microscopic characters. Video records collected by the senior author have also been used if considered highly reliable; that is, in situ identifications were made based on an expertly identified voucher specimen collected nearby. Taxonomic names are generally those currently accepted in the World Register of Marine Species (http://www.marinespecies.org), and are arranged by order, then alphabetically by family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distributions, and are numbered accordingly except for three unpublished reference collections as follows: A) the reference collection and video records of the senior author, B) specimen records archived at the United States National Museum of Natural History, Smithsonian Institution (2015), and C) S.
    [Show full text]
  • New Records of Cold-Water Corals from Korea
    Anim. Syst. Evol. Divers. Vol. 32, No. 3: 197-206, July 2016 http://dx.doi.org/10.5635/ASED.2016.32.3.028 Review article New Records of Cold-Water Corals from Korea Jun-Im Song* College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea ABSTRACT Two cold-water coral taxa, Octocorallia in the class Anthozoa and Stylasteridae in the class Hydrozoa, were identified. Deep-water samples were collected in fishing nets at depths ranging between 20 and 200 m along the coasts of the East Sea in Korea from 1976 to 1993. The two species found in this study represent new records for Korea: Paragorgia arborea (Linnaeus, 1758) in the class Anthozoa, and Stylaster profundiporus Broch, 1936 in the class Hydrozoa. Two families, Paragorgiidae and Stylasteridae, are also newly recorded in Korea. Furthermore, the species name of another cold-water gorgonian species, Primnoa pacifica (Kinoshita, 1907) in the family Primnoidae, is amended in this report. The two newly recorded cold-water coral species from Korea are described in detail based on their morphological characteristics. Paragorgia arborea is characterized by its growth form, medulla and cortex, zooid dimorphism, canal system, and spicule composition. Stylaster profundiporus is distinguished by its external skeletal characteristics, such as the coordination of dactylopores and gastropores, presence or absence of gastrostyles and dactylostyles, cyclosystem orientation, ampullar position, gastropore tube shape, and coenosteal texture. Keywords: deep-sea corals, Paragorgiidae, Primnoidae, Stylasteridae, Korea INTRODUCTION in the ocean (Sánchez, 2005), and are broadly distributed, occurring as deep as 4,152 m (Freiwald et al., 2004; Roberts The distribution of five cold-water coral taxa (Scleractinia, et al., 2009).
    [Show full text]
  • A Proposal to Create a Marine Refuge at the Knight Inlet Sill, British Columbia to Protect Unique Gorgonian Coral Habitat
    A Proposal to Create a Marine Refuge at the Knight Inlet Sill, British Columbia to Protect Unique Gorgonian Coral Habitat By Neil McDaniel [email protected] July 6, 2018 Knight Inlet is a long, narrow coastal fjord, extending 120 km inland from its entrance located 240 km northwest of Vancouver, near the north end of Vancouver Island. Despite a maximum depth of 540 m it features a relatively shallow sill lying between Hoeya Head and Prominent Point with a maximum depth of only 65 m. Due to the shallow depth of the sill, tidal currents in its vicinity frequently exceed 1 m/second. 1 The Knight Inlet sill has been of particular interest to oceanographers as it creates internal gravity waves and other hydraulic phenomena (Thompson, 1981). As a result, university and federal government scientists have undertaken several oceanographic surveys of these features. In the early 1980s Canadian researchers surveying Knight Inlet with the submersible Pisces IV encountered large fans of gorgonian coral on the flanks of the sill at depths of 65 to 200 m (Tunnicliffe and Syvitski, 1983). Boulders of various sizes were found scattered over the sill, many colonized by impressive coral fans, the largest three metres across. The fact that this gorgonian coral was present was itself noteworthy, but the scientists also observed that behind some of the boulders there were long drag marks, evidence that when the coral fan on a particular boulder became large enough it acted like a sail in the tidal currents. This was theorized to cause the boulder to be gradually transported until it was removed from the influence of the current or until the fan caused the boulder to tip over, thus spilling the “wind” from the sail created by the fan.
    [Show full text]