Estimation of in Situ Distribution of Carbonate Produced from Cold-Water Octocorals on a Japanese Seamount in the NW Pacific
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information Review for Protected Deep-Sea Coral Species in the New Zealand Region
INFORMATION REVIEW FOR PROTECTED DEEP-SEA CORAL SPECIES IN THE NEW ZEALAND REGION NIWA Client Report: WLG2006-85 November 2006 NIWA Project: DOC06307 INFORMATION REVIEW FOR PROTECTED DEEP-SEA CORAL SPECIES IN THE NEW ZEALAND REGION Authors Mireille Consalvey Kevin MacKay Di Tracey Prepared for Department of Conservation NIWA Client Report: WLG2006-85 November 2006 NIWA Project: DOC06307 National Institute of Water & Atmospheric Research Ltd 301 Evans Bay Parade, Greta Point, Wellington Private Bag 14901, Kilbirnie, Wellington, New Zealand Phone +64-4-386 0300, Fax +64-4-386 0574 www.niwa.co.nz © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the client. Such permission is to be given only in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Contents Executive Summary iv 1. Introduction 1 2. Corals 1 3. Habitat 3 4. Corals as a habitat 3 5. Major taxonomic groups of deep-sea corals in New Zealand 5 6. Distribution of deep-sea corals in the New Zealand region 9 7. Systematics of deep-sea corals in New Zealand 18 8. Reproduction and recruitment of deep-sea corals 20 9. Growth rates and deep-sea coral ageing 22 10. Fishing effects on deep-sea corals 24 11. Other threats to deep-sea corals 29 12. Ongoing research into deep-sea corals in New Zealand 29 13. Future science and challenges to deep-sea coral research in New Zealand 30 14. -
Tree Coral, Primnoa Pacifica
Sexual Reproduction and Seasonality of the Alaskan Red Tree Coral, Primnoa pacifica Rhian G. Waller1*, Robert P. Stone2, Julia Johnstone3, Jennifer Mondragon4 1 University of Maine, School of Marine Sciences, Darling Marine Center, Walpole, Maine, United States of America, 2 Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, Alaska, United States of America, 3 University of Maine, Darling Marine Center, Walpole, Maine, United States of America, 4 Alaska Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, Alaska, United States of America Abstract The red tree coral Primnoa pacifica is an important habitat forming octocoral in North Pacific waters. Given the prominence of this species in shelf and upper slope areas of the Gulf of Alaska where fishing disturbance can be high, it may be able to sustain healthy populations through adaptive reproductive processes. This study was designed to test this hypothesis, examining reproductive mode, seasonality and fecundity in both undamaged and simulated damaged colonies over the course of 16 months using a deepwater-emerged population in Tracy Arm Fjord. Females within the population developed asynchronously, though males showed trends of synchronicity, with production of immature spermatocysts heightened in December/January and maturation of gametes in the fall months. Periodicity of individuals varied from a single year reproductive event to some individuals taking more than the 16 months sampled to produce viable gametes. Multiple stages of gametes occurred in polyps of the same colony during most sampling periods. Mean oocyte size ranged from 50 to 200 mm in any season, and maximum oocyte size (802 mm) suggests a lecithotrophic larva. -
Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C. -
Anthozoa: Octocorallia) from the Clarion-Clipperton Fracture Zone, Equatorial Northeastern Pacific
Mar Biodiv DOI 10.1007/s12526-015-0340-x ORIGINAL PAPER New abyssal Primnoidae (Anthozoa: Octocorallia) from the Clarion-Clipperton Fracture Zone, equatorial northeastern Pacific Stephen D. Cairns1 Received: 28 January 2015 /Revised: 20 March 2015 /Accepted: 23 March 2015 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2015 Abstract Three new species, including a new genus, nodules that contain iron, manganese, copper, nickel, cobalt, Abyssoprimnoa, are described from abyssal depths from the zinc, silver, and other metals (Bluhm 1994), and thus have easternmost Clarion-Clipperton Fracture Zone in the equato- been of interest to deep-sea mining companies for several rial northeastern Pacific. This prompted the listing of all 39 decades since the region was discovered in the 1950s. octocorallian taxa collected deeper than 3000 m, which con- Currently, at least 12 claim sites have been awarded to various stitutes only about 1.2 % of the octocoral species. To place this mining companies, each associated with one or more coun- in perspective, the depth records for other benthic cnidarian tries. The hard substrate afforded by the nodules allows the orders are compared. settlement of various benthic invertebrates that require a hard surface for attachment and subsequent anchoring, one of these groups being the octocorals. Because of the extreme depth and Keywords Primnoidae . Clarion-clipperton fracture zone . logistic difficulty of collecting organisms from such depths, New species . New genus . Octocorallia -
Okeanos Explorer ROV Dive Summary
Okeanos Explorer ROV Dive Summary Dive Information Dive Map Site Name Carondelet Reef Expedition Coordinator(s) Brian RC Kennedy, Nick Pawlenko ROV Lead(s) Karl McLetchie Science Team Lead(s) Amanda Demopoulos and Steven Auscavitch General Area Descriptor Phoenix Islands Protected Area ROV Dive Name Cruise EX-17-03 Leg 0 Dive Number 03 Equipment Deployed ROV Deep Discoverer (D2) Camera Platform Seirios CTD Depth Altitude Scanning Sonar USBL Position Heading ROV Measurements Pitch Roll HD Camera 1 HD Camera 2 Low Res Cam 1 Low Res Cam 2 Low Res Cam 3 Low Res Cam 4 Low Res Cam 5 Equipment Malfunctions Dive Summary: EX1703_DIVE03 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In Water: 2017-03-10T18:25:08.463000 05°, 38.029' S ; 173°, 50.379' W Out Water: 2017-03-11T02:34:14.648000 05°, 37.629' S ; 173°, 50.105' W Off Bottom: 2017-03-11T01:37:19.059000 ROV Dive Summary 05°, 37.685' S ; 173°, 50.365' W (from processed ROV data) On Bottom: 2017-03-10T19:36:06.783000 05°, 37.936' S ; 173°, 50.260' W Dive duration: 8:9:6 Bottom Time: 6:1:12 Max. depth: 1842.3 m Special Notes Name Affiliation Email Address Scientists Involved University of (please provide name, Abby Lapointe Hawaii [email protected] location, affiliation, email) NOAA Fisheries Allen Andrews - PIFSC [email protected] 2 Amanda Demopoulos USGS [email protected] Amanda Netburn NOAA OER [email protected] FLorida State Amy Baco-Taylor University [email protected] UnderWater Andrea Pierce World Guam [email protected] Chiba Institute Asako of Technology Matsumoto -
Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill
diversity Article Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill Janessy Frometa 1,2,* , Peter J. Etnoyer 2, Andrea M. Quattrini 3, Santiago Herrera 4 and Thomas W. Greig 2 1 CSS Dynamac, Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA 2 Hollings Marine Laboratory, NOAA National Centers for Coastal Ocean Sciences, National Ocean Service, National Oceanic and Atmospheric Administration, 331 Fort Johnson Rd, Charleston, SC 29412, USA; [email protected] (P.J.E.); [email protected] (T.W.G.) 3 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave NW, Washington, DC 20560, USA; [email protected] 4 Department of Biological Sciences, Lehigh University, 111 Research Dr, Bethlehem, PA 18015, USA; [email protected] * Correspondence: [email protected] Abstract: Mesophotic coral ecosystems (MCEs) are recognized around the world as diverse and ecologically important habitats. In the northern Gulf of Mexico (GoMx), MCEs are rocky reefs with abundant black corals and octocorals, including the species Swiftia exserta. Surveys following the Deepwater Horizon (DWH) oil spill in 2010 revealed significant injury to these and other species, the restoration of which requires an in-depth understanding of the biology, ecology, and genetic diversity of each species. To support a larger population connectivity study of impacted octocorals in the Citation: Frometa, J.; Etnoyer, P.J.; GoMx, this study combined sequences of mtMutS and nuclear 28S rDNA to confirm the identity Quattrini, A.M.; Herrera, S.; Greig, Swiftia T.W. -
The Effects of In-Vitro Ph Decrease on the Gametogenesis of the Red Tree Coral, Primnoa Pacifica
RESEARCH ARTICLE The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica 1 2 3 Ashley M. RossinID *, Rhian G. Waller , Robert P. Stone 1 University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fairbanks, Alaska, United States of America, 2 University of Maine, School of Marine Sciences, Darling Marine Center, Walpole, Maine, United States of America, 3 Alaska Fisheries Science Center, National Marine Fisheries Services, National Oceanic a1111111111 and Atmospheric Administration, Juneau, Alaska, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Primnoa pacifica is the most ecologically important coral species in the North Pacific Ocean and provides important habitat for commercially important fish and invertebrates. Ocean OPEN ACCESS acidification (OA) is more rapidly increasing in high-latitude seas because anthropogenic Citation: Rossin AM, Waller RG, Stone RP (2019) CO2 uptake is greater in these regions. This is due to the solubility of CO2 in cold water and The effects of in-vitro pH decrease on the the reduced buffering capacity and low alkalinity of colder waters. Primnoa pacifica colonies gametogenesis of the red tree coral, Primnoa pacifica. PLoS ONE 14(4): e0203976. https://doi. were cultured for six to nine months in either pH 7.55 (predicted Year 2100 pH levels) or pH org/10.1371/journal.pone.0203976 7.75 (Control). Oocyte development and fecundity in females, and spermatocyst stages in Editor: Erik Caroselli, University of Bologna, ITALY males were measured to assess the effects of pH on gametogenesis. Oocyte diameters were 13.6% smaller and fecundities were 30.9% lower in the Year 2100 samples. -
Primnoidae (Octocorallia: Calcaxonia) from the Emperor Seamounts, with Notes on Callogorgia Elegans (Gray, 1870)
Primnoidae (Octocorallia: Calcaxonia) from the Emperor Seamounts, with Notes on Callogorgia elegans (Gray, 1870) Stephen D. Cairns, Robert P. Stone, Hye-Won Moon, Jong Hee Lee Pacific Science, Volume 72, Number 1, January 2018, pp. 125-142 (Article) Published by University of Hawai'i Press For additional information about this article https://muse.jhu.edu/article/683173 [ This content has been declared free to read by the pubisher during the COVID-19 pandemic. ] Primnoidae (Octocorallia: Calcaxonia) from the Emperor Seamounts, with Notes on Callogorgia elegans (Gray, 1870)1 Stephen D. Cairns,2,6 Robert P. Stone,3 Hye-Won Moon,4 and Jong Hee Lee 5 Abstract: Six primnoid species are reported from depths of 280 – 480 m from the southern Emperor Seamounts, including two new species (Callogorgia imperialis and Thouarella taylorae). Only the new species are fully described and illustrated. Also, Callogorgia elegans, which has a confused taxonomic history, is discussed and illustrated. Not unexpectedly, the Emperor Seamount primnoids have a strong affinity with the fauna of the Hawaiian Islands, an affinity that is expected to increase as more collecting is done in the region. The United Nations General Assembly nations around the world are developing pro- approved Resolution 61/105 in December tocol and policy on fishing encounters with 2006 ( United Nations General Assembly 2007) the sensitive biota (Durán Muñoz et al. 2012). that calls on States to directly, or through Here we report on collections made on fish- Regional Fisheries Management Organiza- ing vessels in the Emperor Seamounts, North tions, apply a precautionary ecosystem ap- Pacific Ocean, as part of a joint project be- proach to sustainably manage fish stocks and tween the United States and the Republic of protect vulnerable marine ecosystems ( VMEs) Korea. -
Alcyonacea: Primnoidae) from the Southwestern Atlantic
New primnoid genus and species (Alcyonacea: Primnoidae) from the southwestern Atlantic Stephen D. Cairns Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A., e-mail: [email protected] PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 125(2):180–188. 2012. New primnoid genus and species (Alcyonacea: Primnoidae) from the southwestern Atlantic Stephen D. Cairns Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A., e-mail: [email protected] Abstract.—A new genus and species of primnoid octocoral, Heptaprimnoa patagonica, is described from deep water from the cold temperate/ Subantarctic region off Argentina and Burdwood Bank. It is distinguished from other primnoid genera by having only seven rows of body wall scales. Keywords: Alcyonacea, Argentina, new genus, new species, Octocorallia, Primnoidae, Subantarctic As noted by Cairns & Bayer (2009), the a new species; Orejas et al. (2007), repro- Primnoidae is a large and diverse octoco- ductive habits of two species; Zapata- ral family, ranking fourth among the 44 Guardiola & Lo´pez-Gonza´lez (2009), two octocoral families in number of species, new species; Cairns & Bayer (2009), three and third in number of genera. Whereas new genera and two new subgenera; Zapa- the primnoids are cosmopolitan in distri- ta-Guardiola & Lo´pez-Gonza´lez (2010a), bution and occur over a depth range of 8– two new genera and species; Zapata-Guar- 5850 m, they are found primarily in deep diola & Lo´pez-Gonza´lez (2010b), four new water, and there seems to be a dispropor- species; Zapata-Guardiola & Lo´pez-Gon- tionate number of species and genera za´lez (2010c), a new genus; and Taylor et al. -
Deep-Sea Life Issue 14, January 2020 Cruise News E/V Nautilus Telepresence Exploration of the U.S
Deep-Sea Life Issue 14, January 2020 Welcome to the 14th edition of Deep-Sea Life (a little later than anticipated… such is life). As always there is bound to be something in here for everyone. Illustrated by stunning photography throughout, learn about the deep-water canyons of Lebanon, remote Pacific Island seamounts, deep coral habitats of the Caribbean Sea, Gulf of Mexico, Southeast USA and the North Atlantic (with good, bad and ugly news), first trials of BioCam 3D imaging technology (very clever stuff), new deep pelagic and benthic discoveries from the Bahamas, high-risk explorations under ice in the Arctic (with a spot of astrobiology thrown in), deep-sea fauna sensitivity assessments happening in the UK and a new photo ID guide for mesopelagic fish. Read about new projects to study unexplored areas of the Mid-Atlantic Ridge and Azores Plateau, plans to develop a water-column exploration programme, and assessment of effects of ice shelf collapse on faunal assemblages in the Antarctic. You may also be interested in ongoing projects to address and respond to governance issues and marine conservation. It’s all here folks! There are also reports from past meetings and workshops related to deep seabed mining, deep-water corals, deep-water sharks and rays and information about upcoming events in 2020. Glance over the many interesting new papers for 2019 you may have missed, the scientist profiles, job and publishing opportunities and the wanted section – please help your colleagues if you can. There are brief updates from the Deep- Ocean Stewardship Initiative and for the deep-sea ecologists amongst you, do browse the Deep-Sea Biology Society president’s letter. -
Multi-Colony Calibrations of Coral Ba/Ca with a Contemporaneous in Situ Seawater Barium Record
Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 179 (2016) 203–216 www.elsevier.com/locate/gca Multi-colony calibrations of coral Ba/Ca with a contemporaneous in situ seawater barium record Miche`le LaVigne a,⇑, Andre´a G. Grottoli b, James E. Palardy c, Robert M. Sherrell d,e a Department of Earth and Oceanographic Science, Bowdoin College, Brunswick, ME, USA b School of Earth Sciences, Ohio State University, Columbus, OH, USA c Environment and Natural Resources Division, Abt Associates Inc., Bethesda, MD, USA d Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA e Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA Received 23 April 2015; accepted in revised form 19 December 2015; available online 3 February 2016 Abstract The coral skeleton barium to calcium ratio (Ba/Cacoral), a proxy for seawater barium concentrations (BaSW), has been interpreted as a tracer of upwelling based on the characteristic ‘‘nutrient like” depth profile of BaSW. However, in some trop- ical regions, such as the Gulf of Panama´, substantial influence of terrestrial runoff inputs and differences between the vertical distribution of BaSW and that of the major nutrients (nitrate and phosphate) in the upper water column can complicate the interpretation of Ba/Cacoral as an upwelled nutrient proxy. In the Gulf of Panama´, contemporaneous Ba/Cacoral records from multiple colonies of Porites lobata, Pavona gigantea, and Pavona clavus corals record a nearly twofold change in surface water BaSW as a 20–70% increase in skeletal Ba/Ca with excellent correlation among Ba/Ca records from co-located colonies (r = 0.86–0.99). -
The 2006 Triennial Aleutian Islands Golden King Crab Survey. Alaska Department of Fish and Game, Fishery Management Report No
Fishery Management Report No. 07-07 The 2006 Triennial Aleutian Islands Golden King Crab Survey by Leslie J. Watson March 2007 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Measures (fisheries) centimeter cm Alaska Administrative fork length FL deciliter dL Code AAC mideye-to-fork MEF gram g all commonly accepted mideye-to-tail-fork METF hectare ha abbreviations e.g., Mr., Mrs., standard length SL kilogram kg AM, PM, etc. total length TL kilometer km all commonly accepted liter L professional titles e.g., Dr., Ph.D., Mathematics, statistics meter m R.N., etc. all standard mathematical milliliter mL at @ signs, symbols and millimeter mm compass directions: abbreviations east E alternate hypothesis HA Weights and measures (English) north N base of natural logarithm e cubic feet per second ft3/s south S catch per unit effort CPUE foot ft west W coefficient of variation CV gallon gal copyright © common test statistics (F, t, χ2, etc.) inch in corporate suffixes: confidence interval CI mile mi Company Co. correlation coefficient nautical mile nmi Corporation Corp.