Deep Benthic Coral Habitats of Glacier Bay National Park and Preserve, Alaska Elise C

Total Page:16

File Type:pdf, Size:1020Kb

Deep Benthic Coral Habitats of Glacier Bay National Park and Preserve, Alaska Elise C The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-23-2019 Deep Benthic Coral Habitats of Glacier Bay National Park and Preserve, Alaska Elise C. Hartill University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Marine Biology Commons, and the Other Ecology and Evolutionary Biology Commons Recommended Citation Hartill, Elise C., "Deep Benthic Coral Habitats of Glacier Bay National Park and Preserve, Alaska" (2019). Electronic Theses and Dissertations. 2996. https://digitalcommons.library.umaine.edu/etd/2996 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. DEEP BENTHIC CORAL HABITATS OF GLACIER BAY NATIONAL PARK AND PRESERVE, ALASKA By Élise Catherine Hartill B.Sc. University of Maine, 2017 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) The Graduate School The University of Maine August 2019 Advisory Committee: Rhian Waller, Associate Professor of Marine Science, Advisor Peter Auster, Research Professor Emeritus of Marine Sciences, University of Connecticut Damian Brady, Associate Professor of Oceanography Brenda Hall, Professor School of Earth and Climate Sciences and Climate Change Institute DEEP BENTHIC CORAL HABITATS OF GLACIER BAY NATIONAL PARK AND PRESERVE, ALASKA By Élise Catherine Hartill Thesis Advisor: Dr. Rhian Waller An Abstract of the Thesis Presented In Partial Fulfillments of the Requirements for the Degree of Master of Science (in Marine Biology) August 2019 Glacier Bay National Park and Preserve in Southeast Alaska is a system of fjords that presents an ideal natural laboratory to study terrestrial, aquatic and marine patterns of succession due to its unique and recent history of deglaciation. The patterns of deep benthic community assemblages in the fjords of Glacier Bay were investigated by quantitative assessment of underwater photo-quadrats collected using a remotely operated vehicle. The percent cover and diversity of species were lowest near the glaciated heads of the fjords and highest in the Central Channel and at the mouths of the fjords of Glacier Bay, where oceanographic conditions of low sedimentation and increased tidal currents are favorable. The diverse communities at the mouths of the fjords and in the Central Channel consisted of large colonies of the Red Tree Coral, Primnoa pacifica, as well as sponges, brachiopods, multiple species of cnidarians, echinoderms, molluscs and arthropods. The communities at the heads of the fjords were heavily dominated by pioneering species such as brachiopoda, hydrozoan turf, the encrusting stoloniferan coral Sarcodyction incrustans, and smaller colonies of Primnoa pacifica. This research demonstrates a gradient of species dominance from the Central Channel to the heads of the glaciated fjords of Glacier Bay, which is likely driven by a combination of physical and biological factors such as sedimentation, nutrient availability, larval dispersal, and competition. Keywords: community structure, Primnoa pacifica, diversity, fjord ACKNOWLEDGEMENTS I’d like to thank my advisor, Dr. Rhian Waller, for giving me the opportunity to pursue a master’s degree in a field that I find exciting and challenging, and for creating a laboratory environment that is an incubator for women to succeed in science. I’d also like to thank my advisory committee, Dr. Peter Auster, Dr. Damian Brady, and Dr. Brenda Hall, for answering my questions, challenging me, and supporting me throughout this journey. I’d like to acknowledge the funding of this project from the NOAA Ocean Exploration program and extend a special thank you to the science party, ROV Kraken II pilots and ship crew aboard the Norseman II who made the exploration of Glacier Bay National Park and Preserve in March of 2016 possible. I would like to thank Bob Stone for his support and humor, and for answering all of my species identification questions. I would also like to recognize the folks at the National Park in Glacier Bay who work hard to protect this natural wonder, and who make the Park accessible to the visitors of today and tomorrow. I’d like to thank the staff at the Darling Marine Center, especially Paul, Yvette and Gayle, and Randy Lackovic in the library. And I’d like to thank Ashley Rossin, Julia Johnstone, Keri Feehan, and Tyler Fountain for being the best lab and office mates anyone could possibly hope for. Lastly, I’d like to thank my friends, family and my partner, for supporting me throughout this time. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................ ii LIST OF TABLES ...............................................................................................................v LIST OF FIGURES ........................................................................................................... vi PREAMBLE ..................................................................................................................... vii Chapter 1. INTRODUCTION ...................................................................................................1 1.1 Cold-Water Corals .............................................................................................1 1.2 Glacier Bay National Park & Preserve ..............................................................2 1.3 Primnoa pacifica Ecology in Alaska .................................................................5 1.4 Research Goal ....................................................................................................6 2. MATERIALS AND METHODS .............................................................................7 2.1 Study Site & Data Collection .............................................................................7 2.2 Environmental Data Collection..........................................................................8 2.3 Community Analysis .........................................................................................9 2.4 Statistical Analysis .............................................................................................9 3. RESULTS AND DISCUSSION ............................................................................11 3.1 Habitat Characteristics .....................................................................................11 3.2 Benthic Assemblages .......................................................................................11 3.3 Species Dominance ..........................................................................................20 3.4 Implications & Further Research .....................................................................23 4. CONCLUSION ......................................................................................................25 REFERENCES ..................................................................................................................26 APPENDIX A. Species Accumulation Curves & Richness Estimators Across Sites .......30 iii APPENDIX B. Relative Frequency of Taxa Occurrence ..................................................33 APPENDIX C. Similarity Percentage (SIMPER) Routines ..............................................34 BIOGRAPHY OF THE AUTHOR ....................................................................................39 iv LIST OF TABLES Table 1. ROV Metadata by Site ...........................................................................................8 Table 2. Relative Frequency of Taxa Occurrence .............................................................33 v LIST OF FIGURES Figure 1. Map of Glacier Bay National Park & Preserve ....................................................4 Figure 2. Species Accumulation Curves and Richness Estimates .....................................13 Figure 3. Pictures of Taxa Observed..................................................................................14 Figure 4. Species Dominance by Site ................................................................................17 Figure 5. Non-metric Multidimensional Scaling Plot ........................................................18 Figure 6. Site Similarity Dendrogram ................................................................................20 Figure 7. Species Accumulation Curves for Sites in Near Zones ......................................30 Figure 8. Species Accumulation Curves for Sites in Mid Zones .......................................31 Figure 9. Species Accumulation Curves for Sites in Far Zones ........................................32 vi PREAMBLE The ecology of deep benthic habitats is the one of the last frontiers in marine science. The inaccessibility of these habitats due to their distance from shore and the depth at which they exist makes them extremely difficult to study. Temperate fjords around the world (e.g. Alaska, Chile, New Zealand and Scandinavia) support an abundance of marine life. They also have populations of deep-sea species that have emerged at shallower depths due to the unique oceanographic conditions present in temperate high and low latitude fjords. Glacier Bay National Park and Preserve in Southeast Alaska is one such
Recommended publications
  • Bartlett Cove Campground
    Glacier Bay National Park and Preserve Summer 2016 VISITOR GUIDE Trails.............................page 7 Boating & Camping.....page 22 Bears...........................page 31 Welcome to Glacier Bay National Park Table of Contents and Preserve. You have arrived both at a special place and at a momentous time. Numbers can have exceptional significance, General Information .....................3-14 especially years: 126 years of visitors coming to Glacier Bay, 91 Explore Glacier Bay years of protection as part of the NPS system, 10 years since the Supreme Court case confirming Park Science ...................................15-19 park marine jurisdiction. These Take a closer look years reveal a rising tide of under- standing of how unique and Guide to Park Waters Map .........20-21 deserving of protection Glacier Bay is. This year, though, con- Boating & Camping Guide ....... 22-29 tains two distinctive numbers: the Plan your adventure National Park Service is 100 years old and this is the birth year of the Protect Wildlife.............................30-35 Huna Tribal House, celebrating a Be aware and respectful new relationship with the Huna Tlingit (see page 4). For Teachers ...................................... 36 Share Glacier Bay with your class Please join us in celebrating 100 years of successes preserving America’s special places. Throughout the year there will be .............................................. 37 special events and activities culminating in the celebration of the For Kids Become a Junior Ranger Huna Tlingit Tribal House on NPS Founders Day, August 25. No matter which day you visit or how much time you have, there ............ 38 will be centennial activities in which to take part. Look on our The Fairweather Detective Search for clues to earn a prize information boards, the park’s website, or ask a park ranger to find out how you can participate.
    [Show full text]
  • University Micrdfilms International 300 N
    INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is "Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. If copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
    [Show full text]
  • Tree Coral, Primnoa Pacifica
    Sexual Reproduction and Seasonality of the Alaskan Red Tree Coral, Primnoa pacifica Rhian G. Waller1*, Robert P. Stone2, Julia Johnstone3, Jennifer Mondragon4 1 University of Maine, School of Marine Sciences, Darling Marine Center, Walpole, Maine, United States of America, 2 Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, Alaska, United States of America, 3 University of Maine, Darling Marine Center, Walpole, Maine, United States of America, 4 Alaska Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, Alaska, United States of America Abstract The red tree coral Primnoa pacifica is an important habitat forming octocoral in North Pacific waters. Given the prominence of this species in shelf and upper slope areas of the Gulf of Alaska where fishing disturbance can be high, it may be able to sustain healthy populations through adaptive reproductive processes. This study was designed to test this hypothesis, examining reproductive mode, seasonality and fecundity in both undamaged and simulated damaged colonies over the course of 16 months using a deepwater-emerged population in Tracy Arm Fjord. Females within the population developed asynchronously, though males showed trends of synchronicity, with production of immature spermatocysts heightened in December/January and maturation of gametes in the fall months. Periodicity of individuals varied from a single year reproductive event to some individuals taking more than the 16 months sampled to produce viable gametes. Multiple stages of gametes occurred in polyps of the same colony during most sampling periods. Mean oocyte size ranged from 50 to 200 mm in any season, and maximum oocyte size (802 mm) suggests a lecithotrophic larva.
    [Show full text]
  • Anthozoa: Octocorallia) from the Clarion-Clipperton Fracture Zone, Equatorial Northeastern Pacific
    Mar Biodiv DOI 10.1007/s12526-015-0340-x ORIGINAL PAPER New abyssal Primnoidae (Anthozoa: Octocorallia) from the Clarion-Clipperton Fracture Zone, equatorial northeastern Pacific Stephen D. Cairns1 Received: 28 January 2015 /Revised: 20 March 2015 /Accepted: 23 March 2015 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2015 Abstract Three new species, including a new genus, nodules that contain iron, manganese, copper, nickel, cobalt, Abyssoprimnoa, are described from abyssal depths from the zinc, silver, and other metals (Bluhm 1994), and thus have easternmost Clarion-Clipperton Fracture Zone in the equato- been of interest to deep-sea mining companies for several rial northeastern Pacific. This prompted the listing of all 39 decades since the region was discovered in the 1950s. octocorallian taxa collected deeper than 3000 m, which con- Currently, at least 12 claim sites have been awarded to various stitutes only about 1.2 % of the octocoral species. To place this mining companies, each associated with one or more coun- in perspective, the depth records for other benthic cnidarian tries. The hard substrate afforded by the nodules allows the orders are compared. settlement of various benthic invertebrates that require a hard surface for attachment and subsequent anchoring, one of these groups being the octocorals. Because of the extreme depth and Keywords Primnoidae . Clarion-clipperton fracture zone . logistic difficulty of collecting organisms from such depths, New species . New genus . Octocorallia
    [Show full text]
  • 2017 Fact Sheet Bay Before Flying to Antarctica I11 Tile Longest N1igration of Any Bird Species ,, Superintendent Philip
    Arctic Terns raise their young at Glacier 2017 Fact Sheet Bay before flying to Antarctica i11 tile longest n1igration of any bird species ,, Superintendent Philip . ,Hooge Established Feb 26, 1925 Designated National Monument Dec 2, 1980 Designated National Park & Preserve 1986 Designated World Biosphere Reserve 1992 Designated World Heritage site Glacier Bay represents the most dramatic documented large-scale glacial retreat in the world and provides unparalleled opportunities for scientific study of tide~vater glaciers and ecosystem development. Size National Park 3,283,000 acres 5 130 square miles National Preserve: 57,000 acres 90 square miles 3,283,000 acres (roughly the size ofthe state ofConnecticut) Park Wilderness: 2,658,000 acres \Xlorld Heritage Site: 24,300,000 acres also includes Wrangell-St. Elias National Park, Kluane lvational Park (Canada) and Tatshe11sl1i11i-Alsek Park (Canada). One ofthe world's largest protected wilden1ess areas. Base Budget g 4,969,434 Staffing Permanent 55 Term/Seasonal 73 Volunteers 59 (contributed 2,202 hours ofwork in '16) Access Most visitors arrive on cruise ships and tour boats. The only road is 10 miles from the tiny town of Gustavus, Gustavus has an airport and is served by AK Airlines in summer and small planes all year round. The Alaska Marine Highway provides scheduled ferry service from Juneau to Gustavus. Visitation The number of vessels per day is limited in the summer months. 1\llaximum number of vessels allowed each day include 2 cruise ships, 3 tour boats, 6 charter vessels, and 25 private vessels. 2016: 485,415 Cruise ship passengers Hun1pback whales spend the sun11ner in Glacier Bay 16,230 Tour boat passengers and swiln to Hawaii/or the winter -30,000 Land Visitors 1002 Backcountry campers Trails 3 hil<ing trails: 10 miles over 700 miles of shoreline to kayak, camp, and explore.
    [Show full text]
  • Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill
    diversity Article Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill Janessy Frometa 1,2,* , Peter J. Etnoyer 2, Andrea M. Quattrini 3, Santiago Herrera 4 and Thomas W. Greig 2 1 CSS Dynamac, Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA 2 Hollings Marine Laboratory, NOAA National Centers for Coastal Ocean Sciences, National Ocean Service, National Oceanic and Atmospheric Administration, 331 Fort Johnson Rd, Charleston, SC 29412, USA; [email protected] (P.J.E.); [email protected] (T.W.G.) 3 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave NW, Washington, DC 20560, USA; [email protected] 4 Department of Biological Sciences, Lehigh University, 111 Research Dr, Bethlehem, PA 18015, USA; [email protected] * Correspondence: [email protected] Abstract: Mesophotic coral ecosystems (MCEs) are recognized around the world as diverse and ecologically important habitats. In the northern Gulf of Mexico (GoMx), MCEs are rocky reefs with abundant black corals and octocorals, including the species Swiftia exserta. Surveys following the Deepwater Horizon (DWH) oil spill in 2010 revealed significant injury to these and other species, the restoration of which requires an in-depth understanding of the biology, ecology, and genetic diversity of each species. To support a larger population connectivity study of impacted octocorals in the Citation: Frometa, J.; Etnoyer, P.J.; GoMx, this study combined sequences of mtMutS and nuclear 28S rDNA to confirm the identity Quattrini, A.M.; Herrera, S.; Greig, Swiftia T.W.
    [Show full text]
  • The Effects of In-Vitro Ph Decrease on the Gametogenesis of the Red Tree Coral, Primnoa Pacifica
    RESEARCH ARTICLE The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica 1 2 3 Ashley M. RossinID *, Rhian G. Waller , Robert P. Stone 1 University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fairbanks, Alaska, United States of America, 2 University of Maine, School of Marine Sciences, Darling Marine Center, Walpole, Maine, United States of America, 3 Alaska Fisheries Science Center, National Marine Fisheries Services, National Oceanic a1111111111 and Atmospheric Administration, Juneau, Alaska, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Primnoa pacifica is the most ecologically important coral species in the North Pacific Ocean and provides important habitat for commercially important fish and invertebrates. Ocean OPEN ACCESS acidification (OA) is more rapidly increasing in high-latitude seas because anthropogenic Citation: Rossin AM, Waller RG, Stone RP (2019) CO2 uptake is greater in these regions. This is due to the solubility of CO2 in cold water and The effects of in-vitro pH decrease on the the reduced buffering capacity and low alkalinity of colder waters. Primnoa pacifica colonies gametogenesis of the red tree coral, Primnoa pacifica. PLoS ONE 14(4): e0203976. https://doi. were cultured for six to nine months in either pH 7.55 (predicted Year 2100 pH levels) or pH org/10.1371/journal.pone.0203976 7.75 (Control). Oocyte development and fecundity in females, and spermatocyst stages in Editor: Erik Caroselli, University of Bologna, ITALY males were measured to assess the effects of pH on gametogenesis. Oocyte diameters were 13.6% smaller and fecundities were 30.9% lower in the Year 2100 samples.
    [Show full text]
  • Haines Highway Byway Corridor Partnership Plan
    HAINES HIGHWAY CORRIDOR PARTNERSHIP PLAN 1 Prepared For: The Haines Borough, as well as the village of Klukwan, and the many agencies, organizations, businesses, and citizens served by the Haines Highway. This document was prepared for local byway planning purposes and as part of the submission materials required for the National Scenic Byway designation under the National Scenic Byway Program of the Federal Highway Administration. Prepared By: Jensen Yorba Lott, Inc. Juneau, Alaska August 2007 With: Whiteman Consulting, Ltd Boulder, Colorado Cover: Haines, Alaska and the snow peaked Takhinska Mountains that rise over 6,000’ above the community 2 TABLE OF CONTENTS 1. INTRODUCTION..............................................................5-9 2. BACKGROUND ON Byways....................................11-14 3. INSTRINSIC QUALITY REVIEW..............................15-27 4. ROAD & TRANSPORTATION SYSTEM...................29-45 5. ToURISM & Byway VISITATION...........................47-57 6. INTERPRETATION......................................................59-67 7. PURPOSE, VISION, GOALS & OBJECTIVES.......69-101 8. APPENDIX..................................................................103-105 3 4 INTRODUCTION 1 Chilkat River Valley “Valley of the Eagles” 5 The Haines Highway runs from the community byway. Obtaining national designation for the of Haines, Alaska to the Canadian-U.S. border American portion of the Haines highway should station at Dalton Cache, Alaska. At the half way be seen as the first step in the development of an point the highway passes the Indian Village of international byway. Despite the lack of a byway Klukwan. The total highway distance within Alaska program in Canada this should not prevent the is approximately 44 miles, however the Haines celebration and marketing of the entire Haines Highway continues another 106 miles through Highway as an international byway.
    [Show full text]
  • Primnoidae (Octocorallia: Calcaxonia) from the Emperor Seamounts, with Notes on Callogorgia Elegans (Gray, 1870)
    Primnoidae (Octocorallia: Calcaxonia) from the Emperor Seamounts, with Notes on Callogorgia elegans (Gray, 1870) Stephen D. Cairns, Robert P. Stone, Hye-Won Moon, Jong Hee Lee Pacific Science, Volume 72, Number 1, January 2018, pp. 125-142 (Article) Published by University of Hawai'i Press For additional information about this article https://muse.jhu.edu/article/683173 [ This content has been declared free to read by the pubisher during the COVID-19 pandemic. ] Primnoidae (Octocorallia: Calcaxonia) from the Emperor Seamounts, with Notes on Callogorgia elegans (Gray, 1870)1 Stephen D. Cairns,2,6 Robert P. Stone,3 Hye-Won Moon,4 and Jong Hee Lee 5 Abstract: Six primnoid species are reported from depths of 280 – 480 m from the southern Emperor Seamounts, including two new species (Callogorgia imperialis and Thouarella taylorae). Only the new species are fully described and illustrated. Also, Callogorgia elegans, which has a confused taxonomic history, is discussed and illustrated. Not unexpectedly, the Emperor Seamount primnoids have a strong affinity with the fauna of the Hawaiian Islands, an affinity that is expected to increase as more collecting is done in the region. The United Nations General Assembly nations around the world are developing pro- approved Resolution 61/105 in December tocol and policy on fishing encounters with 2006 ( United Nations General Assembly 2007) the sensitive biota (Durán Muñoz et al. 2012). that calls on States to directly, or through Here we report on collections made on fish- Regional Fisheries Management Organiza- ing vessels in the Emperor Seamounts, North tions, apply a precautionary ecosystem ap- Pacific Ocean, as part of a joint project be- proach to sustainably manage fish stocks and tween the United States and the Republic of protect vulnerable marine ecosystems ( VMEs) Korea.
    [Show full text]
  • Alcyonacea: Primnoidae) from the Southwestern Atlantic
    New primnoid genus and species (Alcyonacea: Primnoidae) from the southwestern Atlantic Stephen D. Cairns Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A., e-mail: [email protected] PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 125(2):180–188. 2012. New primnoid genus and species (Alcyonacea: Primnoidae) from the southwestern Atlantic Stephen D. Cairns Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A., e-mail: [email protected] Abstract.—A new genus and species of primnoid octocoral, Heptaprimnoa patagonica, is described from deep water from the cold temperate/ Subantarctic region off Argentina and Burdwood Bank. It is distinguished from other primnoid genera by having only seven rows of body wall scales. Keywords: Alcyonacea, Argentina, new genus, new species, Octocorallia, Primnoidae, Subantarctic As noted by Cairns & Bayer (2009), the a new species; Orejas et al. (2007), repro- Primnoidae is a large and diverse octoco- ductive habits of two species; Zapata- ral family, ranking fourth among the 44 Guardiola & Lo´pez-Gonza´lez (2009), two octocoral families in number of species, new species; Cairns & Bayer (2009), three and third in number of genera. Whereas new genera and two new subgenera; Zapa- the primnoids are cosmopolitan in distri- ta-Guardiola & Lo´pez-Gonza´lez (2010a), bution and occur over a depth range of 8– two new genera and species; Zapata-Guar- 5850 m, they are found primarily in deep diola & Lo´pez-Gonza´lez (2010b), four new water, and there seems to be a dispropor- species; Zapata-Guardiola & Lo´pez-Gon- tionate number of species and genera za´lez (2010c), a new genus; and Taylor et al.
    [Show full text]
  • The 2006 Triennial Aleutian Islands Golden King Crab Survey. Alaska Department of Fish and Game, Fishery Management Report No
    Fishery Management Report No. 07-07 The 2006 Triennial Aleutian Islands Golden King Crab Survey by Leslie J. Watson March 2007 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Measures (fisheries) centimeter cm Alaska Administrative fork length FL deciliter dL Code AAC mideye-to-fork MEF gram g all commonly accepted mideye-to-tail-fork METF hectare ha abbreviations e.g., Mr., Mrs., standard length SL kilogram kg AM, PM, etc. total length TL kilometer km all commonly accepted liter L professional titles e.g., Dr., Ph.D., Mathematics, statistics meter m R.N., etc. all standard mathematical milliliter mL at @ signs, symbols and millimeter mm compass directions: abbreviations east E alternate hypothesis HA Weights and measures (English) north N base of natural logarithm e cubic feet per second ft3/s south S catch per unit effort CPUE foot ft west W coefficient of variation CV gallon gal copyright © common test statistics (F, t, χ2, etc.) inch in corporate suffixes: confidence interval CI mile mi Company Co. correlation coefficient nautical mile nmi Corporation Corp.
    [Show full text]
  • America's National Parks, Archaeology and Climate Change
    University of Montana ScholarWorks at University of Montana Undergraduate Theses and Professional Papers 2019 Looking Past, Looking Forward: America's National Parks, Archaeology and Climate Change Rachel Marie Blumhardt University of Montana, Missoula, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/utpp Part of the Archaeological Anthropology Commons, and the Climate Commons Let us know how access to this document benefits ou.y Recommended Citation Blumhardt, Rachel Marie, "Looking Past, Looking Forward: America's National Parks, Archaeology and Climate Change" (2019). Undergraduate Theses and Professional Papers. 253. https://scholarworks.umt.edu/utpp/253 This Thesis is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in Undergraduate Theses and Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Looking Past, Looking Forward: America’s National Parks, Archaeology and Climate Change Figure 1: Grand Prismatic Spring, Yellowstone National Park. Rachel Blumhardt 2018 Rachel Blumhardt 2019 Looking Past, Looking Forward: America’s National Parks, Archaeology and Climate Change There’s a certain elation associated with finding a piece of the past. Unearthing a projectile point or an atlatl foreshaft, or any of a number of other things can be the first step in trying to paint a picture of what life was like for people who lived in an area thousands of years ago. America’s national parks are set up to protect the natural and cultural attributes of certain areas of the country.
    [Show full text]