Insights from Comamonas Testosteroni

Total Page:16

File Type:pdf, Size:1020Kb

Insights from Comamonas Testosteroni International Journal of Molecular Sciences Review Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni Yun-Hao Wang 1,2, Zhou Huang 1 and Shuang-Jiang Liu 1,2,* 1 State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (Y.-H.W.); [email protected] (Z.H.) 2 University of Chinese Academy of Sciences, Beijing 101408, China * Correspondence: [email protected]; Tel.: +86-10-64807423 Received: 21 April 2019; Accepted: 30 May 2019; Published: 1 June 2019 Abstract: Chemotaxis is an important physiological adaptation that allows many motile bacteria to orientate themselves for better niche adaptation. Chemotaxis is best understood in Escherichia coli. Other representative bacteria, such as Rhodobacter sphaeroides, Pseudomonas species, Helicobacter pylori, and Bacillus subtilis, also have been deeply studied and systemically summarized. These bacteria belong to α-, γ-, "-Proteobacteria, or Firmicutes. However, β-Proteobacteria, of which many members have been identified as holding chemotactic pathways, lack a summary of chemotaxis. Comamonas testosteroni, belonging to β-Proteobacteria, grows with and chemotactically responds to a range of aromatic compounds. This paper summarizes the latest research on chemotaxis towards aromatic compounds, mainly from investigations of C. testosteroni and other Comamonas species. Keywords: Comamonas testosteroni; chemoreceptor; chemotaxis; aromatic compounds 1. Introduction Aromatic compounds have one or more aromatic rings containing resonance bonds, which make them chemically inert due to charge distribution over the whole skeleton of the aromatic ring. It has been estimated that about 25% of photosynthetic products from plants are deposited as lignin, which is one of the most abundant aromatic compounds on earth [1,2]. Other biogenic aromatic compounds, such as phenylalanine, tyrosine, tryptophan, many hormones, and signal molecules, play important roles in the maintenance and regulation of biological processes. Chemically synthesized aromatic compounds are important raw materials. Benzene, phenol, and toluene are classified as priority pollutants [3]. The toxicity and mutagenicity of nitroaromatic compounds have been documented [4,5]. Microbial biodegradation is an important process for removal of aromatic pollutants from environments [6,7]. In addition to metabolic robustness, microbial degradation also relies on the bioavailability of aromatic pollutants. Bacterial chemotactic responses toward aromatic compounds have attracted extensive interest [8–10] and are beneficial for bacteria to find more friendly environments and to degrade pollutants [11–13]. Chemotaxis may also facilitate the transfer of catabolic genes via motile bacteria to contaminated environments [14], thus promoting the coexistence of biodegradation and chemotaxis genes. Reviews are available on bacterial chemotaxis regarding stimulus-sensing and signal-processing [15], on exploring the function of bacterial chemotaxis [16], and on Pseudomonas chemotaxis [17]. This review is focused on the recent progress made on the study of bacterial chemotaxis towards aromatic compounds, in particular with Comamonas testosteroni. Int. J. Mol. Sci. 2019, 20, 2701; doi:10.3390/ijms20112701 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2019, 20, 2701 2 of 13 Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 13 2. The Taxonomy, Ecology, Physiology, and Chemotaxis of C. testosteroni C.C. testosteronitestosteronibelongs belongs tothe to genus theComamonas genus thatComamonas has 21 speciesthat (http:has //www.bacterio.21 species net(http://www.bacterio.net/comamonas.html)/comamonas.html) (Figure1). The Comamonas (Figure 1).species The Comamonas are Gram-negative species are bacteria Gram-negative belong tobacteriaβ-Proteobacteria, belong to β-Proteobacteria, and are distributed and are widely distributed in soil, widely sediments, in soil, sediments, and garden and ponds garden [18 ponds–20]. Based[18–20]. on Based the IMG on the database IMG database (https:// (https://img.jgi.doe.gov/),img.jgi.doe.gov/), 11 of the 11 21of theComamonas 21 Comamonasspecies species have beenhave genome-sequencedbeen genome-sequenced [21], [21], and and mining mining these these genomes genomes indicated indicated that that the the key key genes genes forfor hexosehexose phosphorylationphosphorylation werewere missingmissing [[22].22]. Thus, Thus, unlike unlike Pseudomonas species that prefer toto assimilateassimilate carbohydratescarbohydrates for growth, growth, the the ComamonasComamonas speciesspecies do do not not use use glucose glucose as a as sole a sole carbon carbon source, source, but butgrow grow well wellwith withnon-sugar non-sugar carbon carbon sources sources such as suchorganic as acids organic and acids aromatic and compounds. aromatic compounds. Although AlthoughComamonasComamonas and Pseudomonasand Pseudomonas species arespecies different are diinff erentcarbohydrate in carbohydrate assimilation, assimilation, they share they similar share similarecological ecological habitats, habitats, and both andare able both to are metabolize able to metabolizearomatic compounds. aromatic compounds. Studies have demonstrated Studies have demonstratedthat Comamonas that speciesComamonas playspecies an important play an important role in rolethe inbiological the biological geocycling geocycling of nutrients of nutrients in inenvironments environments [23–25], [23–25 ],as as well well as as in in bioremediation bioremediation of of polluted polluted environments environments [26–28]. [26–28]. A search onon WebWeb ofof ScienceScience using the key key word word “ “ComamonasComamonas”” revealed revealed more more than than 1700 1700 publications publications from from 2000 2000 to to2018, 2018, and and citation citation of ofthese these publication publication has has increased increased sharply sharply in in recent recent years, which suggests aa growinggrowing interestinterest fromfrom scientists.scientists. The C. testosteroni strainstrain CNB-1CNB-1 waswas isolatedisolated fromfrom activatedactivated sludgesludge andand growsgrows usingusing chloronitrobenzene chloronitrobenzene as as carbon carbon and and nitrogen nitrogen sources sources [29 [29];]; it has it has been been exploited exploited for thefor bioremediationthe bioremediation of chloronitrobenzene-polluted of chloronitrobenzene-polluted soil soil [30 ].[30]. The The genes genes involved involved in thein the degradation degradation of chloronitrobenezeof chloronitrobeneze were were located located on on a mega-plasmida mega-plasmid pCNB1 pCNB1 [31 [31],], and and the the degradation degradation pathwaypathway waswas identifiedidentified [[32].32]. Another strain ofof C. testosteroni,, CNB-2,CNB-2, isis aa derivativederivative fromfrom strainstrain CNB-1CNB-1 fromfrom whichwhich pCNB1pCNB1 waswas curedcured [[33].33]. FigureFigure 1.1. The genusgenus ComamonasComamonas:: phylogeny,phylogeny, diversity,diversity, habitats,habitats, andand genomes.genomes. TheThe phylogeneticphylogenetic analysisanalysis isis based based on on 16S 16S rRNA rRNA genes. genes. Background Background colors colors represent represent the origins the origins of type of strains type ofstrains species. of Thespecies. completeness The completeness of genomes of isgenomes indicated is byindicated circles outsideby circles the outside species the names. speciesComamonas names. Comamonas testosteroni istestosteroni indicated is by indicated an asterisk by (*).an asterisk (*). Bacterial chemotaxis is the movement of cells with either flagella, pili, or gliding structures in Bacterial chemotaxis is the movement of cells with either flagella, pili, or gliding structures in response to chemical gradients. The well-studied enteric Escherichia coli has only one gene cluster and response to chemical gradients. The well-studied enteric Escherichia coli has only one gene cluster and five chemoreceptors for chemotaxis. However, many environmental bacteria have more gene clusters and chemoreceptors. Studies show that the number of chemoreceptors in genomes is relevant to lifestyles, but not to genome sizes [34]. C. testosteroni strain CNB-1 is motile with 1–3 polar flagella Int. J. Mol. Sci. 2019, 20, 2701 3 of 13 five chemoreceptors for chemotaxis. However, many environmental bacteria have more gene clusters and chemoreceptors. Studies show that the number of chemoreceptors in genomes is relevant to lifestyles, but not to genome sizes [34]. C. testosteroni strain CNB-1 is motile with 1–3 polar flagella and chemotactically responds to a range of aromatic and other organic compounds (Table1). In contrast to E. coli, data-mining of the CNB-1 strain genome revealed two chemotaxis-like gene clusters and 19 putative chemoreceptor genes. Table 1. Summary of the chemotactic responses of Comamonas species to various organic compounds. Strain Potential Chemoeffector Refs Comamonas sp. strain JS765 2-nitrotoluene [35] benzoate 2-hydroxybenzoate 3-hydroxybenzoate 4-hydroxybenzoate 2,6-dihydroxybenzoate protocatechuate vanillic acid vanillin gallic acid gentisate Comamonas testosteroni phenol catechol [36–38] strain CNB-1 adipate succinate fumarate pyruvate citrate malate α-ketoglutarate cis-aconitate oxaloacetate isocitrate 1-dehydrotestosterone pregnenolone 17α-hydroxyprogesterone androstanedione Comamonas testosteroni 11α-hydroxyprogesterone testosterone [39] ATCC 11996 21α-hydroxyprogesterone
Recommended publications
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Comamonas: Relationship to Aquaspirillum Aquaticum, E
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1991, p. 427-444 Vol. 41, No. 3 0020-7713/91/030427- 18$02 .OO/O Copyright 0 1991, International Union of Microbiological Societies Polyphasic Taxonomic Study of the Emended Genus Comamonas: Relationship to Aquaspirillum aquaticum, E. Falsen Group 10, and Other Clinical Isolates A. WILLEMS,l B. POT,l E. FALSEN,2 P. VANDAMME,' M. GILLIS,l* K. KERSTERS,l AND J. DE LEY' Laboratorium voor Microbiologie en Microbiele Genetica, Rijksuniversiteit, B-9000 Ghent, Belgium, and Culture Collection, Department of Clinical Bacteriology, University of Goteborg, S-413 46 Goteborg, Sweden2 We used DNA-rRNA hybridization, DNA base composition, polyacrylamide gel electrophoresis of whole-cell proteins, DNA-DNA hybridization, numerical analysis of phenotypic features, and immunotyping to study the taxonomy of the genus Comamonas. The relationships of this genus to Aquaspirillum aquaticum and a group of clinical isolates (E. Falsen group 10 [EF lo]) were studied. Our DNA and rRNA hybridization results indicate that the genus Comamonas consists of at least the following five genotypic groups: (i) Comamonas acidovoruns, (ii) Comamonas fesfosferoni,(iii) Comamonas ferrigena, (iv) A. aquaticum and a number of EF 10 strains, and (v) other EF 10 strains, several unnamed clinical isolates, and some misnamed strains of Pseudomonas alcaligenes and Pseudomonas pseudoalcaligenes subsp. pseudoalcaligenes. The existence of these five groups was confirmed by the results of immunotyping and protein gel electrophoresis. A numerical analysis of morpho- logical, auxanographic, and biochemical data for the same organisms revealed the existence of three large phena. Two of these phena (C. acidovorans and C. tesfosferoni)correspond to two of the genotypic groups.
    [Show full text]
  • Breast Milk Microbiota: a Review of the Factors That Influence Composition
    Published in "Journal of Infection 81(1): 17–47, 2020" which should be cited to refer to this work. ✩ Breast milk microbiota: A review of the factors that influence composition ∗ Petra Zimmermann a,b,c,d, , Nigel Curtis b,c,d a Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland b Department of Paediatrics, The University of Melbourne, Parkville, Australia c Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia d Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia s u m m a r y Breastfeeding is associated with considerable health benefits for infants. Aside from essential nutrients, immune cells and bioactive components, breast milk also contains a diverse range of microbes, which are important for maintaining mammary and infant health. In this review, we summarise studies that have Keywords: investigated the composition of the breast milk microbiota and factors that might influence it. Microbiome We identified 44 studies investigating 3105 breast milk samples from 2655 women. Several studies Diversity reported that the bacterial diversity is higher in breast milk than infant or maternal faeces. The maxi- Delivery mum number of each bacterial taxonomic level detected per study was 58 phyla, 133 classes, 263 orders, Caesarean 596 families, 590 genera, 1300 species and 3563 operational taxonomic units. Furthermore, fungal, ar- GBS chaeal, eukaryotic and viral DNA was also detected. The most frequently found genera were Staphylococ- Antibiotics cus, Streptococcus Lactobacillus, Pseudomonas, Bifidobacterium, Corynebacterium, Enterococcus, Acinetobacter, BMI Rothia, Cutibacterium, Veillonella and Bacteroides. There was some evidence that gestational age, delivery Probiotics mode, biological sex, parity, intrapartum antibiotics, lactation stage, diet, BMI, composition of breast milk, Smoking Diet HIV infection, geographic location and collection/feeding method influence the composition of the breast milk microbiota.
    [Show full text]
  • Comamonas Kerstersii Bacteremia in a Patient with Acute Perforated
    ® Clinical Case Report Medicine OPEN Comamonas kerstersii bacteremia in a patient with acute perforated appendicitis A rare case report ∗ Yun-heng Zhou, PhDa, Hong-xia Ma, MDb, Zhao-yang Dong, PhDc, Mei-hua Shen, PhDd, Abstract Rationale: Comamonas species are rarely associated with human infections. Recent reports found that Comamonas kerstersii was associated with severe diseases such as abdominal infection and bacteremia. However, C. kerstersii maybe be confused with Comamonas testosteroni using the automatic bacterial identification systems currently available. Patient concerns: A 31-year-old man who had onset of left upper abdominal pain developed clinical manifestations of right lower abdominal pain and classic migration of pain at the temperature of 39°C. The positive strain of aerobic and anaerobic bottles of blood cultures was identified. Diagnoses: The patient was diagnosed as acute peritonitis and perforated appendix with abdominal abscess. Interventions: The bacterium was identified by routine methods, MALDI-TOF-MS and PCR amplification of the 16S rRNA. The patient was treated with exploratory laparotomy, appendectomy, tube drainage, and prescribing antibiotic treatment. Outcomes: The patients were discharged with complete recovery. The organisms were confirmed as C. kerstersii by MALDI-TOF- MS and a combination of the other results. Lessons: Our findings suggest that C. kerstersii infection occurs most often in association with perforated appendix and bacteremia. We presume that C. kerstersii is an opportunistic pathogen or commensal with the digestive tract and appendix bacteria. Abbreviations: C. kerstersii = Comamonas kerstersii, MALDI-TOF-MS = matrix-assisted laser desorption ionization–time of flight mass spectrometry, MIC = minimum inhibitory concentration, PCR = polymerase chain reaction.
    [Show full text]
  • And Pan‑Genomic Analyses of the Genus Comamonas : from Environmental Adaptation to Potential Virulence
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. The core‑ and pan‑genomic analyses of the genus Comamonas : from environmental adaptation to potential virulence Wu, Yichao; Zaiden, Norazean; Cao, Bin 2018 Wu, Y., Zaiden, N., & Cao, B. (2018). The core‑ and pan‑genomic analyses of the genus Comamonas : from environmental adaptation to potential virulence. Frontiers in Microbiology, 9, 3096‑. doi:10.3389/fmicb.2018.03096 https://hdl.handle.net/10356/103309 https://doi.org/10.3389/fmicb.2018.03096 © 2018 Wu, Zaiden and Cao. This is an open‑access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Downloaded on 27 Sep 2021 19:01:28 SGT fmicb-09-03096 December 10, 2018 Time: 13:56 # 1 ORIGINAL RESEARCH published: 12 December 2018 doi: 10.3389/fmicb.2018.03096 The Core- and Pan-Genomic Analyses of the Genus Comamonas: From Environmental Adaptation to Potential Virulence Yichao Wu1, Norazean Zaiden2 and Bin Cao2,3* 1 State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China, 2 Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore, 3 School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore Comamonas is often reported to be one of the major members of microbial communities in various natural and engineered environments.
    [Show full text]
  • Delftia Rhizosphaerae Sp. Nov. Isolated from the Rhizosphere of Cistus Ladanifer
    TAXONOMIC DESCRIPTION Carro et al., Int J Syst Evol Microbiol 2017;67:1957–1960 DOI 10.1099/ijsem.0.001892 Delftia rhizosphaerae sp. nov. isolated from the rhizosphere of Cistus ladanifer Lorena Carro,1† Rebeca Mulas,2 Raquel Pastor-Bueis,2 Daniel Blanco,3 Arsenio Terrón,4 Fernando Gonzalez-Andr es, 2 Alvaro Peix5,6 and Encarna Velazquez 1,6,* Abstract A bacterial strain, designated RA6T, was isolated from the rhizosphere of Cistus ladanifer. Phylogenetic analyses based on 16S rRNA gene sequence placed the isolate into the genus Delftia within a cluster encompassing the type strains of Delftia lacustris, Delftia tsuruhatensis, Delftia acidovorans and Delftia litopenaei, which presented greater than 97 % sequence similarity with respect to strain RA6T. DNA–DNA hybridization studies showed average relatedness ranging from of 11 to 18 % between these species of the genus Delftia and strain RA6T. Catalase and oxidase were positive. Casein was hydrolysed but gelatin and starch were not. Ubiquinone 8 was the major respiratory quinone detected in strain RA6T together with low amounts of ubiquinones 7 and 9. The major fatty acids were those from summed feature 3 (C16 : 1!7c/C16 : 1 !6c) and C16 : 0. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain RA6T should be considered as a representative of a novel species of genus Delftia, for which the name Delftia rhizosphaerae sp. nov. is proposed. The type strain is RA6T (=LMG 29737T= CECT 9171T). The genus Delftia comprises Gram-stain-negative, non- The strain was grown on nutrient agar (NA; Sigma) for 48 h sporulating, strictly aerobic rods, motile by polar or bipolar at 22 C to check for motility by phase-contrast microscopy flagella.
    [Show full text]
  • Sparus Aurata) and Sea Bass (Dicentrarchus Labrax)
    Gut bacterial communities in geographically distant populations of farmed sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) Eleni Nikouli1, Alexandra Meziti1, Efthimia Antonopoulou2, Eleni Mente1, Konstantinos Ar. Kormas1* 1 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece 2 Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece * Corresponding author; Tel.: +30-242-109-3082, Fax: +30-242109-3157, E-mail: [email protected], [email protected] Supplementary material 1 Table S1. Body weight of the Sparus aurata and Dicentrarchus labrax individuals used in this study. Chania Chios Igoumenitsa Yaltra Atalanti Sample Body weight S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax (g) 1 359 378 558 420 433 448 481 346 260 785 2 355 294 579 442 493 556 516 397 240 340 3 376 275 468 554 450 464 540 415 440 500 4 392 395 530 460 440 483 492 493 365 860 5 420 362 483 479 542 492 406 995 6 521 505 506 461 Mean 380.40 340.80 523.17 476.67 471.60 487.75 504.50 419.67 326.25 696.00 SEs 11.89 23.76 17.36 19.56 20.46 23.85 8.68 21.00 46.79 120.29 2 Table S2. Ingredients of the diets used at the time of sampling. Ingredient Sparus aurata Dicentrarchus labrax (6 mm; 350-450 g)** (6 mm; 450-800 g)** Crude proteins (%) 42 – 44 37 – 39 Crude lipids (%) 19 – 21 20 – 22 Nitrogen free extract (NFE) (%) 20 – 26 19 – 25 Crude cellulose (%) 1 – 3 2 – 4 Ash (%) 5.8 – 7.8 6.2 – 8.2 Total P (%) 0.7 – 0.9 0.8 – 1.0 Gross energy (MJ/Kg) 21.5 – 23.5 20.6 – 22.6 Classical digestible energy* (MJ/Kg) 19.5 18.9 Added vitamin D3 (I.U./Kg) 500 500 Added vitamin E (I.U./Kg) 180 100 Added vitamin C (I.U./Kg) 250 100 Feeding rate (%), i.e.
    [Show full text]
  • Diaphorobacter Nitroreducens Gen. Nov., Sp. Nov., a Poly (3
    J. Gen. Appl. Microbiol., 48, 299–308 (2002) Full Paper Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge Shams Tabrez Khan and Akira Hiraishi* Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi 441–8580, Japan (Received August 12, 2002; Accepted October 23, 2002) Three denitrifying strains of bacteria capable of degrading poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were isolated from activated sludge and characterized. All of the isolates had almost identical phenotypic characteristics. They were motile gram-negative rods with single polar flagella and grew well with simple organic com- pounds, as well as with PHB and PHBV, as carbon and energy sources under both aerobic and anaerobic denitrifying conditions. However, none of the sugars tested supported their growth. The cellular fatty acid profiles showed the presence of C16:1w7cis and C16:0 as the major com- ponents and of 3-OH-C10:0 as the sole component of hydroxy fatty acids. Ubiquinone-8 was de- tected as the major respiratory quinone. A 16S rDNA sequence-based phylogenetic analysis showed that all the isolates belonged to the family Comamonadaceae, a major group of b-Pro- teobacteria, but formed no monophyletic cluster with any previously known species of this fam- (DSM 13225؍) ily. The closest relative to our strains was an unidentified bacterium strain LW1 (99.9% similarity), reported previously as a 1-chloro-4-nitrobenzene degrading bacterium. DNA- DNA hybridization levels among the new isolates were more than 60%, whereas those between our isolates and strain DSM 13225 were less than 50%.
    [Show full text]
  • Delftia Sp. LCW, a Strain Isolated from a Constructed Wetland Shows Novel Properties for Dimethylphenol Isomers Degradation Mónica A
    Vásquez-Piñeros et al. BMC Microbiology (2018) 18:108 https://doi.org/10.1186/s12866-018-1255-z RESEARCHARTICLE Open Access Delftia sp. LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation Mónica A. Vásquez-Piñeros1, Paula M. Martínez-Lavanchy1,2, Nico Jehmlich3, Dietmar H. Pieper4, Carlos A. Rincón1, Hauke Harms5, Howard Junca6 and Hermann J. Heipieper1* Abstract Background: Dimethylphenols (DMP) are toxic compounds with high environmental mobility in water and one of the main constituents of effluents from petro- and carbochemical industry. Over the last few decades, the use of constructed wetlands (CW) has been extended from domestic to industrial wastewater treatments, including petro-carbochemical effluents. In these systems, the main role during the transformation and mineralization of organic pollutants is played by microorganisms. Therefore, understanding the bacterial degradation processes of isolated strains from CWs is an important approach to further improvements of biodegradation processes in these treatment systems. Results: In this study, bacterial isolation from a pilot scale constructed wetland fed with phenols led to the identification of Delftia sp. LCW as a DMP degrading strain. The strain was able to use the o-xylenols 3,4-DMP and 2,3-DMP as sole carbon and energy sources. In addition, 3,4-DMP provided as a co-substrate had an effect on the transformation of other four DMP isomers. Based on the detection of the genes, proteins, and the inferred phylogenetic relationships of the detected genes with other reported functional proteins, we found that the phenol hydroxylase of Delftia sp. LCW is induced by 3,4-DMP and it is responsible for the first oxidation of the aromatic ring of 3,4-, 2,3-, 2,4-, 2,5- and 3,5-DMP.
    [Show full text]
  • Unveiling Bacterial Interactions Through Multidimensional Scaling and Dynamics Modeling Received: 06 May 2015 Pedro Dorado-Morales1, Cristina Vilanova1, Carlos P
    www.nature.com/scientificreports OPEN Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling Received: 06 May 2015 Pedro Dorado-Morales1, Cristina Vilanova1, Carlos P. Garay3, Jose Manuel Martí3 Accepted: 17 November 2015 & Manuel Porcar1,2 Published: 16 December 2015 We propose a new strategy to identify and visualize bacterial consortia by conducting replicated culturing of environmental samples coupled with high-throughput sequencing and multidimensional scaling analysis, followed by identification of bacteria-bacteria correlations and interactions. We conducted a proof of concept assay with pine-tree resin-based media in ten replicates, which allowed detecting and visualizing dynamical bacterial associations in the form of statistically significant and yet biologically relevant bacterial consortia. There is a growing interest on disentangling the complexity of microbial interactions in order to both optimize reactions performed by natural consortia and to pave the way towards the development of synthetic consor- tia with improved biotechnological properties1,2. Despite the enormous amount of metagenomic data on both natural and artificial microbial ecosystems, bacterial consortia are not necessarily deduced from those data. In fact, the flexibility of the bacterial interactions, the lack of replicated assays and/or biases associated with differ- ent DNA isolation technologies and taxonomic bioinformatics tools hamper the clear identification of bacterial consortia. We propose here a holistic approach aiming at identifying bacterial interactions in laboratory-selected microbial complex cultures. The method requires multi-replicated taxonomic data on independent subcultures, and high-throughput sequencing-based taxonomic data. From this data matrix, randomness of replicates can be verified, linear correlations can be visualized and interactions can emerge from statistical correlations.
    [Show full text]
  • Physiological and Genomic Features of Highly Alkaliphilic Hydrogen-Utilizing Betaproteobacteria from a Continental Serpentinizing Site
    ARTICLE Received 17 Dec 2013 | Accepted 16 Apr 2014 | Published 21 May 2014 DOI: 10.1038/ncomms4900 OPEN Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site Shino Suzuki1, J. Gijs Kuenen2,3, Kira Schipper1,3, Suzanne van der Velde2,3, Shun’ichi Ishii1, Angela Wu1, Dimitry Y. Sorokin3,4, Aaron Tenney1, XianYing Meng5, Penny L. Morrill6, Yoichi Kamagata5, Gerard Muyzer3,7 & Kenneth H. Nealson1,2 Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus ‘Serpentinomonas’. 1 J. Craig Venter Institute, 4120 Torrey Pines Road, La Jolla, California 92037, USA. 2 University of Southern California, 835 W. 37th St. SHS 560, Los Angeles, California 90089, USA. 3 Delft University of Technology, Julianalaan 67, Delft, 2628BC, The Netherlands.
    [Show full text]
  • Novel Clades of Soil Biphenyl Degraders Revealed by Integrating Isotope Probing, Multi-Omics, and Single-Cell Analyses
    The ISME Journal https://doi.org/10.1038/s41396-021-01022-9 ARTICLE Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses 1 1 2,3 1 1 Song-Can Chen ● Rohit Budhraja ● Lorenz Adrian ● Federica Calabrese ● Hryhoriy Stryhanyuk ● 1 1 4 4,5 1 Niculina Musat ● Hans-Hermann Richnow ● Gui-Lan Duan ● Yong-Guan Zhu ● Florin Musat Received: 20 February 2021 / Revised: 12 May 2021 / Accepted: 21 May 2021 © The Author(s) 2021. This article is published with open access Abstract Most microorganisms in the biosphere remain uncultured and poorly characterized. Although the surge in genome sequences has enabled insights into the genetic and metabolic properties of uncultured microorganisms, their physiology and ecological roles cannot be determined without direct probing of their activities in natural habitats. Here we employed an experimental framework coupling genome reconstruction and activity assays to characterize the largely uncultured microorganisms responsible for aerobic biodegradation of biphenyl as a proxy for a large class of environmental pollutants, polychlorinated biphenyls. We used 13C-labeled biphenyl in contaminated soils and traced the flow of pollutant-derived carbon into active – 13 1234567890();,: 1234567890();,: cells using single-cell analyses and protein stable isotope probing. The detection of C-enriched proteins linked biphenyl biodegradation to the uncultured Alphaproteobacteria clade UBA11222, which we found to host a distinctive biphenyl dioxygenase gene widely retrieved from contaminated environments. The same approach indicated the capacity of Azoarcus species to oxidize biphenyl and suggested similar metabolic abilities for species of Rugosibacter. Biphenyl oxidation would thus represent formerly unrecognized ecological functions of both genera.
    [Show full text]