Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2019 doi:10.20944/preprints201901.0094.v1 Article Event-Based Quantum Mechanics: a Context for the Emergence of Classical Information Ignazio Licata 1,2,3†,‡ and Leonardo Chiatti 4,‡* 1 School of Advanced International Studies on Applied Theoretical and Non Linear Methodologies in Physics, Bari, Italy; 2 Institute for Applicable Mathematics and Information Sciences, B.M. Birla Science Centre, Adarsh Nagar, Hyderabad, India; 3 Research Institute for Astronomy and Astrophysics of Maragha, Valeasr, Maragheh, Iran;
[email protected] 4 ASL VT Medical Physics Laboratory, Via Enrico Fermi 15, Viterbo, Italy;
[email protected] * Correspondence:
[email protected] ‡ These authors contributed equally to this work. 1 Abstract: This paper explores an event-based version of quantum mechanics which differs from the 2 commonly accepted one, even though the usual elements of quantum formalism, e.g. the Hilbert 3 space, are mantained. This version introduces as primary element the occurrence of micro-events 4 induced by usual physical (mechanical, electromagnetic and so on) interactions. These micro-events 5 correspond to state reductions and are identified with quantum jumps, already introduced by Bohr 6 in his atomic model and experimentally well established today. Macroscopic bodies are defined as 7 clusters of jumps; the emergence of classicality thus becomes understandable and time honoured 8 paradoxes can be solved. In particular, we discuss the cat paradox in this context. Quantum jumps 9 are described as temporal localizations of physical quantities; if the information associated with these 10 localizations has to be finite, two time scales spontaneously appear: an upper cosmological scale and 11 a lower scale of elementary "particles".