Physics 43 HW 10 Ch 39

Total Page:16

File Type:pdf, Size:1020Kb

Physics 43 HW 10 Ch 39 Physics 43 HW 11 Ch 39 E: 21, 22, 24, 27, 29, 30, 33 P: 47, 50, 51, 53, 56, 61, 63 39.21. Model: To conserve energy, the absorption spectrum must have exactly the energy gained by the atom in the quantum jumps. Visualize: Please refer to Figure EX39.20. Solve: (a) An electron with a kinetic energy of 2.00 eV can collide with an atom in the n = 1 state and raise its energy to the n = 2 state. This is possible because E2 – E1 = 1.50 eV is less than 2.00 eV. On the other hand, the atom cannot be excited to the n = 3 state. (b) The atom will absorb 1.50 eV of energy from the incoming electron, leaving the electron with 0.50 eV of kinetic energy. 39.22. Model: To conserve energy, the emission and the absorption spectra must have exactly the energy lost or gained by the atom in the appropriate quantum jumps. Solve: (a) (b) From Equation 39.4, the energy of a light quantum is E = hf = hc/λ. We can use this equation to find the emission and absorption wavelengths. The emission energies from the above energy-level diagram are: E2→1 = 4.00 eV, E3→1 = 6.00 eV, and E3→2 = 2.00 eV. The wavelength corresponding to the 2→1 transition is −15 8 hc ()4.14×× 10 eV s() 3.0 10 m/s λ 21→ == =311 nm E21 4.00 eV Likewise, λ 31→→==hc E 31 207 nm, and λ3→2 = 622 nm. (c) Absorption transitions start from the n = 1 ground state. The energies in the atom’s absorption spectrum are E1→2 = 4.00 eV and E1→3 = 6.00 eV. The corresponding wavelengths are λ12→→==hc E 12 311 nm and λ1→3 = hc E13→ = 207 nm. 39.24. Solve: The Bohr radius is defined as 2 2 48.8510π ××−−12 C/N 2 m1.0510 2 34 J s 4πε 0h ()()−11 aB ==2 2 =×=5.26 10 m 0.0526 nm me ()9.11×× 10−−31 kg() 1.60 1019 C This differs slightly from the accepted value of 0.0529 nm because of rounding error due to using constants accurate to only 3 significant figures. From Equation 39.29, the ground state energy level of hydrogen is 92 2 −19 2 −e2 −×()910 N m/C1.6010( × C) E == =−×=−2.18 10−18 J 13.61 eV 1 −11 42πε 0B()a 25.2910()× m The slight difference from the accepted −13.60 eV is due to rounding error. 39.27. Solve: From Equation 39.30, the energy of the hydrogen atom in its first excited state is −13.60 eV E2 ==−3.40 eV ()2 2 The ionization energy of the hydrogen atom in its first excited state (n = 2) is thus 3.40 eV. 39.29. Solve: The units of h are the units of angular momentum, L = mvr. These units are mm2 Js⋅ =⋅ kg ⋅=⋅⋅ s kg m ss2 39.30. Solve: Photons emitted from the n = 4 state start in energy level n = 4 and undergo a quantum jump to a lower energy level with m < 4. The possibilities are 4 → 1, 4 → 2, and 4 → 3. According to Equation 39.36, the transition 4 → m emits a photon of wavelength. λ 91.18 nm λ ==0 ⎛⎞⎛11 11⎞ ⎜⎟⎜22−− 2 ⎟ ⎝⎠⎝mn m16 ⎠ These values are given in the table below. Transition Wavelength 4 → 1 97.3 nm 4 → 2 486 nm 4 → 3 1876 nm 39.33. Solve: For hydrogen-like ions, Equation 39.37 is r 2 aB ( n )H v1 22⎛⎞13.60 eV rn== vZ==⋅ Zv n nn()H EZnn=− ⎜⎟2 = ZE() Z Z n ⎝⎠n H + Where (rn)H, (vn)H, and (En)H are the values of ordinary hydrogen. He has Z = 2. Using Table 39.2 for the values of hydrogen, we get n rn (nm) vn (m/s) En (eV) 1 0.026 4.38 × 106 −54.4 2 0.106 2.19 × 106 −13.6 3 0.238 1.46 × 106 −6.0 39.47. Model: The energy of a confined particle in a one-dimensional box is quantized. 2 Solve: The energy of the nth quantum state of a particle in a box is En = n E1, where E1 is the lowest energy level. The energies 12 eV, 27 eV, and 48 eV have the ratios 4:9:16. Thus, they are the n = 2, n = 3, and n = 4 −19 states of an electron that has E1 = 3 eV = 4.8 × 10 J. The lowest energy level is −34 2 hh22()6.63× 10 J s EL=⇒== =×=3.5 10−10 m 0.35 nm 1 2 −−31 19 88mL mE1 89.1110()×× kg4.810() J 39.50. Model: Photons are emitted when an atom undergoes a quantum jump from a higher energy level to a lower energy level. On the other hand, photons are absorbed in a quantum jump from a lower energy level to a higher energy level. Because most of the atoms are in the n = 1 ground state, the only quantum jumps in the absorption spectrum start from the n = 1 state. hc Solve: (a) Using E==ΔE, the 3 wavelengths in the absorption spectrum give 2.49 eV, 4.14 eV, photon λ atom and 6.21 eV as the energies of the n = 2, 3, and 4 energy levels. (b) The emission spectrum of the atom will contain the following wavelengths: hc hc hc hc λ 41 == =200 nm λ 31 == =300 nm EE41− 6.21 eV EE31− 4.14 eV hc hc hc hc λ 21 == =500 nm λ 42 == =334 nm EE21− 2.49 eV EE42− 3.72 eV hc hc hc hc λ 43 == =601 nm λ 32 == =753 nm EE43− 2.07 eV EE32− 1.65 eV 39.51. Model: Photons are emitted when an atom undergoes a quantum jump from a higher energy level to a lower energy level. On the other hand, photons are absorbed in a quantum jump from a lower energy level to a higher energy level. Because most of the atoms are in the n =1ground state, the only quantum jumps in the absorption spectrum start from the n = 1 state. Solve: (a) The ionization energy is E1 = 6.5 eV. (b) The absorption spectrum consists of the transitions 1 → 2 and 1 → 3 from the ground state to excited states. According to the Bohr model, the required photon frequency and wavelength are ΔE chc f = ⇒ λ == h f ΔE where ΔE = Ef – Ei is the energy change of the atom. Using the energies given in the figure, we calculated the values in the table below. Transition Ef (eV) Ei (eV) ΔE (eV) λ (nm) 1 → 2 −3.0 −6.5 3.5 355 1 → 3 –2.0 −6.5 4.5 276 (c) Both wavelengths are ultraviolet (λ < 400 nm). (d) A photon with wavelength λ = 1240 nm has an energy Ephoton = hf = hc/λ = 1.0 eV. Because Ephoton must exactly match ΔE of the atom, a 1240 nm photon can be emitted only in a 3 → 2 transition. So, after the collision the atom was in the 6 n = 3 state. Before the collision, the atom was in its ground state (n = 1). Thus, an electron with vi = 1.4 × 10 m/s collided with the atom in the n = 1 state. The atom gained 4.5 eV in the collision as it is was excited from the n = 1 to n = 3, so the electron lost 4.5 eV = 7.20 × 10−19 J of kinetic energy. Initially, the kinetic energy of the electron was 2 1123−−16 19 Kmvieleci==×22(9.11 10 kg)( 1.40 × 10 m/s) =× 8.93 10 J After losing 7.20 × 10−19 J in the collision, the kinetic energy is 21.7310× −19 J −−19 19 1 2 2Kf ( ) 5 KKfi=−7.20 × 10 J = 1.73 × 10 J =2 mvvelecff ⇒= = −31 =6.16 × 10 m/s melec 9.11× 10 kg 2 39.53. Solve: The radius of the orbit in state n is rn = n aB.B The quantum number is found as follows: r 1 (5.18 nm) n2 ==n 2 =48.96 ≈ 49 ⇒ n = 7 aB 0.0529 nm Thus the energy is 13.60 eV 13.60 eV EE=− ⇒ =− =−0.278 eV n n2 7 49 39.56. Solve: (a) From Equation 39.36, the wavelengths of the emission spectrum are 91.18 nm λ = m = 1, 2, 3, … n = m + 1, m + 2, … nm→ mn−−2− 2 For the 200 → 199 transition, 91.18 nm λ 200→ 199 ==0.362 m ()()199−−22− 200 (b) For the 2 → 199 transition, 91.18 nm λ 2→ 199 ==4.000404071 (91.18 nm) ()2−−22− ( 199 ) Likewise, λ 2200→ = 4.00040004(91.18 nm). The difference in the wavelengths of these two transitions is 0.0000041 × (91.18 nm) = 0.000368 nm. 39.61. Solve: (a) Nearly all atoms spend nearly all of their time in the ground state (n = 1). To cause an emission from the n = 3 state, the electrons must excite hydrogen atoms from the n = 1 state to the n = 3 state. The energy gained by each atom is E3 – E1 = −1.51 eV – (−13.60 eV) = 12.09 eV This means the electrons must each lose 12.09 eV of kinetic energy. Thus the electrons must have at least Kmin = 12.09 eV of kinetic energy to cause the emission of 656 nm light.
Recommended publications
  • Configuration Interaction Study of the Ground State of the Carbon Atom
    Configuration Interaction Study of the Ground State of the Carbon Atom María Belén Ruiz* and Robert Tröger Department of Theoretical Chemistry Friedrich-Alexander-University Erlangen-Nürnberg Egerlandstraße 3, 91054 Erlangen, Germany In print in Advances Quantum Chemistry Vol. 76: Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems 30th July 2017 Abstract Configuration Interaction (CI) calculations on the ground state of the C atom are carried out using a small basis set of Slater orbitals [7s6p5d4f3g]. The configurations are selected according to their contribution to the total energy. One set of exponents is optimized for the whole expansion. Using some computational techniques to increase efficiency, our computer program is able to perform partially-parallelized runs of 1000 configuration term functions within a few minutes. With the optimized computer programme we were able to test a large number of configuration types and chose the most important ones. The energy of the 3P ground state of carbon atom with a wave function of angular momentum L=1 and ML=0 and spin eigenfunction with S=1 and MS=0 leads to -37.83526523 h, which is millihartree accurate. We discuss the state of the art in the determination of the ground state of the carbon atom and give an outlook about the complex spectra of this atom and its low-lying states. Keywords: Carbon atom; Configuration Interaction; Slater orbitals; Ground state *Corresponding author: e-mail address: [email protected] 1 1. Introduction The spectrum of the isolated carbon atom is the most complex one among the light atoms. The ground state of carbon atom is a triplet 3P state and its low-lying excited states are singlet 1D, 1S and 1P states, more stable than the corresponding triplet excited ones 3D and 3S, against the Hund’s rule of maximal multiplicity.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Observation of Quantum Jumps in a Single Atom
    VoLUME 57, NUMBER 14 PHYSICAL REVIEW LETTERS 6 OcTosER 1986 Observation of Quantum Jumps in a Single Atom J. C. Bergquist, Randall G. Hulet, Wayne M. Itano, and D. J. Wineland Time and Frequency Division, Jtiational Bureau ofStandards, Boulder, Colorado 80303 (Received 23 June 1986) %e detect the radiatively driven electric quadrupole transition to the metastable Dsy2 state in a single, laser-cooled Hg D ion by monitoring the abrupt cessation of the fluorescence signal from the laser-excited 'Si/2 Pi~2 first resonance line. %hen the ion "jumps" back from the metastable D state to the ground S state, the S P resonance fluorescence signal immediately returns. The sta- tistical properties of the quantum jumps are investigated; for example, photon antibunching in the emission from the D state is observed ~ith 100% efficiency. PACS numbers: 32.80,Pj, 42.SO.Dv Recently, a few laboratories have trapped and radia- ground state to the 5d 6s D5/2 state near 281.5 nm. tively cooled single atoms' 4 enabling a number of The lifetime of the metastable D state has recently unique experiments to be performed. One of the ex- been measured to be about 0.1 s.'5'6 A laser tuned periments now possible is to observe the "quantum just below resonance on the highly allowed S.P transi- jumps" to and from a metastable state in a single atom tion will cool the ion and, in our case, scatter up to by monitoring of the resonance fluorescence of a 5&&10~ photons/s. By collecting even a small fraction strong transition in which at least one of the states is of the scattered photons, we can easily monitor the coupled to the metastable state.
    [Show full text]
  • 1 the LOCALIZED QUANTUM VACUUM FIELD D. Dragoman
    1 THE LOCALIZED QUANTUM VACUUM FIELD D. Dragoman – Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: [email protected] ABSTRACT A model for the localized quantum vacuum is proposed in which the zero-point energy of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated to the zero-point energy of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift; it also offers a new insight into the Zitterbewegung of material particles. 2 INTRODUCTION The zero-point energy (ZPE) of the quantum electromagnetic field is at the same time an indispensable concept of quantum field theory and a controversial issue (see [1] for an excellent review of the subject). The need of the ZPE has been recognized from the beginning of quantum theory of radiation, since only the inclusion of this term assures no first-order temperature-independent correction to the average energy of an oscillator in thermal equilibrium with blackbody radiation in the classical limit of high temperatures. A more rigorous introduction of the ZPE stems from the treatment of the electromagnetic radiation as an ensemble of harmonic quantum oscillators. Then, the total energy of the quantum electromagnetic field is given by E = åk,s hwk (nks +1/ 2) , where nks is the number of quantum oscillators (photons) in the (k,s) mode that propagate with wavevector k and frequency wk =| k | c = kc , and are characterized by the polarization index s.
    [Show full text]
  • The Heisenberg Uncertainty Principle*
    OpenStax-CNX module: m58578 1 The Heisenberg Uncertainty Principle* OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract By the end of this section, you will be able to: • Describe the physical meaning of the position-momentum uncertainty relation • Explain the origins of the uncertainty principle in quantum theory • Describe the physical meaning of the energy-time uncertainty relation Heisenberg's uncertainty principle is a key principle in quantum mechanics. Very roughly, it states that if we know everything about where a particle is located (the uncertainty of position is small), we know nothing about its momentum (the uncertainty of momentum is large), and vice versa. Versions of the uncertainty principle also exist for other quantities as well, such as energy and time. We discuss the momentum-position and energy-time uncertainty principles separately. 1 Momentum and Position To illustrate the momentum-position uncertainty principle, consider a free particle that moves along the x- direction. The particle moves with a constant velocity u and momentum p = mu. According to de Broglie's relations, p = }k and E = }!. As discussed in the previous section, the wave function for this particle is given by −i(! t−k x) −i ! t i k x k (x; t) = A [cos (! t − k x) − i sin (! t − k x)] = Ae = Ae e (1) 2 2 and the probability density j k (x; t) j = A is uniform and independent of time. The particle is equally likely to be found anywhere along the x-axis but has denite values of wavelength and wave number, and therefore momentum.
    [Show full text]
  • 8 the Variational Principle
    8 The Variational Principle 8.1 Approximate solution of the Schroedinger equation If we can’t find an analytic solution to the Schroedinger equation, a trick known as the varia- tional principle allows us to estimate the energy of the ground state of a system. We choose an unnormalized trial function Φ(an) which depends on some variational parameters, an and minimise hΦ|Hˆ |Φi E[a ] = n hΦ|Φi with respect to those parameters. This gives an approximation to the wavefunction whose accuracy depends on the number of parameters and the clever choice of Φ(an). For more rigorous treatments, a set of basis functions with expansion coefficients an may be used. The proof is as follows, if we expand the normalised wavefunction 1/2 |φ(an)i = Φ(an)/hΦ(an)|Φ(an)i in terms of the true (unknown) eigenbasis |ii of the Hamiltonian, then its energy is X X X ˆ 2 2 E[an] = hφ|iihi|H|jihj|φi = |hφ|ii| Ei = E0 + |hφ|ii| (Ei − E0) ≥ E0 ij i i ˆ where the true (unknown) ground state of the system is defined by H|i0i = E0|i0i. The inequality 2 arises because both |hφ|ii| and (Ei − E0) must be positive. Thus the lower we can make the energy E[ai], the closer it will be to the actual ground state energy, and the closer |φi will be to |i0i. If the trial wavefunction consists of a complete basis set of orthonormal functions |χ i, each P i multiplied by ai: |φi = i ai|χii then the solution is exact and we just have the usual trick of expanding a wavefunction in a basis set.
    [Show full text]
  • Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene
    Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene X. Lin, R. R. Du and X. C. Xie International Center for Quantum Materials, Peking University, Beijing, People’s Republic of China 100871 ABSTRACT The phenomenon of fractional quantum Hall effect (FQHE) was first experimentally observed 33 years ago. FQHE involves strong Coulomb interactions and correlations among the electrons, which leads to quasiparticles with fractional elementary charge. Three decades later, the field of FQHE is still active with new discoveries and new technical developments. A significant portion of attention in FQHE has been dedicated to filling factor 5/2 state, for its unusual even denominator and possible application in topological quantum computation. Traditionally FQHE has been observed in high mobility GaAs heterostructure, but new materials such as graphene also open up a new area for FQHE. This review focuses on recent progress of FQHE at 5/2 state and FQHE in graphene. Keywords: Fractional Quantum Hall Effect, Experimental Progress, 5/2 State, Graphene measured through the temperature dependence of I. INTRODUCTION longitudinal resistance. Due to the confinement potential of a realistic 2DEG sample, the gapped QHE A. Quantum Hall Effect (QHE) state has chiral edge current at boundaries. Hall effect was discovered in 1879, in which a Hall voltage perpendicular to the current is produced across a conductor under a magnetic field. Although Hall effect was discovered in a sheet of gold leaf by Edwin Hall, Hall effect does not require two-dimensional condition. In 1980, quantum Hall effect was observed in two-dimensional electron gas (2DEG) system [1,2].
    [Show full text]
  • Quantum Mechanics by Numerical Simulation of Path Integral
    Quantum Mechanics by Numerical Simulation of Path Integral Author: Bruno Gim´enezUmbert Facultat de F´ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.∗ Abstract: The Quantum Mechanics formulation of Feynman is based on the concept of path integrals, allowing to express the quantum transition between two space-time points without using the bra and ket formalism in the Hilbert space. A particular advantage of this approach is the ability to provide an intuitive representation of the classical limit of Quantum Mechanics. The practical importance of path integral formalism is being a powerful tool to solve quantum problems where the analytic solution of the Schr¨odingerequation is unknown. For this last type of physical systems, the path integrals can be calculated with the help of numerical integration methods suitable for implementation on a computer. Thus, they provide the development of arbitrarily accurate solutions. This is particularly important for the numerical simulation of strong interactions (QCD) which cannot be solved by a perturbative treatment. This thesis will focus on numerical techniques to calculate path integral on some physical systems of interest. I. INTRODUCTION [1]. In the first section of our writeup, we introduce the basic concepts of path integral and numerical simulation. Feynman's space-time approach based on path inte- Next, we discuss some specific examples such as the har- grals is not too convenient for attacking practical prob- monic oscillator. lems in non-relativistic Quantum Mechanics. Even for the simple harmonic oscillator it is rather cumbersome to evaluate explicitly the relevant path integral. However, II. QUANTUM MECHANICS BY PATH INTEGRAL his approach is extremely gratifying from a conceptual point of view.
    [Show full text]
  • Observables in Inhomogeneous Ground States at Large Global Charge
    IPMU18-0069 Observables in Inhomogeneous Ground States at Large Global Charge Simeon Hellerman1, Nozomu Kobayashi1,2, Shunsuke Maeda1,2, and Masataka Watanabe1,2 1Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan 2Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 133-0022, Japan Abstract As a sequel to previous work, we extend the study of the ground state configu- ration of the D = 3, Wilson-Fisher conformal O(4) model. In this work, we prove that for generic ratios of two charge densities, ρ1=ρ2, the ground-state configuration is inhomogeneous and that the inhomogeneity expresses itself towards longer spatial periods. This is the direct extension of the similar statements we previously made for ρ =ρ 1. We also compute, at fixed set of charges, ρ ; ρ , the ground state en- 1 2 1 2 ergy and the two-point function(s) associated with this inhomogeneous configuration 3=2 on the torus. The ground state energy was found to scale (ρ1 + ρ2) , as dictated by dimensional analysis and similarly to the case of the O(2) model. Unlike the case of the O(2) model, the ground also strongly violates cluster decomposition in the large-volume, fixed-density limit, with a two-point function that is negative definite at antipodal points of the torus at leading order at large charge. arXiv:1804.06495v1 [hep-th] 17 Apr 2018 Contents 1 Introduction3 2 Goldstone counting and the (in)homogeneity of large-charge ground states5 1 A comment on helical symmetries and chemical potentials .
    [Show full text]
  • Quantum Mechanics in One Dimension
    Solved Problems on Quantum Mechanics in One Dimension Charles Asman, Adam Monahan and Malcolm McMillan Department of Physics and Astronomy University of British Columbia, Vancouver, British Columbia, Canada Fall 1999; revised 2011 by Malcolm McMillan Given here are solutions to 15 problems on Quantum Mechanics in one dimension. The solutions were used as a learning-tool for students in the introductory undergraduate course Physics 200 Relativity and Quanta given by Malcolm McMillan at UBC during the 1998 and 1999 Winter Sessions. The solutions were prepared in collaboration with Charles Asman and Adam Monaham who were graduate students in the Department of Physics at the time. The problems are from Chapter 5 Quantum Mechanics in One Dimension of the course text Modern Physics by Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Saunders College Publishing, 2nd ed., (1997). Planck's Constant and the Speed of Light. When solving numerical problems in Quantum Mechanics it is useful to note that the product of Planck's constant h = 6:6261 × 10−34 J s (1) and the speed of light c = 2:9979 × 108 m s−1 (2) is hc = 1239:8 eV nm = 1239:8 keV pm = 1239:8 MeV fm (3) where eV = 1:6022 × 10−19 J (4) Also, ~c = 197:32 eV nm = 197:32 keV pm = 197:32 MeV fm (5) where ~ = h=2π. Wave Function for a Free Particle Problem 5.3, page 224 A free electron has wave function Ψ(x; t) = sin(kx − !t) (6) •Determine the electron's de Broglie wavelength, momentum, kinetic energy and speed when k = 50 nm−1.
    [Show full text]
  • 22.51 Course Notes, Chapter 9: Harmonic Oscillator
    9. Harmonic Oscillator 9.1 Harmonic Oscillator 9.1.1 Classical harmonic oscillator and h.o. model 9.1.2 Oscillator Hamiltonian: Position and momentum operators 9.1.3 Position representation 9.1.4 Heisenberg picture 9.1.5 Schr¨odinger picture 9.2 Uncertainty relationships 9.3 Coherent States 9.3.1 Expansion in terms of number states 9.3.2 Non-Orthogonality 9.3.3 Uncertainty relationships 9.3.4 X-representation 9.4 Phonons 9.4.1 Harmonic oscillator model for a crystal 9.4.2 Phonons as normal modes of the lattice vibration 9.4.3 Thermal energy density and Specific Heat 9.1 Harmonic Oscillator We have considered up to this moment only systems with a finite number of energy levels; we are now going to consider a system with an infinite number of energy levels: the quantum harmonic oscillator (h.o.). The quantum h.o. is a model that describes systems with a characteristic energy spectrum, given by a ladder of evenly spaced energy levels. The energy difference between two consecutive levels is ∆E. The number of levels is infinite, but there must exist a minimum energy, since the energy must always be positive. Given this spectrum, we expect the Hamiltonian will have the form 1 n = n + ~ω n , H | i 2 | i where each level in the ladder is identified by a number n. The name of the model is due to the analogy with characteristics of classical h.o., which we will review first. 9.1.1 Classical harmonic oscillator and h.o.
    [Show full text]
  • Spin State Read-Out by Quantum Jump Technique
    1 Spin State Read-Out by Quantum Jump Technique: for the Purpose of Quantum Computing E. Pazy Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel T. Calarco and P. Zoller Institut fur¨ Theoretische Physik, Universitat¨ Innsbruck, A-6020 Innsbruck, Austria Abstract—Utilizing the Pauli-blocking mechanism we in an isolated atom, self-assembled QDs are embedded show that shining circular polarized light on a singly in an underlying lattice ,i.e., a three-dimensional crystal charged quantum dot induces spin dependent fluorescence. structure. Even though the number of atoms in such Employing the quantum-jump technique we demonstrate dots is small compared to lithographically defined QDs, that this resonance luminescence, due to a spin dependent optical excitation, serves as an excellent read out mech- still this underlying lattice in which the QD is formed anism for measuring the spin state of a single electron strongly affects the single particle states through its band confined to a quantum dot. structure. Due to their discrete density of states, QDs have been I. INTRODUCTION suggested as the major building blocks for numerous quantum computing implementation schemes. These im- Semiconductor self-assembled quantum dots (QDs) plementation schemes can roughly be divided into those form spontaneously during the epitaxial growth process, which utilize the charge [2], or respectively the spin with confinement provided in all three dimensions by a [3] of charge carriers confined within a QD. Accurate high bandgap in the surrounding material (for example, measurement of a single qubit is an essential requirement see [1]). The strong confinement in such structures for the implementation of quantum computation (QC), leads to a discrete atom-like density of states which therefore highly precise methods for the measurement makes these QDs especially attractive for novel device arXiv:cond-mat/0404494v1 [cond-mat.other] 21 Apr 2004 of the spin of a QD confined charge carrier need to be applications in fields such as quantum computing, optics, devised.
    [Show full text]