Quantum Vacuum Structure and Cosmology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Curiens Principle and Spontaneous Symmetry Breaking
Curie’sPrinciple and spontaneous symmetry breaking John Earman Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA, USA Abstract In 1894 Pierre Curie announced what has come to be known as Curie’s Principle: the asymmetry of e¤ects must be found in their causes. In the same publication Curie discussed a key feature of what later came to be known as spontaneous symmetry breaking: the phenomena generally do not exhibit the symmetries of the laws that govern them. Philosophers have long been interested in the meaning and status of Curie’s Principle. Only comparatively recently have they begun to delve into the mysteries of spontaneous symmetry breaking. The present paper aims to advance the dis- cussion of both of these twin topics by tracing their interaction in classical physics, ordinary quantum mechanics, and quantum …eld theory. The fea- tures of spontaneous symmetry that are peculiar to quantum …eld theory have received scant attention in the philosophical literature. These features are highlighted here, along with a explanation of why Curie’sPrinciple, though valid in quantum …eld theory, is nearly vacuous in that context. 1. Introduction The statement of what is now called Curie’sPrinciple was announced in 1894 by Pierre Curie: (CP) When certain e¤ects show a certain asymmetry, this asym- metry must be found in the causes which gave rise to it (Curie 1894, p. 401).1 This principle is vague enough to allow some commentators to see in it pro- found truth while others see only falsity (compare Chalmers 1970; Radicati 1987; van Fraassen 1991, pp. -
1 the History of Vacuum Science and Vacuum Technology
1 1 The History of Vacuum Science and Vacuum Technology The Greek philosopher Democritus (circa 460 to 375 B.C.), Fig. 1.1, assumed that the world would be made up of many small and undividable particles that he called atoms (atomos, Greek: undividable). In between the atoms, Democritus presumed empty space (a kind of micro-vacuum) through which the atoms moved according to the general laws of mechanics. Variations in shape, orientation, and arrangement of the atoms would cause variations of macroscopic objects. Acknowledging this philosophy, Democritus,together with his teacher Leucippus, may be considered as the inventors of the concept of vacuum. For them, the empty space was the precondition for the variety of our world, since it allowed the atoms to move about and arrange themselves freely. Our modern view of physics corresponds very closely to this idea of Democritus. However, his philosophy did not dominate the way of thinking until the 16th century. It was Aristotle’s (384 to 322 B.C.) philosophy, which prevailed throughout theMiddleAgesanduntilthebeginning of modern times. In his book Physica [1], around 330 B.C., Aristotle denied the existence of an empty space. Where there is nothing, space could not be defined. For this reason no vacuum (Latin: empty space, emptiness) could exist in nature. According to his philosophy, nature consisted of water, earth, air, and fire. The lightest of these four elements, fire, is directed upwards, the heaviest, earth, downwards. Additionally, nature would forbid vacuum since neither up nor down could be defined within it. Around 1300, the medieval scholastics began to speak of a horror vacui, meaning nature’s fear of vacuum. -
Configuration Interaction Study of the Ground State of the Carbon Atom
Configuration Interaction Study of the Ground State of the Carbon Atom María Belén Ruiz* and Robert Tröger Department of Theoretical Chemistry Friedrich-Alexander-University Erlangen-Nürnberg Egerlandstraße 3, 91054 Erlangen, Germany In print in Advances Quantum Chemistry Vol. 76: Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems 30th July 2017 Abstract Configuration Interaction (CI) calculations on the ground state of the C atom are carried out using a small basis set of Slater orbitals [7s6p5d4f3g]. The configurations are selected according to their contribution to the total energy. One set of exponents is optimized for the whole expansion. Using some computational techniques to increase efficiency, our computer program is able to perform partially-parallelized runs of 1000 configuration term functions within a few minutes. With the optimized computer programme we were able to test a large number of configuration types and chose the most important ones. The energy of the 3P ground state of carbon atom with a wave function of angular momentum L=1 and ML=0 and spin eigenfunction with S=1 and MS=0 leads to -37.83526523 h, which is millihartree accurate. We discuss the state of the art in the determination of the ground state of the carbon atom and give an outlook about the complex spectra of this atom and its low-lying states. Keywords: Carbon atom; Configuration Interaction; Slater orbitals; Ground state *Corresponding author: e-mail address: [email protected] 1 1. Introduction The spectrum of the isolated carbon atom is the most complex one among the light atoms. The ground state of carbon atom is a triplet 3P state and its low-lying excited states are singlet 1D, 1S and 1P states, more stable than the corresponding triplet excited ones 3D and 3S, against the Hund’s rule of maximal multiplicity. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
A Discussion on Characteristics of the Quantum Vacuum
A Discussion on Characteristics of the Quantum Vacuum Harold \Sonny" White∗ NASA/Johnson Space Center, 2101 NASA Pkwy M/C EP411, Houston, TX (Dated: September 17, 2015) This paper will begin by considering the quantum vacuum at the cosmological scale to show that the gravitational coupling constant may be viewed as an emergent phenomenon, or rather a long wavelength consequence of the quantum vacuum. This cosmological viewpoint will be reconsidered on a microscopic scale in the presence of concentrations of \ordinary" matter to determine the impact on the energy state of the quantum vacuum. The derived relationship will be used to predict a radius of the hydrogen atom which will be compared to the Bohr radius for validation. The ramifications of this equation will be explored in the context of the predicted electron mass, the electrostatic force, and the energy density of the electric field around the hydrogen nucleus. It will finally be shown that this perturbed energy state of the quan- tum vacuum can be successfully modeled as a virtual electron-positron plasma, or the Dirac vacuum. PACS numbers: 95.30.Sf, 04.60.Bc, 95.30.Qd, 95.30.Cq, 95.36.+x I. BACKGROUND ON STANDARD MODEL OF COSMOLOGY Prior to developing the central theme of the paper, it will be useful to present the reader with an executive summary of the characteristics and mathematical relationships central to what is now commonly referred to as the standard model of Big Bang cosmology, the Friedmann-Lema^ıtre-Robertson-Walker metric. The Friedmann equations are analytic solutions of the Einstein field equations using the FLRW metric, and Equation(s) (1) show some commonly used forms that include the cosmological constant[1], Λ. -
On the Stability of Classical Orbits of the Hydrogen Ground State in Stochastic Electrodynamics
entropy Article On the Stability of Classical Orbits of the Hydrogen Ground State in Stochastic Electrodynamics Theodorus M. Nieuwenhuizen 1,2 1 Institute for Theoretical Physics, P.O. Box 94485, 1098 XH Amsterdam, The Netherlands; [email protected]; Tel.: +31-20-525-6332 2 International Institute of Physics, UFRG, Av. O. Gomes de Lima, 1722, 59078-400 Natal-RN, Brazil Academic Editors: Gregg Jaeger and Andrei Khrennikov Received: 19 February 2016; Accepted: 31 March 2016; Published: 13 April 2016 Abstract: De la Peña 1980 and Puthoff 1987 show that circular orbits in the hydrogen problem of Stochastic Electrodynamics connect to a stable situation, where the electron neither collapses onto the nucleus nor gets expelled from the atom. Although the Cole-Zou 2003 simulations support the stability, our recent numerics always lead to self-ionisation. Here the de la Peña-Puthoff argument is extended to elliptic orbits. For very eccentric orbits with energy close to zero and angular momentum below some not-small value, there is on the average a net gain in energy for each revolution, which explains the self-ionisation. Next, an 1/r2 potential is added, which could stem from a dipolar deformation of the nuclear charge by the electron at its moving position. This shape retains the analytical solvability. When it is enough repulsive, the ground state of this modified hydrogen problem is predicted to be stable. The same conclusions hold for positronium. Keywords: Stochastic Electrodynamics; hydrogen ground state; stability criterion PACS: 11.10; 05.20; 05.30; 03.65 1. Introduction Stochastic Electrodynamics (SED) is a subquantum theory that considers the quantum vacuum as a true physical vacuum with its zero-point modes being physical electromagnetic modes (see [1,2]). -
The Casimir-Polder Effect and Quantum Friction Across Timescales Handelt Es Sich Um Meine Eigen- Ständig Erbrachte Leistung
THECASIMIR-POLDEREFFECT ANDQUANTUMFRICTION ACROSSTIMESCALES JULIANEKLATT Physikalisches Institut Fakultät für Mathematik und Physik Albert-Ludwigs-Universität THECASIMIR-POLDEREFFECTANDQUANTUMFRICTION ACROSSTIMESCALES DISSERTATION zu Erlangung des Doktorgrades der Fakultät für Mathematik und Physik Albert-Ludwigs Universität Freiburg im Breisgau vorgelegt von Juliane Klatt 2017 DEKAN: Prof. Dr. Gregor Herten BETREUERDERARBEIT: Dr. Stefan Yoshi Buhmann GUTACHTER: Dr. Stefan Yoshi Buhmann Prof. Dr. Tanja Schilling TAGDERVERTEIDIGUNG: 11.07.2017 PRÜFER: Prof. Dr. Jens Timmer Apl. Prof. Dr. Bernd von Issendorff Dr. Stefan Yoshi Buhmann © 2017 Those years, when the Lamb shift was the central theme of physics, were golden years for all the physicists of my generation. You were the first to see that this tiny shift, so elusive and hard to measure, would clarify our thinking about particles and fields. — F. J. Dyson on occasion of the 65th birthday of W. E. Lamb, Jr. [54] Man kann sich darüber streiten, ob die Welt aus Atomen aufgebaut ist, oder aus Geschichten. — R. D. Precht [165] ABSTRACT The quantum vacuum is subject to continuous spontaneous creation and annihi- lation of matter and radiation. Consequently, an atom placed in vacuum is being perturbed through the interaction with such fluctuations. This results in the Lamb shift of atomic levels and spontaneous transitions between atomic states — the properties of the atom are being shaped by the vacuum. Hence, if the latter is be- ing shaped itself, then this reflects in the atomic features and dynamics. A prime example is the Casimir-Polder effect where a macroscopic body, introduced to the vacuum in which the atom resides, causes a position dependence of the Lamb shift. -
String-Inspired Running Vacuum—The ``Vacuumon''—And the Swampland Criteria
universe Article String-Inspired Running Vacuum—The “Vacuumon”—And the Swampland Criteria Nick E. Mavromatos 1 , Joan Solà Peracaula 2,* and Spyros Basilakos 3,4 1 Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, Strand, London WC2R 2LS, UK; [email protected] 2 Departament de Física Quàntica i Astrofísica, and Institute of Cosmos Sciences (ICCUB), Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Catalonia, Spain 3 Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efessiou 4, 11527 Athens, Greece; [email protected] 4 National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece * Correspondence: [email protected] Received: 15 October 2020; Accepted: 17 November 2020; Published: 20 November 2020 Abstract: We elaborate further on the compatibility of the “vacuumon potential” that characterises the inflationary phase of the running vacuum model (RVM) with the swampland criteria. The work is motivated by the fact that, as demonstrated recently by the authors, the RVM framework can be derived as an effective gravitational field theory stemming from underlying microscopic (critical) string theory models with gravitational anomalies, involving condensation of primordial gravitational waves. Although believed to be a classical scalar field description, not representing a fully fledged quantum field, we show here that the vacuumon potential satisfies certain swampland criteria for the relevant regime of parameters and field range. We link the criteria to the Gibbons–Hawking entropy that has been argued to characterise the RVM during the de Sitter phase. These results imply that the vacuumon may, after all, admit under certain conditions, a rôle as a quantum field during the inflationary (almost de Sitter) phase of the running vacuum. -
1 the LOCALIZED QUANTUM VACUUM FIELD D. Dragoman
1 THE LOCALIZED QUANTUM VACUUM FIELD D. Dragoman – Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: [email protected] ABSTRACT A model for the localized quantum vacuum is proposed in which the zero-point energy of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated to the zero-point energy of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift; it also offers a new insight into the Zitterbewegung of material particles. 2 INTRODUCTION The zero-point energy (ZPE) of the quantum electromagnetic field is at the same time an indispensable concept of quantum field theory and a controversial issue (see [1] for an excellent review of the subject). The need of the ZPE has been recognized from the beginning of quantum theory of radiation, since only the inclusion of this term assures no first-order temperature-independent correction to the average energy of an oscillator in thermal equilibrium with blackbody radiation in the classical limit of high temperatures. A more rigorous introduction of the ZPE stems from the treatment of the electromagnetic radiation as an ensemble of harmonic quantum oscillators. Then, the total energy of the quantum electromagnetic field is given by E = åk,s hwk (nks +1/ 2) , where nks is the number of quantum oscillators (photons) in the (k,s) mode that propagate with wavevector k and frequency wk =| k | c = kc , and are characterized by the polarization index s. -
Riccar Radiance
Description of the vacuum R40 & R40P Owner’s Manual CONTENTS Getting Started Important Safety Instructions .................................................................................................... 2 Polarization Instructions ............................................................................................................. 3 State of California Proposition 65 Warnings ...................................................................... 3 Description of the Vacuum ........................................................................................................ 4 Assembling the Vacuum Attaching the Handle to the Vacuum ..................................................................................... 6 Unwinding the Power Cord ...................................................................................................... 6 Operation Reclining the Handle .................................................................................................................. 7 Vacuuming Carpet ....................................................................................................................... 7 Bare Floor Cleaning .................................................................................................................... 7 Brushroll Auto Shutoff Feature ................................................................................................. 7 Dirt Sensing Display .................................................................................................................. -
Vacuum As a Physical Medium
cu - TP - 626 / EERNIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I.12RI=IR1I;s. QI.; 621426 VACUUM AS A PHYSICAL MEDIUM (RELATIVISTIC HEAVY ION COLLISIONS AND THE BOLTZMANN EQUAT ION) T. D. LEE COLUMBIA UNIvERsI1Y, New Y0RI<, N.Y. 10027 A LECTURE GIVEN AT THE INTERNATIONAL SYMPOSIUM IN HONOUR OF BOLTZMANN'S 1 50TH BIRTHDAY, FEBRUARY 1994. THIS RESEARCH WAS SUPPORTED IN PART BY THE U.S. DEPARTMENT OF ENERGY. OCR Output OCR OutputVACUUM AS A PHYSICAL MEDIUM (Relativistic Heavy Ion Collisions and the Boltzmann Equation) T. D. Lee Columbia University, New York, N.Y. 10027 It is indeed a privilege for me to attend this international symposium in honor of Boltzmann's 150th birthday. ln this lecture, I would like to cover the following topics: 1) Symmetries and Asymmetries: Parity P (right—left symmetry) Charge conjugation C (particle-antiparticle symmetry) Time reversal T Their violations and CPT symmetry. 2) Two Puzzles of Modern Physics: Missing symmetry Vacuum as a physical medium Unseen quarks. 3) Relativistic Heavy Ion Collisions (RHIC): How to excite the vacuum? Phase transition of the vacuum Hanbury-Brown-Twiss experiments. 4) Application of the Relativistic Boltzmann Equations: ARC model and its Lorentz invariance AGS experiments and physics in ultra-heavy nuclear density. OCR Output One of the underlying reasons for viewing the vacuum as a physical medium is the discovery of missing symmetries. I will begin with the nonconservation of parity, or the asymmetry between right and left. ln everyday life, right and left are obviously distinct from each other. Our hearts, for example, are usually not on the right side. The word right also means "correct,' right? The word sinister in its Latin root means "left"; in Italian, "left" is sinistra.