Frequently Asked Questions About Quantum Mechanics and the Transactional Interpretation

Total Page:16

File Type:pdf, Size:1020Kb

Frequently Asked Questions About Quantum Mechanics and the Transactional Interpretation Appendix A Frequently Asked Questions About Quantum Mechanics and the Transactional Interpretation A.1 Basic Questions and Answers At physics meetings at which talks are given, it is conventional to leave some time at the end of the presentation for questions about ideas that need clarification or that might not have been adequately covered during the formal presentation. Werner Heisenberg remarked [1] that no one who gave a talk at Niels Bohr’s Institute in Copenhagen ever finished the presentation, because Bohr always asked too many questions. So, in the spirit of Bohr’s inquisitiveness, here are some questions that may have been raised by material in this book, along with short answers. We will start with a few basic questions. Q: What is quantum mechanics? A: Quantum mechanics is the standard physics theory that deals with the smallest scale of physical objects in the universe, objects (atoms, nuclei, photons, quarks) so small that the lumpiness or quantization of otherwise apparently continuous physical variables becomes important. Q: What is the meaning of the angular frequency ω and wave number k of waves? A: Light waves have a characteristic frequency f indicating how many times per second the electric field of the light wave oscillates. The angular frequency ω is just the same characteristic expressed in radians of phase per second instead of oscillations per second, so ω = 2π f . Light waves also have a characteristic wavelength λ as they move through space, which is the spatial distance between one electric-field maximum and the next. The wave number k is a way of looking at the reciprocal of that characteristic, so that k = 2π/λ. The speed of light c is related to these quantities as c = f λ = ω/k. When we deal with particle-waves, for example using the de Broglie wavelength, we also characterize them in terms of ω and k. Q: What is quantization? © Springer International Publishing Switzerland 2016 169 J.G. Cramer, The Quantum Handshake, DOI 10.1007/978-3-319-24642-0 170 Appendix A: Frequently Asked Questions About Quantum Mechanics … A: It’s the idea that there are minimum size chunks for certain quantities like energy and angular momentum. The minimum energy chunk for light of frequency f is E = hf = ω, where h is Planck’s constant and is h divided by 2π. We call the particle of light carrying this minimum-size energy chunk ω a photon. Q: How big is Planck’s constant? A: Planck’s constant is very small. It represents the minimum unit of action (energy × time) in quantum physics, and it has the value h = 6.62606957×10−34 J · s = 4.135667516×10−15 eV ·s. Further, = h/2π = 1.054571726×10−34 J ·s = 6.58211928 × 10−16 eV · s. As an example of the use of h, red visible light has a wavelength of about λγ = 500 nanometers (nm). A photon of red light carries an energy of Eγ = hc/λγ = 2.48eV.AneV is an electron-volt, the energy required to move one charged electron through a potential of 1V. An electron-volt is a very small quantity of energy, roughly the amount of energy that an atomic electron gains or loses by jumping from one atomic orbit to another. Q: What if Planck’s constant was zero? A: Setting to zero is a way of taking the classical limit of quantum mechanics: the uncertainty principle goes away, and in that limit quantum mechanics becomes more or less equivalent to Newtonian mechanics. However, Planck’s treatment of black body radiation suggests that a universe in which Planck’s constant was zero would be very different than ours, because hot objects would rapidly radiate away all their energy as high-frequency electromagnetic radiation (the ultraviolet catastrophe), matter would be extremely cold, and the universe would be dominated by light. Q: What is angular momentum, why is it quantized, and why is it conserved? A: Angular momentum is the rotational momentum of a rotating or spinning object. It is the product of the angular rotation rate ω and the rotational inertia I of the object. In quantum mechanics, if one requires the state of an object that is slowly turned through 360◦ to return to exactly the same state as before, this has the rather unexpected consequence of requiring that angular momentum must be quantized in units of . Thus, it is 360◦ rotational symmetry that causes angular momentum to be quantized. Therefore, one would think that no object in our universe could have a non-zero angular momentum of less than one unit. As it turns out, this is wrong, because fermions (see below) have an intrinsic spin of half an unit and therefore do not have 360◦ symmetry. Angular momentum conservation is the rotational manifestation of Newton’s 3rd Law, which in it’s rotational form states that in the absence of external torques, the angular momentum of a system is an unchanging time-independent constant. Q: What is the difference between orbital angular momentum and spin angular momentum? A: In an atom, two distinct kinds of angular momentum are present: the angular momentum created by the electrons orbiting the nucleus and the intrinsic spin angu- lar momentum of the electrons themselves. The orbital angular momentum always Appendix A: Frequently Asked Questions About Quantum Mechanics … 171 comes in units of , while the electron spins are each /2. The total angular momen- tum is the vector sum of these components, and it can be quite complicated because of the variety of ways in which the component angular momentum vectors can couple. The parity (see below) of the system wave function depends on the orbital angular momentum, with odd values (1, 3, 5, …) giving odd parity and even values (0, 2, 4, …) giving even parity. Q: What is parity? A: A parity transformation means that the three spatial coordinates (x, y, and z) of a quantum system are reversed in sign and direction. If the quantum wave function remains the same under such a transformation, the system is said to have positive parity. Example: cos(x) = cos(−x). If the quantum wave function changes sign under such a transformation, the system is said to have negative parity. Example: sin(x) =−sin(−x). Each energy state of an atom or nucleus has a definite parity, either positive or negative. In a “quantum jump” atomic transition, if the parity changes the properties of the emitted photon will be different than if the parity remains the same. Parity is related to mirror-image symmetry. Q: Why is photon linear polarization, important in EPR experiments, constrained by angular momentum conservation? A: Photons are boson particles (see below) that have an intrinsic spin angular momentum of one unit. If this spin vector points in the direction of motion of the photon, the photon is in a state of left circular polarization; if the spin vector points against the direction of motion, it is in a state of right circular polarization. Because the photon travels at the speed of light, special relativity does not allow its spin to point in any other directions. States of linear polarization can be formed by a superposition of the right and left circular polarization states, as discussed in Sect. 6.6 and quantified by Eqs.6.4 and 6.5. Since angular momentum conservation constrains the spins of the photons of a system, it also constrains the states of linear polarization, and EPR experiments make use of this. Q: What is a fermion? A: Fundamental particles called fermions, including electrons, muons, neutrinos, and quarks, have an intrinsic angular momentum or “spin” of 1/2 , i.e. half an unit. Composite fermions, which are made up of three quarks, include neutrons, protons, and heavier baryons. Fermions obey Fermi-Dirac statistics and the Pauli exclusion principle, the requirement that only one fermion can occupy any particular quantum state. This leads to the electron-shell structure in atoms, to the neutron and proton shell structures in nuclei, and to valence behavior and chemical bonding in chemistry. In quantum wave mechanics, fermions are described using the Dirac wave equation. The half-integer spin of fermions means that one must rotate such particles through two full revolutions or 720◦ before they return to their original state. These peculiar 172 Appendix A: Frequently Asked Questions About Quantum Mechanics … fermion particles also come with antimatter twins (e.g., positrons for electrons and anti-quarks for quarks) of opposite parity (opposite mirror-symmetry).1 Q: What is a boson? A: Fundamental particles called bosons, including photons, gluons, the Z 0 and W ± weak-interaction particles, and the Higgs particle, the mediating particles for the fundamental forces, all have an intrinsic spin that is either zero or an integer multiple of . Composite bosons include alpha-particles, many atoms and nuclei, and π- and K -mesons. Bosons obey Bose–Einstein statistics and can form a “condensate” in which a large number of bosons all have identical wave functions and occupy the same quantum state. Lasers are an example of the operation of Bose–Einstein statistics for photons. In quantum mechanics, bosons are described by the electromagnetic wave equation for light and the Klein–Gordon equation for massive particles. Q: Is light made of particles or of waves? A: Light exhibits the behavior of both a particle and a wave. The Transactional Interpretation shows us that light moves from place to place as waves, but at locations where it is emitted or absorbed it obeys the boundary conditions of a particle carrying energy ω, momentum k, and angular momentum .
Recommended publications
  • God and Contrasting Interpretations of Quantum Theory
    S & CB (2005), 17, 155–175 0954–4194 ROGER PAUL Relative State or It-from-Bit: God and Contrasting Interpretations of Quantum Theory In this article I explore theological implications of two contrasting interpretations of quantum theory: the Relative State interpretation of Hugh Everett III, and the It-from-Bit proposal of John A. Wheeler. The Relative State interpretation considers the Universal Wave Function to be a complete description of reality. Measurement results in a branching process that can be interpreted in terms of many worlds or many minds. I discuss issues of the identity of observers in a branching universe, the ways God may interact with the deterministic, isolated quantum universe and the relative nature of salvation history from a perspective within a branch. In contrast, irreversible, elementary acts of observation are considered to be the foundation of reality in the It-from-Bit proposal. Information gained through observer-participancy (the ‘bits’) constructs the fabric of the physical universe (‘it’), in a self-excited circuit. I discuss whether meaning, including religious faith, is a human construct, and whether creation is co- creation, in which divine power and supremacy are limited by the emergence of a participatory universe. By taking these two contrasting interpretations of quantum theory seriously, I hope to show that the interpretation of quantum mechanics we start from matters theologically. Key words: Quantum theory, theology, relative state, many worlds, it-from- bit, observer-participancy, human identity, divine simplicity, co-creation, salvation history. Theological thinking about quantum mechanics has tended to focus on the issue of Special Divine Action in relation to the uncertainty principle and quan- tum measurement.1 Inevitably, this work has been inconclusive, but has nev- ertheless succeeded in opening up the discussion.
    [Show full text]
  • Life and Quantum Interconnectedness
    Life and Quantum Interconnectedness Husin Alatas Theoretical Physics Division, Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University; Center for Transdisciplinary and Sustainability Sciences, IPB University Presented at the Afternoon Discussion on Redesigning the Future (ADReF), CTSS-IPB University, June 30th 2020 Outline... Structure of Fundamental Matter Quantum World and its Weirdness Quantum Interpretations Life and Quantum Interconnectedness Disclaimer!… I am a theoretical physicist, not a philosopher… I have been trained as a reductionist, but now I am trying to be an integralist… Physics… Mainly about understanding nature phenomena based on OBSERVATION and MEASUREMENT conducted through scientific method Theoretical Physics?… Theoretical physics is a branch of physics that deals with rationalization, explanation, and prediction of phenomena in natural systems which is developed based on the combination of mathematics, abstraction, imagination, and intuition. Conducted research mainly based on curiosity with sky as its limit. Albert Einstein… “Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution”… Albert Szent-Györgyi… “As scientists attempt to understand a living system, they move down from dimension to dimension, from one level of complexity to the next lower level. I followed this course in my own studies. I went from anatomy to the study of tissues, then to electron microscopy and chemistry, and finally to quantum mechanics. This downward journey through the scale of dimensions has its irony, for in my search for the secret of life, I ended up with atoms and electrons, which have no life at all. Somewhere along the line life has run out through my fingers.
    [Show full text]
  • On the Reality of Quantum Collapse and the Emergence of Space-Time
    Article On the Reality of Quantum Collapse and the Emergence of Space-Time Andreas Schlatter Burghaldeweg 2F, 5024 Küttigen, Switzerland; [email protected]; Tel.: +41-(0)-79-870-77-75 Received: 22 February 2019; Accepted: 22 March 2019; Published: 25 March 2019 Abstract: We present a model, in which quantum-collapse is supposed to be real as a result of breaking unitary symmetry, and in which we can define a notion of “becoming”. We show how empirical space-time can emerge in this model, if duration is measured by light-clocks. The model opens a possible bridge between Quantum Physics and Relativity Theory and offers a new perspective on some long-standing open questions, both within and between the two theories. Keywords: quantum measurement; quantum collapse; thermal time; Minkowski space; Einstein equations 1. Introduction For a hundred years or more, the two main theories in physics, Relativity Theory and Quantum Mechanics, have had tremendous success. Yet there are tensions within the respective theories and in their relationship to each other, which have escaped a satisfactory explanation until today. These tensions have also prevented a unified view of the two theories by a more fundamental theory. There are, of course, candidate-theories, but none has found universal acceptance so far [1]. There is a much older debate, which concerns the question of the true nature of time. Is reality a place, where time, as we experience it, is a mere fiction and where past, present and future all coexist? Is this the reason why so many laws of nature are symmetric in time? Or is there really some kind of “becoming”, where the present is real, the past irrevocably gone and the future not yet here? Admittedly, the latter view only finds a minority of adherents among today’s physicists, whereas philosophers are more balanced.
    [Show full text]
  • Observation of Quantum Jumps in a Single Atom
    VoLUME 57, NUMBER 14 PHYSICAL REVIEW LETTERS 6 OcTosER 1986 Observation of Quantum Jumps in a Single Atom J. C. Bergquist, Randall G. Hulet, Wayne M. Itano, and D. J. Wineland Time and Frequency Division, Jtiational Bureau ofStandards, Boulder, Colorado 80303 (Received 23 June 1986) %e detect the radiatively driven electric quadrupole transition to the metastable Dsy2 state in a single, laser-cooled Hg D ion by monitoring the abrupt cessation of the fluorescence signal from the laser-excited 'Si/2 Pi~2 first resonance line. %hen the ion "jumps" back from the metastable D state to the ground S state, the S P resonance fluorescence signal immediately returns. The sta- tistical properties of the quantum jumps are investigated; for example, photon antibunching in the emission from the D state is observed ~ith 100% efficiency. PACS numbers: 32.80,Pj, 42.SO.Dv Recently, a few laboratories have trapped and radia- ground state to the 5d 6s D5/2 state near 281.5 nm. tively cooled single atoms' 4 enabling a number of The lifetime of the metastable D state has recently unique experiments to be performed. One of the ex- been measured to be about 0.1 s.'5'6 A laser tuned periments now possible is to observe the "quantum just below resonance on the highly allowed S.P transi- jumps" to and from a metastable state in a single atom tion will cool the ion and, in our case, scatter up to by monitoring of the resonance fluorescence of a 5&&10~ photons/s. By collecting even a small fraction strong transition in which at least one of the states is of the scattered photons, we can easily monitor the coupled to the metastable state.
    [Show full text]
  • Black Hole Entropy, the Black Hole Information Paradox, and Time Travel Paradoxes from a New Perspective
    Black hole entropy, the black hole information paradox, and time travel paradoxes from a new perspective Roland E. Allen Physics and Astronomy Department, Texas A&M University, College Station, TX USA [email protected] 1 Black hole entropy, the black hole information paradox, and time travel paradoxes from a new perspective Relatively simple but apparently novel ways are proposed for viewing three related subjects: black hole entropy, the black hole information paradox, and time travel paradoxes. (1) Gibbons and Hawking have completely explained the origin of the entropy of all black holes, including physical black holes – nonextremal and in 3-dimensional space – if one can identify their Euclidean path integral with a true thermodynamic partition function (ultimately based on microstates). An example is provided of a theory containing this feature. (2) There is unitary quantum evolution with no loss of information if the detection of Hawking radiation is regarded as a measurement process within the Everett interpretation of quantum mechanics. (3) The paradoxes of time travel evaporate when exposed to the light of quantum physics (again within the Everett interpretation), with quantum fields properly described by a path integral over a topologically nontrivial but smooth manifold. Keywords: Black hole entropy, information paradox, time travel 1. Introduction The three issues considered in this paper have all been thoroughly discussed by many of the best theorists for several decades, in hundreds of extremely erudite articles and a large number of books. Here we wish to add to the discussion with some relatively simple but apparently novel ideas that involve, first, the interpretation of the Euclidean path integral as a true thermodynamic partition function, and second, the Everett interpretation of quantum mechanics.
    [Show full text]
  • Relativistic Quantum Mechanics 1
    Relativistic Quantum Mechanics 1 The aim of this chapter is to introduce a relativistic formalism which can be used to describe particles and their interactions. The emphasis 1.1 SpecialRelativity 1 is given to those elements of the formalism which can be carried on 1.2 One-particle states 7 to Relativistic Quantum Fields (RQF), which underpins the theoretical 1.3 The Klein–Gordon equation 9 framework of high energy particle physics. We begin with a brief summary of special relativity, concentrating on 1.4 The Diracequation 14 4-vectors and spinors. One-particle states and their Lorentz transforma- 1.5 Gaugesymmetry 30 tions follow, leading to the Klein–Gordon and the Dirac equations for Chaptersummary 36 probability amplitudes; i.e. Relativistic Quantum Mechanics (RQM). Readers who want to get to RQM quickly, without studying its foun- dation in special relativity can skip the first sections and start reading from the section 1.3. Intrinsic problems of RQM are discussed and a region of applicability of RQM is defined. Free particle wave functions are constructed and particle interactions are described using their probability currents. A gauge symmetry is introduced to derive a particle interaction with a classical gauge field. 1.1 Special Relativity Einstein’s special relativity is a necessary and fundamental part of any Albert Einstein 1879 - 1955 formalism of particle physics. We begin with its brief summary. For a full account, refer to specialized books, for example (1) or (2). The- ory oriented students with good mathematical background might want to consult books on groups and their representations, for example (3), followed by introductory books on RQM/RQF, for example (4).
    [Show full text]
  • Adobe Acrobat PDF Document
    BIOGRAPHICAL SKETCH of HUGH EVERETT, III. Eugene Shikhovtsev ul. Dzerjinskogo 11-16, Kostroma, 156005, Russia [email protected] ©2003 Eugene B. Shikhovtsev and Kenneth W. Ford. All rights reserved. Sources used for this biographical sketch include papers of Hugh Everett, III stored in the Niels Bohr Library of the American Institute of Physics; Graduate Alumni Files in Seeley G. Mudd Manuscript Library, Princeton University; personal correspondence of the author; and information found on the Internet. The author is deeply indebted to Kenneth Ford for great assistance in polishing (often rewriting!) the English and for valuable editorial remarks and additions. If you want to get an interesting perspective do not think of Hugh as a traditional 20th century physicist but more of a Renaissance man with interests and skills in many different areas. He was smart and lots of things interested him and he brought the same general conceptual methodology to solve them. The subject matter was not so important as the solution ideas. Donald Reisler [1] Someone once noted that Hugh Everett should have been declared a “national resource,” and given all the time and resources he needed to develop new theories. Joseph George Caldwell [1a] This material may be freely used for personal or educational purposes provided acknowledgement is given to Eugene B. Shikhovtsev, author ([email protected]), and Kenneth W. Ford, editor ([email protected]). To request permission for other uses, contact the author or editor. CONTENTS 1 Family and Childhood Einstein letter (1943) Catholic University of America in Washington (1950-1953). Chemical engineering. Princeton University (1953-1956).
    [Show full text]
  • Spin State Read-Out by Quantum Jump Technique
    1 Spin State Read-Out by Quantum Jump Technique: for the Purpose of Quantum Computing E. Pazy Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel T. Calarco and P. Zoller Institut fur¨ Theoretische Physik, Universitat¨ Innsbruck, A-6020 Innsbruck, Austria Abstract—Utilizing the Pauli-blocking mechanism we in an isolated atom, self-assembled QDs are embedded show that shining circular polarized light on a singly in an underlying lattice ,i.e., a three-dimensional crystal charged quantum dot induces spin dependent fluorescence. structure. Even though the number of atoms in such Employing the quantum-jump technique we demonstrate dots is small compared to lithographically defined QDs, that this resonance luminescence, due to a spin dependent optical excitation, serves as an excellent read out mech- still this underlying lattice in which the QD is formed anism for measuring the spin state of a single electron strongly affects the single particle states through its band confined to a quantum dot. structure. Due to their discrete density of states, QDs have been I. INTRODUCTION suggested as the major building blocks for numerous quantum computing implementation schemes. These im- Semiconductor self-assembled quantum dots (QDs) plementation schemes can roughly be divided into those form spontaneously during the epitaxial growth process, which utilize the charge [2], or respectively the spin with confinement provided in all three dimensions by a [3] of charge carriers confined within a QD. Accurate high bandgap in the surrounding material (for example, measurement of a single qubit is an essential requirement see [1]). The strong confinement in such structures for the implementation of quantum computation (QC), leads to a discrete atom-like density of states which therefore highly precise methods for the measurement makes these QDs especially attractive for novel device arXiv:cond-mat/0404494v1 [cond-mat.other] 21 Apr 2004 of the spin of a QD confined charge carrier need to be applications in fields such as quantum computing, optics, devised.
    [Show full text]
  • New Varying Speed of Light Theories
    New varying speed of light theories Jo˜ao Magueijo The Blackett Laboratory,Imperial College of Science, Technology and Medicine South Kensington, London SW7 2BZ, UK ABSTRACT We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying c, dispelling the myth that the constancy of c is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a color dependent speed of light; varying c induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how “doubly special” relativity has emerged as a VSL effective model of quantum space-time, with observational implications for ultra high energy cosmic rays and gamma ray bursts. Some recent work on the physics of “black” holes and other compact objects in VSL theories is also described, highlighting phenomena associated with spatial (as opposed to temporal) variations in c. Finally we describe the observational status of the theory. The evidence is slim – redshift dependence in alpha, ultra high energy cosmic rays, and (to a much lesser extent) the acceleration of the universe and the WMAP data.
    [Show full text]
  • MITOCW | L0.8 Introduction to Nuclear and Particle Physics: Relativistic Kinematics
    MITOCW | L0.8 Introduction to Nuclear and Particle Physics: Relativistic Kinematics MARKUS Now back to 8.701. So in this section, we'll talk about relativistic kinematics. Let me start by saying that one of KLUTE: my favorite classes here at MIT is a class called 8.20, special relativity, where we teach students about special relativity, of course, but Einstein and paradoxes. And it's one of my favorite classes. And in their class, there's a component on particle physics, which has to do with just using relativistic kinematics in order to understand how to create antimatter, how to collide beams, how we can analyze decays. And in this introductory section, we're going to do a very similar thing. I trust that you all had some sort of class introduction of special relativity, some of you maybe general relativity. What we want to do here is review this content very briefly, but then more use it in a number of examples. So in particle physics, nuclear physics, we often deal particles who will travel close to the speed of light. The photon travels at the speed of light. We typically define the velocity as v/c in natural units. Beta is the velocity, gamma is defined by 1 over square root 1 minus the velocity squared. Beta is always smaller or equal to 1, smaller for massive particle. And gamma is always equal or greater than 1. The total energy of a particle with 0 mass-- sorry, with non-zero mass, is then given by gamma times m c squared.
    [Show full text]
  • Fully Symmetric Relativistic Quantum Mechanics and Its Physical Implications
    mathematics Article Fully Symmetric Relativistic Quantum Mechanics and Its Physical Implications Bao D. Tran and Zdzislaw E. Musielak * Departmemt of Physics, University of Texas at Arlington, Arlington, TX 76019, USA; [email protected] * Correspondence: [email protected] Abstract: A new formulation of relativistic quantum mechanics is presented and applied to a free, massive, and spin-zero elementary particle in the Minkowski spacetime. The reformulation requires that time and space, as well as the timelike and spacelike intervals, are treated equally, which makes the new theory fully symmetric and consistent with the special theory of relativity. The theory correctly reproduces the classical action of a relativistic particle in the path integral formalism, and allows for the introduction of a new quantity called vector-mass, whose physical implications for nonlocality, the uncertainty principle, and quantum vacuum are described and discussed. Keywords: relativistic quantum mechanics; generalized Klein–Gordon equation; path integral formulation; nonlocality; quantum measurement; uncertainty principle; quantum vacuum 1. Introduction Relativistic quantum mechanics (RQM) primarily concerns free relativistic fields [1,2] Citation: Tranl, B.D.; Musielak, Z.E. described by the Klein–Gordon [3,4], Dirac [5], Proca [6], and Rarita–Schwinger [7] wave Fully Symmetric Relativistic equations, whereas the fundamental interactions and their unification are considered by Quantum Mechanics and Its Physical the gauge invariant quantum field theory (QFT) [8,9]. The above equations of RQM are Implications. Mathematics 2021, 9, P = SO( ) ⊗ 1213. https://doi.org/10.3390/ invariant with respect to all transformations that form the Poincaré group 3, 1 s ( + ) ( ) math9111213 T 3 1 , where SO 3, 1 is a non-invariant Lorentz group of rotations and boosts and T(3 + 1) an invariant subgroup of spacetime translations, and this structure includes Academic Editor: Rami Ahmad reversal of parity and time [10].
    [Show full text]
  • 10. Light and Quantum Physics
    10. Light and Quantum physics Infrared radiation Infrared is light that has a wavelength longer than that of visible light. It is often called “IR.” The longest wavelength visible light that we can see has a wavelength of about 0.65 microns. Infrared light has a wavelength from 0.65 microns up to about 20 microns. Since its wavelength is longer, its frequency is lower by the same factor. We humans emit infrared radiation because we are warm. The electrons in our atoms shake, since they are not at absolute zero. A shaking electron has a shaking electric field, and a shaking electric field emits an electromagnetic wave. The effect is analogous to the emission of all other waves: shake the ground enough, and you get an earthquake wave; shake water, and you get a water wave; shake the air, and you get sound; shake the end of a slinky, and a wave will travel along it. The result is that everything emits light, except things that have temperature at absolute zero. Everything glows -- but most things emit so little light, that we don't notice. And, of course we don't notice if most of the light is in a wavelength range that is invisible to the eye. What are some of the things that we notice when they glow from heat? Here are some: candle flame; anything being heated "red hot" in a flame; the sun; the tungsten filament of a 60-watt light bulb; an oven used for baking pottery. This glowing is often referred to as "thermal radiation" or as “heat radiation.” Thermal radiation and temperature The amount of thermal radiation can be calculated using the physics laws of thermodynamics.
    [Show full text]