Causality and Relativity in Quantum Physics

Total Page:16

File Type:pdf, Size:1020Kb

Causality and Relativity in Quantum Physics Causality and Relativity in Quantum Physics Johan F. Prins Department of Physics, University of Pretoria, Gauteng, South Africa Postal address directly to author: P O Box 1537, Cresta 2118, Gauteng, South Africa Telephone: +27 11 477-8005 Facsimile: +27 11 477-3709 e-mail: [email protected] Abstract It is argued here that the Copenhagen interpretation of quantum mechanics violates the tenets on which both Galileo’s and Einstein’s theories of relativity are based. It is postulated that the “building blocks” of the universe are not particles but are holistic wave-entities which act and interact with other wave-entities as one would expect from waves: i.e. they can change their shape and spatial extent (morph) when the boundary conditions change, and they can superpose when sharing the same region of space. It is concluded that there are two distinctly different ways in which superposition can occur: (i) the holistic waves can add without totally losing their separate identities so that the superposed wave can experience interactions between its sub-components (it is suggested that this process should be termed “enmeshment”); (ii) the holistic waves can add to completely lose their separate holistic identities in order to form a wave which is again a single holistic entity (it is suggested that this process be termed “entanglement”). A parameter is derived which defines an interface between quantum mechanics and classical mechanics: the one does not encompass the other; both are valid within their respective domains. Using this framework, a possible causal interpretation is developed for quantum mechanics which can be visualised; even the “spooky action at a distance” that worried Einstein so much, seems to follow logically. This analysis suggests a new approach to model the electron (and other fundamental particles) quantum-mechanically. The electromagnetic quantum-energy of a solitary electron does not form a field around the electron in three-dimensional space, but is finite and localised so that it is equal to the mass of the electron. An energy component along the fourth dimension is derived for the electron which could be part of the dark energy of the Universe and which, in turn, causes vacuum-energy fluctuations through Heisenberg’s uncertainty relationship for energy and time. The possible consequences of this approach are analysed and discussed. Keywords: quantum mechanics, Copenhagen interpretation, Causality, relativity. 1 Contents 1. Introduction 2. Relativity 3. Time-independent wave-functions of an electron 4. Traditional modelling of a “free” electron 5. The “path” of an electron in space 6. Heisenberg’s “uncertainty” relationship 7. Free-electron localisation 8. A two-dimensional analogue 9. Separation of matter from antimatter? 10. The essence of an electron-wave 10.1 Covalent bonding 10.2 The Mott transition 10.3 Gaussian waves 10.4 Outside the critical radius 11. Visualising quantum-mechanical interactions 11.1 Quantum jumps of an atomic electron 11.2 Interactions between atomic orbitals 11.3 The photo-electric effect and Compton scattering 11.4 Diffraction of photons and electrons 11.5 EPR experiments 11.6 Laser beams 12. Blackbody radiation 12.1 Cavity radiation 12.2 Cosmic background radiation 13. Bands and bonds in solids 14. Aspects when modelling the electron 14.1 The electric self-energy field 14.2 The Dirac equation 14.3 Which wave equation for a free electron? 14.4 The fourth dimension – dark energy? 14.5 Electron spin 14.6 Free positrons 14.7 Excited electrons 15. Nucleon bonding – nature’s single force? 16. Macro-entanglement of matter 16.1 Can matter macro-entangle? 16.2 An experiment with electrons 16.3 An experiment with buckey balls 16.4 Dark matter? 17. Creation of the universe – bending space? 17.1 Four-dimensional space, time, temperature and entropy 17.2 Alpha and omega 18. Summary and conclusion 2 1. Introduction General relativity explains big things, quantum mechanics explains little things, and if the twain meets it is on a scale that is physically undetectable and hence empirically irrelevant. Freeman Dyson as quoted in New Scientist The unpredictable, random element comes in only when we try to interpret the wave in terms of the positions and velocities of particles. But maybe that is our mistake: maybe there are no particle positions and velocities of particles, but only waves. Stephen Hawking in “A Brief History of Time” Notwithstanding opposition from formidable scientists like Einstein, Schrödinger, de Broglie and Bohm, the Copenhagen interpretation of quantum mechanics still reigns supreme after its inception 80 years ago. It is at present generally believed that realism in science has been defeated; the quantum world does not exist unless one looks for it, and in this process one becomes a creator of the “reality” one experiences. This interpretation rests primarily on two principles postulated by Born and Heisenberg, and further “rationalised” by Bohr when he formulated his principle of complementarity according to which the particle and wave behaviour are two aspects of the same “reality” which cannot manifest simultaneously: (i) According to Born the intensity of the wave-function, derived from the Schrödinger equation, is not the intensity of a “real matter wave” but a probability distribution representing the spread in possible positions at which a quantum particle (like an electron) will be found when a measurement is made. (ii) According to Heisenberg there are inbuilt uncertainties in nature. When, for example, measuring position and momentum, uncertainties must appear even if perfect measurements were possible; i.e. in terms of Planck’s reduced constant there exists along any direction in space a relationship between the uncertainty ∆r in position and ∆p in momentum of a particle; namely ∆r∆p ≥ ½ h (1) This relationship implies that the product of ∆r with ∆p can at best be equal to ½ h . In terms of the Born-interpretation, it implies that an accurate measurement of the position of a particle along the direction r, must lead to an infinitely large uncertainty in the momentum and vice- versa. 3 These two principles logically lead to the conclusion that the position and momentum of a quantum particle cannot manifest in such a way that both can be measured or known simultaneously, and that repeated measurements of any one of these parameters under exactly the same physical conditions give different results for each measurement; i.e. “God plays dice!”. The Copenhagen interpretation has become entrenched in the scientific world. In fact, it has become dangerous to advocate an objective reality for the quantum world. It is nowadays widely believed that if one attempts to do so, it implies that one does not “understand” quantum physics. In 1935 Einstein took a “last stand” against the Copenhagen interpretation when he, Podolsky and Rosen formulated their (EPR) paradox [1]. The experiment is based on the concept of “entanglement” of particles. Schrödinger coined the term “entanglement” when particles are represented by a single multi- particle wave-function. It implies an instantaneous “understanding” between the particles when they are modelled by quantum mechanics; a “spooky action at a distance”. Einstein et al pointed out that this implies that two “entangled” particles separated by light years must still be able to communicate instantaneously with each other when a measurement is made on one of them. The other particle must then “immediately” manifest an outcome that is determined by the outcome of the measurement on its partner light years away. Einstein et al reasoned that (according to Einstein’s theory of relativity) faster-than-light communication is not possible between two such particles, and therefore the instantaneous communication required by entanglement must indicate that the theory of quantum mechanics is incomplete. In 1964 John Bell derived a condition that has to be violated if such instantaneous communication can manifest [2]. Subsequent experiments on entangled photons violated Bell’s inequality [3]. This has led to the conclusion that “Einstein has been proved wrong”; our universe is indeed the bizarre, non-causal, statistical concoction portrayed by the Copenhagen interpretation. In this publication it will be argued that the Copenhagen interpretation violates fundamental relativistic concepts (from Galileo to Einstein), and that this has led to the present conundrums in physics; i.e. when a quantum “particle” with mass is analysed within its correct relativistic context it is found that a causal interpretation for quantum mechanics must apply. 2. Relativity When talking about relativity Einstein’s name immediately comes to mind; however, the real father of relativity is Galileo. He was first to consider the implications when bodies move relative to one another. He concluded that there is no mechanical experiment that one can do to determine whether you (the observer) and the “stationary surroundings” you observe around you are moving or not moving with a constant speed. From this he postulated that the earth is moving and nearly lost his life for parting with accepted scientific dogma. Galileo’s conclusions about relativity later became formalised in Newton’s first law of classical mechanics. For the purposes of this publication, Newton’s first law will be restated as follows: a body with mass that moves with a constant velocity is a “stationary body”; this is so because one can attach a 4 reference frame to such a body (its proper reference frame) within which it will be observed as being stationary and within which, according to Galileo, it will act like a “real” stationary body. The body’s mass can then be interpreted as its “inertia”; i.e. its “resistance against being moved” from its stationary position within its proper reference frame. It is well-known that it is for this reason that reference frames which move with constant velocities relative to each other have become known as “inertial” reference frames.
Recommended publications
  • Introduction to Dynamical Triangulations
    Introduction to Dynamical Triangulations Andrzej G¨orlich Niels Bohr Institute, University of Copenhagen Naxos, September 12th, 2011 Andrzej G¨orlich Causal Dynamical Triangulation Outline 1 Path integral for quantum gravity 2 Causal Dynamical Triangulations 3 Numerical setup 4 Phase diagram 5 Background geometry 6 Quantum fluctuations Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. quantum trajectory space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. quantum trajectory space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum gravity General Relativity: gravity is encoded in space-time geometry. The role of a trajectory plays now the geometry of four-dimensional space-time. All space-time histories contribute to the transition amplitude.
    [Show full text]
  • Causality and Determinism: Tension, Or Outright Conflict?
    1 Causality and Determinism: Tension, or Outright Conflict? Carl Hoefer ICREA and Universidad Autònoma de Barcelona Draft October 2004 Abstract: In the philosophical tradition, the notions of determinism and causality are strongly linked: it is assumed that in a world of deterministic laws, causality may be said to reign supreme; and in any world where the causality is strong enough, determinism must hold. I will show that these alleged linkages are based on mistakes, and in fact get things almost completely wrong. In a deterministic world that is anything like ours, there is no room for genuine causation. Though there may be stable enough macro-level regularities to serve the purposes of human agents, the sense of “causality” that can be maintained is one that will at best satisfy Humeans and pragmatists, not causal fundamentalists. Introduction. There has been a strong tendency in the philosophical literature to conflate determinism and causality, or at the very least, to see the former as a particularly strong form of the latter. The tendency persists even today. When the editors of the Stanford Encyclopedia of Philosophy asked me to write the entry on determinism, I found that the title was to be “Causal determinism”.1 I therefore felt obliged to point out in the opening paragraph that determinism actually has little or nothing to do with causation; for the philosophical tradition has it all wrong. What I hope to show in this paper is that, in fact, in a complex world such as the one we inhabit, determinism and genuine causality are probably incompatible with each other.
    [Show full text]
  • Causality in Quantum Field Theory with Classical Sources
    Causality in Quantum Field Theory with Classical Sources Bo-Sture K. Skagerstam1;a), Karl-Erik Eriksson2;b), Per K. Rekdal3;c) a)Department of Physics, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway b) Department of Space, Earth and Environment, Chalmers University of Technology, SE-412 96 G¨oteborg, Sweden c)Molde University College, P.O. Box 2110, N-6402 Molde, Norway Abstract In an exact quantum-mechanical framework we show that space-time expectation values of the second-quantized electromagnetic fields in the Coulomb gauge, in the presence of a classical source, automatically lead to causal and properly retarded elec- tromagnetic field strengths. The classical ~-independent and gauge invariant Maxwell's equations then naturally emerge and are therefore also consistent with the classical spe- cial theory of relativity. The fundamental difference between interference phenomena due to the linear nature of the classical Maxwell theory as considered in, e.g., classical optics, and interference effects of quantum states is clarified. In addition to these is- sues, the framework outlined also provides for a simple approach to invariance under time-reversal, some spontaneous photon emission and/or absorption processes as well as an approach to Vavilov-Cherenkovˇ radiation. The inherent and necessary quan- tum uncertainty, limiting a precise space-time knowledge of expectation values of the quantum fields considered, is, finally, recalled. arXiv:1801.09947v2 [quant-ph] 30 Mar 2019 1Corresponding author. Email address: [email protected] 2Email address: [email protected] 3Email address: [email protected] 1. Introduction The roles of causality and retardation in classical and quantum-mechanical versions of electrodynamics are issues that one encounters in various contexts (for recent discussions see, e.g., Refs.[1]-[14]).
    [Show full text]
  • Time and Causality in General Relativity
    Time and Causality in General Relativity Ettore Minguzzi Universit`aDegli Studi Di Firenze FQXi International Conference. Ponta Delgada, July 10, 2009 FQXi Conference 2009, Ponta Delgada Time and Causality in General Relativity 1/8 Light cone A tangent vector v 2 TM is timelike, lightlike, causal or spacelike if g(v; v) <; =; ≤; > 0 respectively. Time orientation and spacetime At every point there are two cones of timelike vectors. The Lorentzian manifold is time orientable if a continuous choice of one of the cones, termed future, can be made. If such a choice has been made the Lorentzian manifold is time oriented and is also called spacetime. Lorentzian manifolds and light cones Lorentzian manifolds A Lorentzian manifold is a Hausdorff manifold M, of dimension n ≥ 2, endowed with a Lorentzian metric, that is a section g of T ∗M ⊗ T ∗M with signature (−; +;:::; +). FQXi Conference 2009, Ponta Delgada Time and Causality in General Relativity 2/8 Time orientation and spacetime At every point there are two cones of timelike vectors. The Lorentzian manifold is time orientable if a continuous choice of one of the cones, termed future, can be made. If such a choice has been made the Lorentzian manifold is time oriented and is also called spacetime. Lorentzian manifolds and light cones Lorentzian manifolds A Lorentzian manifold is a Hausdorff manifold M, of dimension n ≥ 2, endowed with a Lorentzian metric, that is a section g of T ∗M ⊗ T ∗M with signature (−; +;:::; +). Light cone A tangent vector v 2 TM is timelike, lightlike, causal or spacelike if g(v; v) <; =; ≤; > 0 respectively.
    [Show full text]
  • Observation of Quantum Jumps in a Single Atom
    VoLUME 57, NUMBER 14 PHYSICAL REVIEW LETTERS 6 OcTosER 1986 Observation of Quantum Jumps in a Single Atom J. C. Bergquist, Randall G. Hulet, Wayne M. Itano, and D. J. Wineland Time and Frequency Division, Jtiational Bureau ofStandards, Boulder, Colorado 80303 (Received 23 June 1986) %e detect the radiatively driven electric quadrupole transition to the metastable Dsy2 state in a single, laser-cooled Hg D ion by monitoring the abrupt cessation of the fluorescence signal from the laser-excited 'Si/2 Pi~2 first resonance line. %hen the ion "jumps" back from the metastable D state to the ground S state, the S P resonance fluorescence signal immediately returns. The sta- tistical properties of the quantum jumps are investigated; for example, photon antibunching in the emission from the D state is observed ~ith 100% efficiency. PACS numbers: 32.80,Pj, 42.SO.Dv Recently, a few laboratories have trapped and radia- ground state to the 5d 6s D5/2 state near 281.5 nm. tively cooled single atoms' 4 enabling a number of The lifetime of the metastable D state has recently unique experiments to be performed. One of the ex- been measured to be about 0.1 s.'5'6 A laser tuned periments now possible is to observe the "quantum just below resonance on the highly allowed S.P transi- jumps" to and from a metastable state in a single atom tion will cool the ion and, in our case, scatter up to by monitoring of the resonance fluorescence of a 5&&10~ photons/s. By collecting even a small fraction strong transition in which at least one of the states is of the scattered photons, we can easily monitor the coupled to the metastable state.
    [Show full text]
  • Causality in the Quantum World
    VIEWPOINT Causality in the Quantum World A new model extends the definition of causality to quantum-mechanical systems. by Jacques Pienaar∗ athematical models for deducing cause-effect relationships from statistical data have been successful in diverse areas of science (see Ref. [1] and references therein). Such models can Mbe applied, for instance, to establish causal relationships between smoking and cancer or to analyze risks in con- struction projects. Can similar models be extended to the microscopic world governed by the laws of quantum me- chanics? Answering this question could lead to advances in quantum information and to a better understanding of the foundations of quantum mechanics. Developing quantum Figure 1: In statistics, causal models can be used to extract extensions of causal models, however, has proven challeng- cause-effect relationships from empirical data on a complex ing because of the peculiar features of quantum mechanics. system. Existing models, however, do not apply if at least one For instance, if two or more quantum systems are entangled, component of the system (Y) is quantum. Allen et al. have now it is hard to deduce whether statistical correlations between proposed a quantum extension of causal models. (APS/Alan them imply a cause-effect relationship. John-Mark Allen at Stonebraker) the University of Oxford, UK, and colleagues have now pro- posed a quantum causal model based on a generalization of an old principle known as Reichenbach’s common cause is a third variable that is a common cause of both. In the principle [2]. latter case, the correlation will disappear if probabilities are Historically, statisticians thought that all information conditioned to the common cause.
    [Show full text]
  • A WORLD WITHOUT CAUSE and EFFECT Logic-Defying Experiments Into Quantum Causality Scramble the Notion of Time Itself
    A WORLD WITHOUT CAUSE AND EFFECT Logic-defying experiments into quantum causality scramble the notion of time itself. BY PHILIP BALL lbert Einstein is heading out for his This finding1 in 2015 made the quantum the constraints of a predefined causal structure daily stroll and has to pass through world seem even stranger than scientists had might solve some problems faster than con- Atwo doorways. First he walks through thought. Walther’s experiments mash up cau- ventional quantum computers,” says quantum the green door, and then through the red one. sality: the idea that one thing leads to another. theorist Giulio Chiribella of the University of Or wait — did he go through the red first and It is as if the physicists have scrambled the con- Hong Kong. then the green? It must have been one or the cept of time itself, so that it seems to run in two What’s more, thinking about the ‘causal struc- other. The events had have to happened in a directions at once. ture’ of quantum mechanics — which events EDGAR BĄK BY ILLUSTRATION sequence, right? In everyday language, that sounds nonsen- precede or succeed others — might prove to be Not if Einstein were riding on one of the sical. But within the mathematical formalism more productive, and ultimately more intuitive, photons ricocheting through Philip Walther’s of quantum theory, ambiguity about causation than couching it in the typical mind-bending lab at the University of Vienna. Walther’s group emerges in a perfectly logical and consistent language that describes photons as being both has shown that it is impossible to say in which way.
    [Show full text]
  • Spin State Read-Out by Quantum Jump Technique
    1 Spin State Read-Out by Quantum Jump Technique: for the Purpose of Quantum Computing E. Pazy Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel T. Calarco and P. Zoller Institut fur¨ Theoretische Physik, Universitat¨ Innsbruck, A-6020 Innsbruck, Austria Abstract—Utilizing the Pauli-blocking mechanism we in an isolated atom, self-assembled QDs are embedded show that shining circular polarized light on a singly in an underlying lattice ,i.e., a three-dimensional crystal charged quantum dot induces spin dependent fluorescence. structure. Even though the number of atoms in such Employing the quantum-jump technique we demonstrate dots is small compared to lithographically defined QDs, that this resonance luminescence, due to a spin dependent optical excitation, serves as an excellent read out mech- still this underlying lattice in which the QD is formed anism for measuring the spin state of a single electron strongly affects the single particle states through its band confined to a quantum dot. structure. Due to their discrete density of states, QDs have been I. INTRODUCTION suggested as the major building blocks for numerous quantum computing implementation schemes. These im- Semiconductor self-assembled quantum dots (QDs) plementation schemes can roughly be divided into those form spontaneously during the epitaxial growth process, which utilize the charge [2], or respectively the spin with confinement provided in all three dimensions by a [3] of charge carriers confined within a QD. Accurate high bandgap in the surrounding material (for example, measurement of a single qubit is an essential requirement see [1]). The strong confinement in such structures for the implementation of quantum computation (QC), leads to a discrete atom-like density of states which therefore highly precise methods for the measurement makes these QDs especially attractive for novel device arXiv:cond-mat/0404494v1 [cond-mat.other] 21 Apr 2004 of the spin of a QD confined charge carrier need to be applications in fields such as quantum computing, optics, devised.
    [Show full text]
  • A Brief Introduction to Temporality and Causality
    A Brief Introduction to Temporality and Causality Kamran Karimi D-Wave Systems Inc. Burnaby, BC, Canada [email protected] Abstract Causality is a non-obvious concept that is often considered to be related to temporality. In this paper we present a number of past and present approaches to the definition of temporality and causality from philosophical, physical, and computational points of view. We note that time is an important ingredient in many relationships and phenomena. The topic is then divided into the two main areas of temporal discovery, which is concerned with finding relations that are stretched over time, and causal discovery, where a claim is made as to the causal influence of certain events on others. We present a number of computational tools used for attempting to automatically discover temporal and causal relations in data. 1. Introduction Time and causality are sources of mystery and sometimes treated as philosophical curiosities. However, there is much benefit in being able to automatically extract temporal and causal relations in practical fields such as Artificial Intelligence or Data Mining. Doing so requires a rigorous treatment of temporality and causality. In this paper we present causality from very different view points and list a number of methods for automatic extraction of temporal and causal relations. The arrow of time is a unidirectional part of the space-time continuum, as verified subjectively by the observation that we can remember the past, but not the future. In this regard time is very different from the spatial dimensions, because one can obviously move back and forth spatially.
    [Show full text]
  • K-Causal Structure of Space-Time in General Relativity
    PRAMANA °c Indian Academy of Sciences Vol. 70, No. 4 | journal of April 2008 physics pp. 587{601 K-causal structure of space-time in general relativity SUJATHA JANARDHAN1;¤ and R V SARAYKAR2 1Department of Mathematics, St. Francis De Sales College, Nagpur 440 006, India 2Department of Mathematics, R.T.M. Nagpur University, Nagpur 440 033, India ¤Corresponding author E-mail: sujata [email protected]; r saraykar@redi®mail.com MS received 3 January 2007; revised 29 November 2007; accepted 5 December 2007 Abstract. Using K-causal relation introduced by Sorkin and Woolgar [1], we generalize results of Garcia-Parrado and Senovilla [2,3] on causal maps. We also introduce causality conditions with respect to K-causality which are analogous to those in classical causality theory and prove their inter-relationships. We introduce a new causality condition fol- lowing the work of Bombelli and Noldus [4] and show that this condition lies in between global hyperbolicity and causal simplicity. This approach is simpler and more general as compared to traditional causal approach [5,6] and it has been used by Penrose et al [7] in giving a new proof of positivity of mass theorem. C0-space-time structures arise in many mathematical and physical situations like conical singularities, discontinuous matter distributions, phenomena of topology-change in quantum ¯eld theory etc. Keywords. C0-space-times; causal maps; causality conditions; K-causality. PACS Nos 04.20.-q; 02.40.Pc 1. Introduction The condition that no material particle signals can travel faster than the velocity of light ¯xes the causal structure for Minkowski space-time.
    [Show full text]
  • 10. Light and Quantum Physics
    10. Light and Quantum physics Infrared radiation Infrared is light that has a wavelength longer than that of visible light. It is often called “IR.” The longest wavelength visible light that we can see has a wavelength of about 0.65 microns. Infrared light has a wavelength from 0.65 microns up to about 20 microns. Since its wavelength is longer, its frequency is lower by the same factor. We humans emit infrared radiation because we are warm. The electrons in our atoms shake, since they are not at absolute zero. A shaking electron has a shaking electric field, and a shaking electric field emits an electromagnetic wave. The effect is analogous to the emission of all other waves: shake the ground enough, and you get an earthquake wave; shake water, and you get a water wave; shake the air, and you get sound; shake the end of a slinky, and a wave will travel along it. The result is that everything emits light, except things that have temperature at absolute zero. Everything glows -- but most things emit so little light, that we don't notice. And, of course we don't notice if most of the light is in a wavelength range that is invisible to the eye. What are some of the things that we notice when they glow from heat? Here are some: candle flame; anything being heated "red hot" in a flame; the sun; the tungsten filament of a 60-watt light bulb; an oven used for baking pottery. This glowing is often referred to as "thermal radiation" or as “heat radiation.” Thermal radiation and temperature The amount of thermal radiation can be calculated using the physics laws of thermodynamics.
    [Show full text]
  • Location and Causality in Quantum Theory
    Location and Causality in Quantum Theory A dissertation submitted to the University of Manchester for the degree of Master of Science by Research in the Faculty of Engineering and Physical Sciences 2013 Robert A Dickinson School of Physics and Astronomy Contents 1 Introduction 8 1.1 Causality . .8 1.2 Relativistic causality . .9 1.3 The structure of this document . 10 2 Correlations 12 2.1 Operational descriptions . 12 2.2 Restrictions on non-local correlations in a classical theory . 12 2.3 Parameter spaces of general correlations . 14 2.3.1 Imaginable parameter spaces for one binary observer . 15 2.3.2 One-way signalling between two observers . 15 2.3.3 Imaginable parameter spaces for two spacelike-separated binary observers . 17 2.3.4 The parameter space in nature for two spacelike-separated binary observers . 21 2.3.5 The parameter space in quantum theory for two spacelike- separated binary observers . 22 2.3.6 Parameter spaces for three or more spacelike-separated binary observers . 24 3 Hilbert Space 26 3.1 The Postulates and their implications . 26 3.2 Operational stochastic quantum theory . 28 3.2.1 Internal unknowns regarding the initial state . 29 3.2.2 External unknowns regarding the initial state . 30 3.2.3 Internal unknowns regarding the measurement . 30 3.2.4 External unknowns regarding the measurement . 31 3.2.5 The generalised update rule . 31 3.3 Causality in quantum mechanics . 33 3.3.1 The no-signalling condition . 33 3.3.2 Special cases . 35 3.4 From discrete to continuous sets of outcomes .
    [Show full text]