The Unique Functions of Tissue-Specific Proteasomes

Total Page:16

File Type:pdf, Size:1020Kb

The Unique Functions of Tissue-Specific Proteasomes Erschienen in: Trends in Biochemical Sciences ; 39 (2014), 1. - S. 17-24 https://dx.doi.org/10.1016/j.tibs.2013.10.004 The unique functions of tissue-specific proteasomes 1 1,2 Andrea Kniepert and Marcus Groettrup 1 Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany 2 Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland The 26S proteasome is the main protease in eukaryotes. specialization of substrate specificity of these three b sub- Proteolysis occurs within the cylindrical 20S proteasome units, which is measured via the hydrolysis of small fluoro- that is constitutively expressed in most tissues. Howev- genic peptides with certain amino acids in the P1 position. er, three tissue-specific versions of the 20S proteasome These define the chymotrypsin-like activity (cleavage after have been discovered to date. The immunoproteasome hydrophobic residues), the trypsin-like activity (cleavage is optimized to process antigens and it directs the dif- after basic residues), and the caspase-like activity of the ferentiation of T helper (Th) cells. The thymoproteasome proteasome (cleavage after acidic residues). Although the is selectively expressed in cortical epithelial cells of the archaeal and bacterial proteasomes only show chymotryp- thymus where it plays an essential role in the positive sin-like activity, the eukaryotic proteasomes show all three selection of T lymphocytes. Finally, the spermatoprotea- activities that are associated with the b1 (caspase-like some is found in the testes where it is required during activity), b2 (trypsin-like activity), and b5 (chymotryp- spermatogenesis. Here, we outline how tissue-specific sin-like activity) subunits. These b-type subunits of eukar- proteasomes adapt to functional needs in their respec- yotes have been named according to their position in the b tive tissues and how their selective inhibition may be ring [3] (Figure 1). used to interfere with autoimmune diseases and cancer. Interestingly, for the normal housekeeping function of the proteasome in proteolysis of regulatory or misfolded The proteasome: evolution towards complexity and proteins, this diversification is not necessary. Yeast specialization mutants that only harbor the chymotrypsin-like activity The proteasome is an ancient enzyme that has steadily remained viable [4]. Whether specialized proteasome sub- evolved towards a higher complexity of subunits and reg- units are needed to cope with an enhanced protein degra- ulators while preserving its cylindrical architecture con- dation load is currently debated (see below). However, stituted from four stacked rings. In the archebacterium when looking at the peptide products of the proteasome, Thermoplasma acidophilum, the 20S proteasome consists the cleavage preferences of b1, b2, and b5 make a big of two outer rings with seven copies of a single a-type difference. Proteasome products are used by the immune subunit and two inner rings with seven copies of the same system to enable antigen recognition by T lymphocytes and b-type subunit [1] (Figure 1). In the eubacterial actinomy- proteasomal peptide products may even have as yet un- cete Rhodococcus sp., the 20S proteasome is constructed known signaling functions in spermatogenesis or other from two different a-type and two different b-type subunits aspects of cell biology. The functional specialization of [2], whereas in the eukaryotic yeast Saccharomyces cere- b1, b2, and b5 enables the modification of the cleavage visiae, it consists of seven different a-type and seven preferences of the proteasome by replacing them with different b-type subunits [3]. Proteolysis takes place in inducible or tissue-specific homologs. Next to the b1–b2– the inner chamber of the proteasome formed by the two b b5 containing ‘constitutive’ proteasome, three further pro- rings. Although each of the b subunits of the archebacterial teasome subtypes with differing subunit composition have and eubacterial proteasomes carry peptidolytically active been found: the immunoproteasome, the thymoprotea- centers, only three of the seven eukaryotic b-type subunits some, and the spermatoproteasome (Figure 2). Recent are catalytically active. It appears that the increase insights, such as how their special subunit composition in complexity is accompanied with a reduction in the enables them to serve functions that the constitutive pro- number of active b subunits; the driving force for which teasome can only exert suboptimally, are discussed in this has remained elusive. This tendency goes along with a review. The immunoproteasome in antigen processing The immunoproteasome is a tissue-specific complex be- cause it is continuously expressed in cells of the immune system such as T cells, B cells, monocytes, macrophages, dendritic cells, or medullary thymic epithelial cells [5]. However, it is also strongly inducible by the proinflamma- tory cytokines interferon (IFN)-g and tumor necrosis factor (TNF)-a in virtually all tissues except for the brain, where 17 Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-283246 (A) (B) (C) α6 α7 α5 α 1 α4 α α 2 α1 α2 α3 β1 β5 β β2 β β2 β 1 β3 4 β7 β4 β β 2 β1 β6 β5 α7 α3 α α α α 1 α2 6 α5 4 Archaebacterial proteasome Bacterial proteasome Eukaryoc proteasome (acnomycetales) TiBS Figure 1. The proteasome in three kingdoms of life. 20S proteasome models in the barrel-shaped a1–7–1–7b1–7a1–7 pattern. (A) Proteasome from archaebacterium Thermoplasma acidophilum. The archaebacterial proteasome is composed of two outer and two inner rings; each of which contains seven identical a subunits (in red) or b subunit (gray), respectively. (B) Among bacteria, proteasomes have been found in eubacterial actinomycetales. The proteasome from Rhodococcus erythropolis is built of two different a (red and orange) and two different b subunits (gray and green), which are most likely randomly arranged in the respective a and b rings. (C) Proteasome from the eukaryote Saccharomyces cerevisiae. Seven different a and seven different b subunits have their defined positions in the eukaryotic 20S proteasome. immunoproteasome expression is largely confined to to the cell surface. There, the antigen receptor of cytotoxic microglia and invading leukocytes [6]. Remarkably, immu- T lymphocytes can recognize peptide plus MHC and kill the noproteasomes replace up to 90% of constitutive protea- cell that presents their cognate antigens. The criteria for somes in tissues in the course of viral, bacterial, or fungal tight peptide–class I binding are (i) a length of 8–9 amino infections [5–7], which raises the question why the immune acids and (ii) the presence of anchor residues at the C system induces such an extensive change in proteasome terminus of the peptide and somewhere else within the composition. Interestingly, this argues that immunopro- peptide sequence. The C-terminal anchor residues in teasomes can take over the housekeeping functions of humans can be of basic or hydrophobic nature, whereas constitutive proteasomes for several days without harming mouse class I molecules only accept peptides with hydro- the inflamed tissues. phobic C termini. These rather tight acceptance criteria In the immunoproteasome all three active site bearing render it difficult to cleave out a sufficient number of subunits of the constitutive 20S proteasome (b1, b2, and b5) peptide ligands to mount an immune response especially are replaced by homologous, cytokine-inducible subunits against small viruses that encode only a few proteins. It is named b1i [low molecular mass polypeptide (LMP)2], b2i certainly one of the contributions of the immunoprotea- [(multicatalytic endopeptidase complex-like-1 (MECL-1)], some to a successful cellular immune response against and b5i (LMP7), respectively. Two subunits of the immu- viruses or intracellular bacteria that its altered cleavage noproteasome, b1i and b5i, were discovered during genomic priorities enhance the versatility of antigen processing and sequencing of the major histocompatibility complex (MHC) the chance to generate a pivotal antigenic peptide [8]. gene locus over two decades ago, whereas the b2i subunit The recently reported high-resolution X-ray crystallo- was discovered later because it is not encoded in the MHC graphic structures of the mouse constitutive proteasome locus [8]. Many members of the MHC class I and II antigen and immunoproteasome allow a side by side comparison of presentation processing pathways are encoded within the the three different substrate-binding pockets that define MHC locus, which had focused immunoproteasome research the cleavage priorities of the two complexes [13]. The most on their role in antigen processing [9]. striking difference is that between b1 and b1i. Although Proteasome activity is required for MHC class I but not the former accommodates peptides with an acidic P1 resi- class II restricted antigen presentation. This was shown due (caspase-like activity), the latter binds peptides with a with broad spectrum proteasome inhibitors that interfered hydrophobic P1 residue. For unknown reasons, the hun- with MHC class I release from the endoplasmic reticulum dreds of allelic variants of mouse and human MHC class (ER) and class I cell surface expression [10–12], whereas I molecules do not accept peptide ligands with acidic the classical MHC class II pathway was barely affected by C-terminal anchor residues. The proteasome is the main them. The proteasome generates
Recommended publications
  • An Integrative Analysis of Gene Expression and Molecular
    Muraro and Simmons BMC Bioinformatics (2016) 17:42 DOI 10.1186/s12859-016-0886-z RESEARCH ARTICLE Open Access An integrative analysis of gene expression and molecular interaction data to identify dys-regulated sub-networks in inflammatory bowel disease Daniele Muraro* and Alison Simmons Abstract Background: Inflammatory bowel disease (IBD) consists of two main disease-subtypes, Crohn’s disease (CD) and ulcerative colitis (UC); these subtypes share overlapping genetic and clinical features. Genome-wide microarray data enable unbiased documentation of alterations in gene expression that may be disease-specific. As genetic diseases are believed to be caused by genetic alterations affecting the function of signalling pathways, module-centric optimisation algorithms, whose aim is to identify sub-networks that are dys-regulated in disease, are emerging as promising approaches. Results: In order to account for the topological structure of molecular interaction networks, we developed an optimisation algorithm that integrates databases of known molecular interactions with gene expression data; such integration enables identification of differentially regulated network modules. We verified the performance of our algorithm by testing it on simulated networks; we then applied the same method to study experimental data derived from microarray analysis of CD and UC biopsies and human interactome databases. This analysis allowed the extraction of dys-regulated subnetworks under different experimental conditions (inflamed and uninflamed tissues in CD and UC). Optimisation was performed to highlight differentially expressed network modules that may be common or specific to the disease subtype. Conclusions: We show that the selected subnetworks include genes and pathways of known relevance for IBD; in particular, the solutions found highlight cross-talk among enriched pathways, mainly the JAK/STAT signalling pathway and the EGF receptor signalling pathway.
    [Show full text]
  • Protein Expression Analysis of an in Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets
    Journal of Personalized Medicine Article Protein Expression Analysis of an In Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets Hisham F. Bahmad 1,2,3 , Wenjing Peng 4, Rui Zhu 4, Farah Ballout 1, Alissar Monzer 1, 1,5 6, , 1, , 4, , Mohamad K. Elajami , Firas Kobeissy * y , Wassim Abou-Kheir * y and Yehia Mechref * y 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; [email protected] (H.F.B.); [email protected] (F.B.); [email protected] (A.M.); [email protected] (M.K.E.) 2 Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 3 Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA 4 Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; [email protected] (W.P.); [email protected] (R.Z.) 5 Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 6 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon * Correspondence: [email protected] (F.K.); [email protected] (W.A.-K.); [email protected] (Y.M.); Tel.: +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 4778) (W.A.K.); +1-806-834-8246 (Y.M.); Fax: +1-806-742-1289 (Y.M.); 961-1-744464 (W.A.K.) These authors have contributed equally to this work as joint senior authors.
    [Show full text]
  • Snps) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/07/06/dmd.118.082164.DC1 1521-009X/46/9/1372–1381$35.00 https://doi.org/10.1124/dmd.118.082164 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:1372–1381, September 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Single Nucleotide Polymorphisms (SNPs) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction s Duan Liu, Sisi Qin, Balmiki Ray,1 Krishna R. Kalari, Liewei Wang, and Richard M. Weinshilboum Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (D.L., S.Q., B.R., L.W., R.M.W.) and Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.K.), Mayo Clinic, Rochester, Minnesota Received April 22, 2018; accepted June 28, 2018 ABSTRACT Downloaded from CYP1A1 expression can be upregulated by the ligand-activated aryl fashion. LCLs with the AA genotype displayed significantly higher hydrocarbon receptor (AHR). Based on prior observations with AHR-XRE binding and CYP1A1 mRNA expression after 3MC estrogen receptors and estrogen response elements, we tested treatment than did those with the GG genotype. Electrophoretic the hypothesis that single-nucleotide polymorphisms (SNPs) map- mobility shift assay (EMSA) showed that oligonucleotides with the ping hundreds of base pairs (bp) from xenobiotic response elements AA genotype displayed higher LCL nuclear extract binding after (XREs) might influence AHR binding and subsequent gene expres- 3MC treatment than did those with the GG genotype, and mass dmd.aspetjournals.org sion.
    [Show full text]
  • Molecular Pathology and Novel Clinical Therapy for Uterine
    ANTICANCER RESEARCH 36 : 4997-5008 (2016) doi:10.21873/anticanres.11068 Review Molecular Pathology and Novel Clinical Therapy for Uterine Leiomyosarcoma TAKUMA HAYASHI 1,2 , MIKI KAWANO 2,3 , TOMOYUKI ICHIMURA 4, KOICHI IDA 1, HIROFUMI ANDO 1, DORIT ZHARHARY 5, YAE KANAI 6, HIROYUKI ABURATANI 7, SUSUMU TONEGAWA 8, TANRI SHIOZAWA 1, NOBUO YAEGASHI 9 and IKUO KONISHI 10 1Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Nagano, Japan; 2Department of Medical Technology, International University of Health and Welfare, Chiba, Japan; 3Department of Health Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan; 4Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka, Japan; 5SIGMA-Aldrich Israel, Rehovot, Israel; 6Pathology Division, Keio University School of Medicine, Tokyo, Japan; 7The Cancer System Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; 8Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.; 9Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan; 10 National Hospital Organization Kyoto Medical Centre, Kyoto, Japan Abstract. Patients with uterine leiomyosarcoma (LMS) disease prevalence of ~37% by 12 months of age. Furthermore, typically present with vaginal bleeding, pain, and a pelvic a recent report showed the loss of ability to induce PSMB9/ β1 i mass, with atypical presentations of hypercalcemia and expression,
    [Show full text]
  • Datasheet: VPA00155 Product Details
    Datasheet: VPA00155 Description: GOAT ANTI PSMB8 Specificity: PSMB8 Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Goat polyclonal antibody purified by affinity chromatography Buffer Solution TRIS buffered saline Preservative 0.02% Sodium Azide (NaN ) 0.5 % BSA Stabilisers 3 Immunogen Peptide with the sequence C-DVSDLLHQYREANQ, from the C terminus of the protein sequence External Database Links UniProt: P28062 Related reagents Entrez Gene: 5696 PSMB8 Related reagents Synonyms LMP7, PSMB5i, RING10, Y2 Page 1 of 2 Specificity Goat anti Human PSMB8 antibody recognizes proteasome subunit beta type-8, also known as Low molecular mass protein 7, macropain subunit C13, multicatalytic endopeptidase complex subunit C13, proteasome component C13, and proteasome subunit beta-5i. The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure.
    [Show full text]
  • Proteasome Immunosubunits Protect Against the Development of CD8 T Cell-Mediated Autoimmune Diseases
    Proteasome Immunosubunits Protect against the Development of CD8 T Cell-Mediated Autoimmune Diseases This information is current as Dietmar M. W. Zaiss, Cornelis P. J. Bekker, Andrea Gröne, of September 29, 2021. Benedicte A. Lie and Alice J. A. M. Sijts J Immunol published online 29 July 2011 http://www.jimmunol.org/content/early/2011/07/29/jimmun ol.1101003 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on September 29, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 29, 2011, doi:10.4049/jimmunol.1101003 The Journal of Immunology Proteasome Immunosubunits Protect against the Development of CD8 T Cell-Mediated Autoimmune Diseases Dietmar M. W. Zaiss,* Cornelis P. J. Bekker,* Andrea Gro¨ne,† Benedicte A. Lie,‡ and Alice J. A. M. Sijts* Exposure of cells to inflammatory cytokines induces the expression of three proteasome immunosubunits, two of which are encoded in the MHC class II region.
    [Show full text]
  • Intratumoral Injection of SYNB1891, a Synthetic Biotic Medicine Designed
    Intratumoral injection of SYNB1891 A Synthetic Biotic medicine designed to activate the innate immune system. Therapy demonstrates target engagement in humans including intratumoral STING activation. Janku F, MD Anderson Cancer Center; Luke JJ, UPMC Hillman Cancer Center; Brennan AM, Synlogic; Riese RJ, Synlogic; Varterasian M, Pharmaceutical Consultant; Kuhn K, Synlogic; Sokolovska A, Synlogic; Strauss J, Mary Crowley Cancer Research Presented by Filip Janku, MD, PhD Study supported by Synlogic, Inc American Association for Cancer Research (AACR) April 2021 Introduction and Methods SYNB1891 Strain Phase 1 First-in-Human Clinical Trial • Live, modified strain of the probiotic E. coli • Enrolling patients with refractory advanced solid Nissle engineered to produce cyclic tumors or lymphoma dinucleotides (CDN) under hypoxia leading to stimulator of interferon genes (STING)- • Intratumoral (IT) injection of SYNB1891 on Days activation 1, 8 and 15 of the first 21-day cycle and then on Day 1 of each subsequent cycle. • Preferentially taken up by phagocytic antigen- presenting cells in tumors, activating • Dose escalation planned across 7 cohorts (1x106 complementary innate immune pathways – 1x109 live cells) with Arm 1 consisting of (direct CDN STING activation; cGAS-mediated SYNB1891 as monotherapy, and Arm 2 in STING activation and TLR4/MyD88 activation by combination with atezolizumab the bacterial chassis) SYNB1891 was safe and well-tolerated in heterogenous population Nov 2020: Interim Analysis IA Updated through 15 Mar 2021 15 Mar 2021:
    [Show full text]
  • Table 1. Swine Proteins Identified As Differentially Expressed at 24Dpi in OURT 88/3 Infected Animals
    Table 1. swine proteins identified as differentially expressed at 24dpi in OURT 88/3 infected animals. Gene name Protein ID Protein Name -Log p-value control vs A_24DPI Difference control Vs A_24DPI F8 K7GL28 Coagulation factor VIII 2.123919902 5.42533493 PPBP F1RUL6 C-X-C motif chemokine 3.219079808 4.493174871 SDPR I3LDR9 Caveolae associated protein 2 2.191007299 4.085711161 IGHG L8B0X5 IgG heavy chain 2.084611488 -4.282530149 LOC100517145 F1S3H9 Complement C3 (LOC100517145) 3.885740476 -4.364484406 GOLM1 F1S4I1 Golgi membrane protein 1 1.746130664 -4.767168681 FCN2 I3L5W3 Ficolin-2 2.937884686 -6.029483795 Table 2. swine proteins identified as differentially expressed at 7dpi in Benin ΔMGF infected animals. Gene name Protein ID Protein Name -Log p-value control vs B_7DPI Difference control Vs B_7DPI A0A075B7I5 Ig-like domain-containing protein 1.765578164 -3.480728149 ATP5A1 F1RPS8_PIG ATP synthase subunit alpha 2.270386995 3.270935059 LOC100627396 F1RX35_PIG Fibrinogen C-terminal domain-containing protein 2.211242648 3.967363358 LOC100514666;LOC102158263 F1RX36_PIG Fibrinogen alpha chain 2.337934993 3.758180618 FGB F1RX37_PIG Fibrinogen beta chain 2.411948004 4.03753376 PSMA8 F1SBA5_PIG Proteasome subunit alpha type 1.473601007 -3.815182686 ACAN F1SKR0_PIG Aggrecan core protein 1.974489764 -3.726634026 TFG F1SL01_PIG PB1 domain-containing protein 1.809215274 -3.131304741 LOC100154408 F1SSL6_PIG Proteasome subunit alpha type 1.701949053 -3.944885254 PSMA4 F2Z528_PIG Proteasome subunit alpha type 2.045768185 -4.502977371 PSMA5 F2Z5K2_PIG
    [Show full text]
  • Biological Models of Colorectal Cancer Metastasis and Tumor Suppression
    BIOLOGICAL MODELS OF COLORECTAL CANCER METASTASIS AND TUMOR SUPPRESSION PROVIDE MECHANISTIC INSIGHTS TO GUIDE PERSONALIZED CARE OF THE COLORECTAL CANCER PATIENT By Jesse Joshua Smith Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University In partial fulfillment of the requirements For the degree of DOCTOR OF PHILOSOPHY In Cell and Developmental Biology May, 2010 Nashville, Tennessee Approved: Professor R. Daniel Beauchamp Professor Robert J. Coffey Professor Mark deCaestecker Professor Ethan Lee Professor Steven K. Hanks Copyright 2010 by Jesse Joshua Smith All Rights Reserved To my grandparents, Gladys and A.L. Lyth and Juanda Ruth and J.E. Smith, fully supportive and never in doubt. To my amazing and enduring parents, Rebecca Lyth and Jesse E. Smith, Jr., always there for me. .my sure foundation. To Jeannine, Bill and Reagan for encouragement, patience, love, trust and a solid backing. To Granny George and Shawn for loving support and care. And To my beautiful wife, Kelly, My heart, soul and great love, Infinitely supportive, patient and graceful. ii ACKNOWLEDGEMENTS This work would not have been possible without the financial support of the Vanderbilt Medical Scientist Training Program through the Clinical and Translational Science Award (Clinical Investigator Track), the Society of University Surgeons-Ethicon Scholarship Fund and the Surgical Oncology T32 grant and the Vanderbilt Medical Center Section of Surgical Sciences and the Department of Surgical Oncology. I am especially indebted to Drs. R. Daniel Beauchamp, Chairman of the Section of Surgical Sciences, Dr. James R. Goldenring, Vice Chairman of Research of the Department of Surgery, Dr. Naji N.
    [Show full text]
  • Additive Loss-Of-Function Proteasome Subunit Mutations in CANDLE/PRAAS Patients Promote Type I IFN Production
    Amendment history: Erratum (February 2016) Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production Anja Brehm, … , Ivona Aksentijevich, Raphaela Goldbach-Mansky J Clin Invest. 2015;125(11):4196-4211. https://doi.org/10.1172/JCI81260. Research Article Immunology Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation inP SMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective
    [Show full text]
  • Gene Set Size Count Z-Score P-Value Q-Value List of Genes
    Supplementary Data 2-1 Results from competitive pathway enrichment analysis based on genome-wide summary-level data of hsGWAS. Gene Set Size Count z-score p-value q-value List of Genes KEGG_ALLOGRAFT_ 38 36 12.6476 0.00E+00 0.00E+00 HLA-DRB5(4.11028); IL2(3.62922); HLA-E(3.27708); HLA-G(3.2749); HLA- REJECTION DQA2(3.16347); HLA-DRA(3.14994); HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); TNF(3.09414); HLA-DPB1(3.03922); HLA-DPA1(3.0355); HLA-A(3.02312); HLA-C(2.98835); HLA-DQB1(2.97025); HLA-B(2.95626); HLA- DQA1(2.94591); HLA-F(2.83254); HLA-DRB1(2.76738); HLA-DOA(2.72508); IFNG(1.74523); PRF1(1.46483); FASLG(1.10083); FAS(0.923795); HLA- DRB3(0.760622); CD80(0.436654); IL4(0.324564); CD40(0.271072); HLA- DRB4(0.0708609); IL12A(0.0685942); IL5(0.0659333); CD86(0.049911); CD28(- 0.16103); IL10(-0.165903); IL12B(-0.245281); GZMB(-0.268581); KEGG_GRAFT_VERSUS_HOS 42 37 12.6129 0.00E+00 0.00E+00 HLA-DRB5(4.11028); IL2(3.62922); HLA-E(3.27708); HLA-G(3.2749); HLA- T_DISEASE DQA2(3.16347); HLA-DRA(3.14994); HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); TNF(3.09414); HLA-DPB1(3.03922); HLA-DPA1(3.0355); HLA-A(3.02312); HLA-C(2.98835); HLA-DQB1(2.97025); HLA-B(2.95626); HLA- DQA1(2.94591); HLA-F(2.83254); HLA-DRB1(2.76738); HLA-DOA(2.72508); IL6(1.94139); IFNG(1.74523); PRF1(1.46483); FASLG(1.10083); FAS(0.923795); HLA-DRB3(0.760622); CD80(0.436654); IL1A(0.402186); KLRD1(0.29064); KIR3DL1(0.157683); HLA-DRB4(0.0708609); CD86(0.049911); CD28(-0.16103); GZMB(-0.268581); IL1B(-0.388308); KLRC1(-0.466394); KIR3DL2(-0.786806); KEGG_TYPE_I_DIABETES_ME
    [Show full text]
  • Polyubiquitin Gene Ubb Is Required for Upregulation of Piwi Protein Level During Mouse Testis Development
    www.nature.com/cddiscovery ARTICLE OPEN Polyubiquitin gene Ubb is required for upregulation of Piwi protein level during mouse testis development 1,4 2,4 2 1 1 2 ✉ Bitnara Han , Byung-Kwon✉ Jung , So-Hyun Park , Kyu Jin Song , Muhammad Ayaz Anwar , Kwon-Yul Ryu and Kwang Pyo Kim 1,3 © The Author(s) 2021 Testis development, including early embryonic gonad formation and late postnatal spermatogenesis, is essential for the reproduction of higher metazoans to generate fertile gametes, called sperm. We have previously reported that the polyubiquitin gene Ubb is required for fertility in both male and female mice. In particular, the Ubb-null male mice showed an azoospermia phenotype due to arrest of spermatogenesis at the pachytene stage. Here, we analyzed the whole testis proteome at postnatal day 20 to define the molecular mediators of the male-infertility phenotype caused by Ubb knockout. From the identified proteome, 564 proteins were significantly and differentially expressed in Ubb-knockout testes and, among these, 36 downregulated proteins were involved at different stages of spermatogenesis. We also found that levels of piRNA metabolic process-related proteins, including Piwil2 and Tdrd1, were downregulated in Ubb-null testes through functional gene ontology analysis. Further, protein–protein interaction mapping revealed that 24 testis development-related proteins, including Hsp90aa1, Eef1a1, and Pabpc1, were directly influenced by the depletion of ubiquitin. In addition, the reduced mRNA levels of these proteins were observed in Ubb-knockout testes, which closely resembled the global downregulation of piRNA-metabolic gene expression at the transcriptional and post- transcriptional levels. Together with proteomic and transcriptional analyses, our data suggest that Ubb expression is essential for the maintenance of testicular RNA-binding regulators and piRNA-metabolic proteins to complete spermatogenesis in mice.
    [Show full text]