Special Publication 42: Earthquake Fault Zones

Total Page:16

File Type:pdf, Size:1020Kb

Special Publication 42: Earthquake Fault Zones SPECIAL PUBLICATION 42 Revised 2018 EARTHQUAKE FAULT ZONES A GUIDE FOR GOVERNMENT AGENCIES, PROPERTY OWNERS / DEVELOPERS, AND GEOSCIENCE PRACTITIONERS FOR ASSESSING FAULT RUPTURE HAZARDS IN CALIFORNIA DEPARTMENT OF CONSERVATION CALIFORNIA GEOLOGICAL SURVEY STATE OF CALIFORNIA EDMUND G. BROWN, JR. GOVERNOR THE NATURAL RESOURCES AGENCY DEPARTMENT OF CONSERVATION JOHN LAIRD DAVID BUNN SECRETARY FOR RESOURCES DIRECTOR CALIFORNIA GEOLOGICAL SURVEY JOHN G. PARRISH, PH.D. STATE GEOLOGIST CALIFORNIA GEOLOGICAL SURVEY JOHN G. PARRISH, PH.D. STATE GEOLOGIST Copyright © 2018 by the California Department of Conservation. All rights reserved. No part of this publication may be reproduced without written consent of the Department of Conservation. The Department of Conservation makes no warrantees as to the suitability of this product for any particular purpose. II SPECIAL PUBLICATION 42 EARTHQUAKE FAULT ZONES A GUIDE FOR GOVERNMENT AGENCIES, PROPERTY OWNERS / DEVELOPERS, AND GEOSCIENCE PRACTITIONERS FOR ASSESSING FAULT RUPTURE HAZARDS IN CALIFORNIA Revised 2018 California Department of Conservation California Geological Survey 801 K Street, MS 12-31 Sacramento, CA 95814 Photo: Cottage destroyed by surface fault rupture on the Kekerengu Fault during the Mw 7.8 2016 Kaikoura earthquake, New Zealand. Approximately 10 meters of right-lateral fault displacement occurred under this house, tearing it from its foundation. Photo credit: VML 190573, Julian Thomson, GNS Science / Earthquake Commission III PREFACE The purpose of the Alquist-Priolo Earthquake Fault Zoning Act is to regulate development near active faults so as to mitigate the hazard of surface fault rupture. The stated intent of the Act is to “…provide policies and criteria to assist cities, counties, and state agencies in the exercise of their responsibility to prohibit the location of developments and structures for human occupancy across the trace of active faults.” The Act also requires the State Geologist to compile maps delineating earthquake fault zones and to submit maps to all affected cities, counties and state agencies for review and comment. For the last 44 years, Special Publication 42 has been the vehicle by which the State Geologist, through the California Geological Survey, has informed affected agencies and the general public how and where Alquist-Priolo Earthquake Fault Zones are prepared. This is the twelfth revision of Special Publication 42, which was first issued in December 1973 as an “Index to Maps of Special Studies Zones.” Explanatory text was added in 1975 and subsequent revisions were made between 1976 - 2007. Since 2007, five supplements to Special Publication 42 have been issued to show the locations, names, and release dates of Earthquake Fault Zone maps released between 2012 - 2017. This latest version of Special Publication 42 represents a significant departure from previous versions. Rather than serve simply as a source of background information and an index of 7.5-minute quadrangle maps containing Earthquake Fault Zones, this revised document is specifically intended to provide state-of-the-practice guidelines for affected permitting agencies and their reviewers, as well as for geoscience consulting practitioners representing property owners and developers. Such guidance has previously been presented in California Geological Survey Note 41, “General Guidelines for Reviewing Geologic Reports” and Note 49, “Guidelines for Evaluating the Hazard of Surface Fault Rupture,” which traditionally have been included as appendices to Special Publication 42. The information presented in those notes has been significantly updated, expanded, and incorporated into this new version. As with the zone maps themselves, it is anticipated that this document will continue to be revised as major advances in the sciences associated with surface fault rupture occur. Background material regarding the California Geological Survey’s Fault Evaluation and Zoning Program, which made up the bulk of previous versions of Special Publication 42, has been updated and now appears in Appendix C. Maps of Earthquake Fault Zones are now available in multiple formats. Most recently, these maps have been made available through a web application (https://maps.conservation.ca.gov/cgs/EQZApp/) that allows users to navigate to an individual parcel and determine whether or not it is affected by any of CGS’s regulatory zones (fault rupture, soil liquefaction, or earthquake landslides). Institutional users, such as cities and counties, can access the zone maps on their systems through an interactive web map service: (https://spatialservices.conservation.ca.gov/arcgis/rest/services/CGS_Earthquake_Hazard_Zones) Those who prefer geographic information files (GIS) or portable document format (PDF) versions of maps, or wish to see how the zone maps were prepared through the associated fault evaluation report, can download these from the CGS Information Warehouse: (http://maps.conservation.ca.gov/cgs/informationwarehouse/). IV CONTENTS PREFACE ............................................................................................................................................. IV CONTENTS ........................................................................................................................................... V ILLUSTRATIONS .................................................................................................................................. VII Figures .............................................................................................................................................................................. VII Plates ................................................................................................................................................................................ VII ACKNOWLEDGEMENTS ..................................................................................................................... VIII SECTION 1: DEFINITIONS AND ACRONYMS .......................................................................................... 1 1.1 Definitions .................................................................................................................................................................... 1 1.2 Acronyms ..................................................................................................................................................................... 4 SECTION 2: INTRODUCTION (FOR ALL AUDIENCES) ............................................................................. 5 2.1 Section Outline ............................................................................................................................................................ 5 2.2 Objectives of these Guidelines .................................................................................................................................... 5 2.3 How to use these Guidelines ....................................................................................................................................... 5 2.4 What is surface fault rupture and why is it a hazard? ................................................................................................. 6 2.5 The Alquist-Priolo Earthquake Fault Zoning Act .......................................................................................................... 6 2.6 Rationale for zoning Holocene-active Faults ............................................................................................................... 9 2.7 Roles and responsibilities under the Alquist – Priolo Earthquake Fault Zoning Act ................................................. 10 2.8 Uses and Limitations of Earthquake Fault Zone Maps .............................................................................................. 12 2.9 How to determine if a project is regulated by the Alquist – Priolo Earthquake Fault Zoning Act? ........................... 14 2.10 Relationship of these Guidelines to Local General Plans and Permitting Ordinances ............................................ 14 2.11 Relationship of these Guidelines to the CEQA Process and Other Site Investigation Requirements ..................... 15 2.12 References............................................................................................................................................................... 15 SECTION 3: GUIDELINES FOR LEAD AGENCIES ................................................................................... 17 3.1 Section Outline .......................................................................................................................................................... 17 3.2 Lead agency responsibilities under the Alquist - Priolo Earthquake Fault Zoning Act ............................................. 17 3.3 Lead agency roles and responsibilities in the review of Preliminary EFZ Maps and release of Official EFZ Maps ... 18 3.4 When is a project subject to the Alquist-Priolo Earthquake Fault Zoning Act? ......................................................... 19 3.5 Lead agency roles and responsibilities in the implementation and enforcement of the Alquist-Priolo Earthquake Fault Zoning Act ............................................................................................................................................................... 19 3.6 Fault investigation report filing requirements ......................................................................................................
Recommended publications
  • Strike and Dip Refer to the Orientation Or Attitude of a Geologic Feature. The
    Name__________________________________ 89.325 – Geology for Engineers Faults, Folds, Outcrop Patterns and Geologic Maps I. Properties of Earth Materials When rocks are subjected to differential stress the resulting build-up in strain can cause deformation. Depending on the material properties the result can either be elastic deformation which can ultimately lead to the breaking of the rock material (faults) or ductile deformation which can lead to the development of folds. In this exercise we will look at the various types of deformation and how geologists use geologic maps to understand this deformation. II. Strike and Dip Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature, is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line (N25°E for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of N25°E would simply be 025), or the azimuth number followed by the degree sign (example of N25°E would be 025°). The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number (0°-90°) as well as a letter (N, S, E, W) with rough direction in which the bed is dipping.
    [Show full text]
  • Introduction San Andreas Fault: an Overview
    Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest.
    [Show full text]
  • Lecture 13: Earth Materials
    Earth Materials Lecture 13 Earth Materials GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Hooke’s law of elasticity Force Extension = E × Area Length Hooke’s law σn = E εn where E is material constant, the Young’s Modulus Units are force/area – N/m2 or Pa Robert Hooke (1635-1703) was a virtuoso scientist contributing to geology, σ = C ε palaeontology, biology as well as mechanics ij ijkl kl ß Constitutive equations These are relationships between forces and deformation in a continuum, which define the material behaviour. GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Shear modulus and bulk modulus Young’s or stiffness modulus: σ n = Eε n Shear or rigidity modulus: σ S = Gε S = µε s Bulk modulus (1/compressibility): Mt Shasta andesite − P = Kεv Can write the bulk modulus in terms of the Lamé parameters λ, µ: K = λ + 2µ/3 and write Hooke’s law as: σ = (λ +2µ) ε GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Young’s Modulus or stiffness modulus Young’s Modulus or stiffness modulus: σ n = Eε n Interatomic force Interatomic distance GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Shear Modulus or rigidity modulus Shear modulus or stiffness modulus: σ s = Gε s Interatomic force Interatomic distance GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Hooke’s Law σij and εkl are second-rank tensors so Cijkl is a fourth-rank tensor. For a general, anisotropic material there are 21 independent elastic moduli. In the isotropic case this tensor reduces to just two independent elastic constants, λ and µ.
    [Show full text]
  • Paleoseismology of the North Anatolian Fault at Güzelköy
    Paleoseismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara Mustapha Meghraoui, M. Ersen Aksoy, H Serdar Akyüz, Matthieu Ferry, Aynur Dikbaş, Erhan Altunel To cite this version: Mustapha Meghraoui, M. Ersen Aksoy, H Serdar Akyüz, Matthieu Ferry, Aynur Dikbaş, et al.. Pale- oseismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara. Geochemistry, Geophysics, Geosystems, AGU and the Geochemical Society, 2012, 10.1029/2011GC003960. hal-01264190 HAL Id: hal-01264190 https://hal.archives-ouvertes.fr/hal-01264190 Submitted on 1 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article Volume 13, Number 4 12 April 2012 Q04005, doi:10.1029/2011GC003960 ISSN: 1525-2027 Paleoseismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara Mustapha Meghraoui Institut de Physique du Globe de Strasbourg (UMR 7516), F-67084 Strasbourg, France ([email protected]) M. Ersen Aksoy Institut de Physique du Globe de Strasbourg (UMR 7516), F-67084 Strasbourg, France Eurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Istanbul, Turkey Now at Instituto Dom Luiz, Universidade de Lisboa, P-1750-129 Lisbon, Portugal H.
    [Show full text]
  • Long-Term Fault Slip Rates, Distributed Deformation Rates, and Forecast Of
    1 Long-term fault slip rates, distributed deformation rates, and forecast of seismicity 2 in the western United States from joint fitting of community geologic, geodetic, 3 and stress-direction datasets 4 Peter Bird 5 Department of Earth and Space Sciences 6 University of California 7 Los Angeles, CA 90095-1567 8 [email protected] 9 Second revision of 2009.07.08 for J. Geophys. Res. (Solid Earth) 10 ABSTRACT. The long-term-average velocity field of the western United States is computed 11 with a kinematic finite-element code. Community datasets include fault traces, geologic offset 12 rates, geodetic velocities, principal stress directions, and Euler poles. There is an irreducible 13 minimum amount of distributed permanent deformation, which accommodates 1/3 of Pacific- 14 North America relative motion in California. Much of this may be due to slip on faults not 15 included in the model. All datasets are fit at a common RMS level of 1.8 datum standard 16 deviations. Experiments with alternate weights, fault sets, and Euler poles define a suite of 17 acceptable community models. In pseudo-prospective tests, fault offset rates are compared to 18 126 additional published rates not used in the computation: 44% are consistent; another 48% 19 have discrepancies under 1 mm/a, and 8% have larger discrepancies. Updated models are then 20 computed. Novel predictions include: dextral slip at 2~3 mm/a in the Brothers fault zone, two 21 alternative solutions for the Mendocino triple junction, slower slip on some trains of the San 22 Andreas fault than in recent hazard models, and clockwise rotation of some domains in the 23 Eastern California shear zone.
    [Show full text]
  • Faults and Joints
    133 JOINTS Joints (also termed extensional fractures) are planes of separation on which no or undetectable shear displacement has taken place. The two walls of the resulting tiny opening typically remain in tight (matching) contact. Joints may result from regional tectonics (i.e. the compressive stresses in front of a mountain belt), folding (due to curvature of bedding), faulting, or internal stress release during uplift or cooling. They often form under high fluid pressure (i.e. low effective stress), perpendicular to the smallest principal stress. The aperture of a joint is the space between its two walls measured perpendicularly to the mean plane. Apertures can be open (resulting in permeability enhancement) or occluded by mineral cement (resulting in permeability reduction). A joint with a large aperture (> few mm) is a fissure. The mechanical layer thickness of the deforming rock controls joint growth. If present in sufficient number, open joints may provide adequate porosity and permeability such that an otherwise impermeable rock may become a productive fractured reservoir. In quarrying, the largest block size depends on joint frequency; abundant fractures are desirable for quarrying crushed rock and gravel. Joint sets and systems Joints are ubiquitous features of rock exposures and often form families of straight to curviplanar fractures typically perpendicular to the layer boundaries in sedimentary rocks. A set is a group of joints with similar orientation and morphology. Several sets usually occur at the same place with no apparent interaction, giving exposures a blocky or fragmented appearance. Two or more sets of joints present together in an exposure compose a joint system.
    [Show full text]
  • Western States Seismic Policy Council Policy Recommendation 18-3
    WESTERN STATES SEISMIC POLICY COUNCIL POLICY RECOMMENDATION 18-3 Definitions of Recency of Surface Faulting for the Basin and Range Province Policy Recommendation 18-3 WSSPC recommends that each state in the Basin and Range physiographic province (BRP), through consultation with state and federal geological surveys and other earthquake-hazard experts, define scientifically and societally relevant categories for recency of surface faulting (generally earthquake magnitude ≥M 6.5). WSSPC further recommends that in the absence of information to the contrary, all Quaternary faults be considered to have the recency of activity documented in the USGS Quaternary fault and fold database until more adequate data can be developed. Executive Summary Fault recency definitions are limited to the Quaternary because this period of geologic time is considered by the scientific community to be most relevant to paleoseismic studies of earthquake faults (Machette and others, 2004). The recency class of a fault is the youngest class based on the demonstrated age of most recent surface faulting. Latest Pleistocene-Holocene faults are included within the definition of late Quaternary faults, and both latest Pleistocene-Holocene and late Quaternary faults are included in Quaternary faults. Establishment/definition of surface-faulting recency categories are based on the ways that faults are portrayed on geologic maps and on the availability of geologic data in the BRP. Policy makers (owners, regulators, governmental agencies) should consult with state and federal geological surveys and other earthquake-hazard experts in using these recency categories and additional geologic data in developing definitions of hazardous faults to be considered in planning for development or infrastructure projects.
    [Show full text]
  • Earth Materials Summary
    GRADES 3–4 OVERVIEW EARTH MATERIALS GOALS The Earth Materials Module consists of four sequential investigations dealing with observable characteristics of solid materials from the earth—rocks and minerals. The focus is on taking materials apart to ○○○○○ find what they are made of and putting materials together to better ○○○○○○○○○○○ understand their properties. The module introduces fundamental OVERVIEW CONTENTS concepts in earth science and takes advantage of the students’ Goals 1 intrinsic interest in the subject matter and in the physical world FOSS and National Science around them. Education Standards 2 FOSS EXPECTS STUDENTS TO Science Background 3 • Develop an interest in earth materials. Working in Collaborative • Gain experiences with rocks and minerals. Groups 8 • Understand the process of taking apart and putting together Encouraging Discourse 9 to find out about materials. Guiding FOSS Investigations 10 • Use measuring tools to gather data about rocks. Assessing Progress 11 • Collect and organize data about rocks. Integrating the Curriculum 12 • Observe, describe, and record properties of minerals. FOSS for All Students 13 •Organize minerals on the basis of the property of hardness. The FOSS Teacher Guide • Investigate the effect of vinegar (acid) on a specific mineral, Organization 14 calcite. The FOSS Investigation Folio • Use evaporation to investigate rock composition. Organization 15 • Learn that rocks are composed of minerals and that minerals Scheduling the Earth cannot be physically separated into other materials. Materials Module 16 • Compare their activities to the work of a geologist. Safety in the Classroom 17 • Acquire vocabulary used in earth science. Earth Materials Module • Exercise language and math skills in the context of science.
    [Show full text]
  • Earth Materials
    Grade 4 Science, Quarter 1, Unit 1 Earth Materials Overview Number of instructional days: 10 (1 day = 45 minutes) Content to be learned Science processes to be integrated • Identify the four basic materials of the earth • Use physical properties to describe, compare, (water, soil, rocks, air). and sort objects. • Describe, compare, and sort rocks, soils, and • Make, record, and analyze observations and minerals by similar and different physical data. properties. • Cite evidence to support classification of • Record and analyze observations/data about objects. physical properties. • Identify and determine the uses of materials • Cite evidence to support why rocks, soils, or based on their physical properties. minerals are or are not classified together. • Support explanations using observations and • Determine and support explanations of the uses data. of earth materials. Essential questions • In what ways can we identify, describe, sort, • How can we use earth materials? and classify earth materials? Bristol-Warren, Little Compton, Portsmouth, Tiverton Public Schools, C-1 in collaboration with the Charles A. Dana Center at the University of Texas at Austin Grade 4 Science, Quarter 1, Unit 1 Earth Materials (10 days) Written Curriculum Grade-Span Expectations ESS1 - The earth and earth materials as we know them today have developed over long periods of time, through continual change processes. ESS1 (K-4) INQ –1 Given certain earth materials (soils, rocks or minerals) use physical properties to sort, classify, and describe them. ESS1 (3-4) –1 Students demonstrate an understanding of earth materials by … 1d identifying the four basic materials of the earth (water, soil, rocks, air). 1a describing, comparing, and sorting rocks, soils, and minerals by similar or different physical properties (e.g., size, shape, color, texture, smell, weight, temperature, hardness, composition).
    [Show full text]
  • Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand
    AN ABSTRACT OF THE THESIS OF Russell J. Van Dissen for the degree of Master of Science in Geology presented on February 15, 1989. Title: Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand Redacted for privacy Abstract approved: Dr. Robert 8.0eats Active faults in the Kaikoura region include the Hope, Kekerengu, and Fidget Faults, and the newly discovered Jordan Thrust, Fyffe, and Kowhai Faults. Ages of faulted alluvial terraces along the Hope Fault and the Jordan Thrust were estimated using radiocarbon-calibrated weathering-rind measurements on graywacke clasts. Within the study area, the Hope Fault is divided, from west to east, into the Kahutara, Mt. Fyffe, and Seaward segments. The Kahutara segment has a relatively constant Holocene right-lateral slip rate of 20-32 mm/yr, and an earthquake recurrence interval of 86 to 600 yrs: based on single-event displacements of 3 to 12 m. The western portion of the Mt. Fyffe segment has a minimum Holocene lateral slip rate of 16 + 5 mm/yr .(southeast side up); the eastern portion has horizontal and vertical slip rates of 4.8+ 2.7 mm/yr and 1.7 + 0.2 mm/yr, respectively (northwest side up). There is no dated evidence for late Quaternary movementon the Seaward segment, and its topographic expression is much more subdued than that of the two western segments. The Jordan Thrust extends northeast from the Hope Fault, west of the Seaward segment. The thrust has horizontal and vertical slip rates of 2.2 + 1.3 mm/yr and 2.1 + 0.5 mm/yr, respectively (northwest side up), and a maximum recurrence interval of 1200 yrs: based on 3 events within the last 3.5 ka.
    [Show full text]
  • Present Day Plate Boundary Deformation in the Caribbean and Crustal Deformation on Southern Haiti Steeve Symithe Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti Steeve Symithe Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Caribbean Languages and Societies Commons, Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Symithe, Steeve, "Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti" (2016). Open Access Dissertations. 715. https://docs.lib.purdue.edu/open_access_dissertations/715 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated ¡ ¢¡£ ¢¡¤ ¥ PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Steeve Symithe Entitled Present Day Plate Boundary Deformation in The Caribbean and Crustal Deformation On Southern Haiti. For the degree of Doctor of Philosophy Is approved by the final examining committee: Christopher L. Andronicos Chair Andrew M. Freed Julie L. Elliott Ayhan Irfanoglu To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Andrew M. Freed Approved by Major Professor(s): Indrajeet Chaubey 04/21/2016 Approved by: Head of the Departmental Graduate Program Date PRESENT DAY PLATE BOUNDARY DEFORMATION IN THE CARIBBEAN AND CRUSTAL DEFORMATION ON SOUTHERN HAITI A Dissertation Submitted to the Faculty of Purdue University by Steeve J.
    [Show full text]
  • Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs
    Pure Appl. Geophys. Ó 2014 Springer Basel DOI 10.1007/s00024-014-0896-6 Pure and Applied Geophysics Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions 1 1 1 1 1 KELLY K. BRADBURY, COLTER R. DAVIS, JOHN W. SHERVAIS, SUSANNE U. JANECKE, and JAMES P. EVANS Abstract—We examine the fine-scale variations in mineralogi- 1. Introduction cal composition, geochemical alteration, and texture of the fault- related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Well-constrained geological, geochemical, and Observatory at Depth (SAFOD) borehole near Parkfield, California. geophysical models of active fault zones are needed if This work provides insight into the physical and chemical properties, we are to understand fault zone behavior and earth- structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. quake deformation, constraining the factors that affect Exhumed outcrops within the SAF system comprised of serpentinite- the distribution of earthquakes, and the nature of slip bearing protolith are examined for comparison at San Simeon, Goat in the shallow crust by developing realistic models of Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple subsurface fault zone structure and ground motion juxtaposed lenses of sheared, foliated siltstone and shale with block- predictions. Earthquakes nucleate in rocks at depth in-matrix fabric, black cataclasite to ultracataclasite, and sheared (e.g., FAGERENG and TOY 2011;SIBSON 1977; 2003), serpentinite-bearing, finely foliated fault gouge.
    [Show full text]