Crux of the Hindu and PIB Vol 60
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Vertical Files Anderson Reading Room Center for Southwest Research Zimmerman Library
“A” – biographical Abiquiu, NM GUIDE TO THE GENERAL VERTICAL FILES ANDERSON READING ROOM CENTER FOR SOUTHWEST RESEARCH ZIMMERMAN LIBRARY (See UNM Archives Vertical Files http://rmoa.unm.edu/docviewer.php?docId=nmuunmverticalfiles.xml) FOLDER HEADINGS “A” – biographical Alpha folders contain clippings about various misc. individuals, artists, writers, etc, whose names begin with “A.” Alpha folders exist for most letters of the alphabet. Abbey, Edward – author Abeita, Jim – artist – Navajo Abell, Bertha M. – first Anglo born near Albuquerque Abeyta / Abeita – biographical information of people with this surname Abeyta, Tony – painter - Navajo Abiquiu, NM – General – Catholic – Christ in the Desert Monastery – Dam and Reservoir Abo Pass - history. See also Salinas National Monument Abousleman – biographical information of people with this surname Afghanistan War – NM – See also Iraq War Abousleman – biographical information of people with this surname Abrams, Jonathan – art collector Abreu, Margaret Silva – author: Hispanic, folklore, foods Abruzzo, Ben – balloonist. See also Ballooning, Albuquerque Balloon Fiesta Acequias – ditches (canoas, ground wáter, surface wáter, puming, water rights (See also Land Grants; Rio Grande Valley; Water; and Santa Fe - Acequia Madre) Acequias – Albuquerque, map 2005-2006 – ditch system in city Acequias – Colorado (San Luis) Ackerman, Mae N. – Masonic leader Acoma Pueblo - Sky City. See also Indian gaming. See also Pueblos – General; and Onate, Juan de Acuff, Mark – newspaper editor – NM Independent and -
Program and Abstracts of 2017 Congress / Programme Et Résumés
1 Sponsors | Commanditaires Gold Sponsors | Commanditaires d’or Silver Sponsors | Commanditaires d’argent Other Sponsors | Les autres Commanditaires 2 Contents Sponsors | Commanditaires .......................................................................................................................... 2 Welcome from the Premier of Ontario .......................................................................................................... 5 Bienvenue du premier ministre de l'Ontario .................................................................................................. 6 Welcome from the Mayor of Toronto ............................................................................................................ 7 Mot de bienvenue du maire de Toronto ........................................................................................................ 8 Welcome from the Minister of Fisheries, Oceans and the Canadian Coast Guard ...................................... 9 Mot de bienvenue de ministre des Pêches, des Océans et de la Garde côtière canadienne .................... 10 Welcome from the Minister of Environment and Climate Change .............................................................. 11 Mot de bienvenue du Ministre d’Environnement et Changement climatique Canada ................................ 12 Welcome from the President of the Canadian Meteorological and Oceanographic Society ...................... 13 Mot de bienvenue du président de la Société canadienne de météorologie et d’océanographie ............. -
Europa Clipper Mission
Europa Clipper Mission Send a highly capable, radiation-tolerant spacecraft in a long, looping orbit around Jupiter to perform repeated close flybys of the icy moon. This document has been reviewed and determined not to contain export controlled technical data. 1 Exploring Europa’s Habitability: ! Ingredients for Life" Mission Goal: Explore Europa to Investigate its Habitability e-, O+, S+, … Water: • Probable saltwater ocean, implied by surface geology and magnetic field radiation-produced oxidants: • Possible lakes within the ice shell, produced by local melting O2, H2O2, CH2O ~ 100 K Chemistry: • Ocean in direct contact with mantle rock, promoting chemical leaching • Dark red surface materials contain salts, probably from the ocean Energy: • Chemical energy might sustain life • Surface irradiation creates oxidants • Mantle rock-water reactions could create reductants (hydrothermal or serpentinization) ? Habitability Activity: • Geological activity “stirs the pot” hydrothermally produced reductants: H S, H , CH , Fe • Activity could be cyclical, as tied to Io 2 2 4 ? This document has been reviewed and determined not to contain export controlled technical data. 2 Workshop Overview" Project manager, Barry Goldstein, and Planetary Protection Officer, Lisa Pratt, collaborated on setting objectives for the three-day workshop: • Validate the modeling framework for Europa Clipper Planetary Protection. • Agree on model input values, or on a plan to derive/ identify appropriate model inputs. • Develop workshop concurrence regarding future research plans and their priority. Spoiler Alert The three objectives were accomplished. This document has been reviewed and determined not to contain export controlled technical data. 3 Outside Subject-Matter Experts" A panel of multidisciplinary experts were assembled to provide consultation and guidance at the workshop." This document has been reviewed and determined not to contain export controlled technical data. -
Europa Clipper Mission: Preliminary Design Report
Europa Clipper Mission: Preliminary Design Report Todd Bayer, Molly Bittner, Brent Buffington, Karen Kirby, Nori Laslo Gregory Dubos, Eric Ferguson, Ian Harris, Johns Hopkins University Applied Physics Maddalena Jackson, Gene Lee, Kari Lewis, Jason Laboratory 11100 Johns Hopkins Road Laurel, Kastner, Ron Morillo, Ramiro Perez, Mana MD 20723-6099 Salami, Joel Signorelli, Oleg Sindiy, Brett Smith, [email protected] Melissa Soriano Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr. Pasadena, CA 91109 818-354-4605 [email protected] Abstract—Europa, the fourth largest moon of Jupiter, is 1. INTRODUCTION believed to be one of the best places in the solar system to look for extant life beyond Earth. Exploring Europa to investigate its Europa’s subsurface ocean is a particularly intriguing target habitability is the goal of the Europa Clipper mission. for scientific exploration and the hunt for life beyond Earth. The 2011 Planetary Decadal Survey, Vision and Voyages, The Europa Clipper mission envisions sending a flight system, states: “Because of this ocean’s potential suitability for life, consisting of a spacecraft equipped with a payload of NASA- Europa is one of the most important targets in all of planetary selected scientific instruments, to execute numerous flybys of Europa while in Jupiter orbit. A key challenge is that the flight science” [1]. Investigation of Europa’s habitability is system must survive and operate in the intense Jovian radiation intimately tied to understanding the three “ingredients” for environment, which is especially harsh at Europa. life: liquid water, chemistry, and energy. The Europa Clipper mission would investigate these ingredients by The spacecraft is planned for launch no earlier than June 2023, comprehensively exploring Europa’s ice shell and liquid from Kennedy Space Center, Florida, USA, on a NASA supplied ocean interface, surface geology and surface composition to launch vehicle. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Valuing Life Detection Missions Edwin S
Valuing life detection missions Edwin S. Kite* (University of Chicago), Eric Gaidos (University of Hawaii), Tullis C. Onstott (Princeton University). * [email protected] Recent discoveries imply that Early Mars was habitable for life-as-we-know-it (Grotzinger et al. 2014); that Enceladus might be habitable (Waite et al. 2017); and that many stars have Earth- sized exoplanets whose insolation favors surface liquid water (Dressing & Charbonneau 2013, Gaidos 2013). These exciting discoveries make it more likely that spacecraft now under construction – Mars 2020, ExoMars rover, JWST, Europa Clipper – will find habitable, or formerly habitable, environments. Did these environments see life? Given finite resources ($10bn/decade for the US1), how could we best test the hypothesis of a second origin of life? Here, we first state the case for and against flying life detection missions soon. Next, we assume that life detection missions will happen soon, and propose a framework (Fig. 1) for comparing the value of different life detection missions: Scientific value = (Reach × grasp × certainty × payoff) / $ (1) After discussing each term in this framework, we conclude that scientific value is maximized if life detection missions are flown as hypothesis tests. With hypothesis testing, even a nondetection is scientifically valuable. Should the US fly more life detection missions? Once a habitable environment has been found and characterized, life detection missions are a logical next step. Are we ready to do this? The case for emphasizing habitable environments, not life detection: Our one attempt to detect life, Viking, is viewed in hindsight as premature or at best uncertain. In-space life detection experiments are expensive. -
SNOW Decadal White Paper Final
Dive, Dive, Dive: Accessing the Subsurface of Ocean Worlds A Paper Submitted to the Planetary Science Decadal Survey On Behalf of the Subsurface Needs for Ocean Worlds Working Group of OPAG Submitted by: SNOW Organizers Britney Schmidt, OPAG, VERNE Kate Craft, Europa STI Georgia Tech, [email protected] JHU APL, [email protected] SESAME PIs & Teams (Co-Authors) Thomas Cwik, JPL Georgia Tech VERNE: Kris Zacny, Honeybee Robotics Frances Bryson, Chase Chivers, Sara Miles Smith, JPL Pierson, Justin Lawrence, Taylor Plattner, Vishaal Singh, Europa STI, Elizabeth Spiers, Andrew Mullen, Jacob Arizona State University Buffo, Nathan Daniel, Ashley Hanna, Glenn Bill Stone, Stone Aerospace Lightsey, Matt Meister, Mohamed Nassif, Daniel Dichek, Anthony Spears Endorsers: Europa Signals Through the Ice: Morgan Cable, JPL; Christine McCarthy, Christine McCarthy, Lamont Doherty Earth LDEO; Andrew Dombard, U Illinois, Observatory; G. Wesley Patterson, Ralph D. Chicago; Ganna Portayinka, LASP; Karyn Lorenz, JHU Applied Physics Laboratory; Rogers, RPI; Shane Byrne, U Az; Evan Christopher R. German, Michael V. Jakuba, Eschelman, Impossible Sensing; Robert Woods Hole Oceanographic Institution, Dziak, NOAA; Bryanna Henderson, JPL; Matthew Silvia, Woods Hole Oceanographic Dale Winebrenner, U Washington; Alison Institution; Alyssa R. Rhoden, Southwest Murray, DRI; Brent Christner, U Florida; Research Institute; Matthew E. Walker, U. Carol Paty, U Oregon; Connor Nixon, Southern Maine NASA Goddard; Michael Malaska, JPL; Erin Leonard, Jet Propulsion Laboratory, Community Endorsers: Kalind Carpenter, JPL/Caltech; Krista Jeff Moore, NASA Ames; Linda Spilker, Soderlund, University of Texas at Austin; JPL/Caltech; Marc Neveu, UMD/NASA Zach Ulibarri, Center for Integrated Plasma Goddard; Patricia Beauchamp, Studies, University of Colorado; Heather JPL/Caltech; Matthew Siegfried, CO Mines; Graham, Catholic University of Sam Howell, JPL; Cynthia Phillips, JPL; America/NASA GSFC Flyby. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
Europa Lander
Europa Lander Europa Lander SDT Report & Mission Concept OPAG February 22, 2017, Atlanta, GA Kevin Hand, Alison Murray, Jim Garvin & Europa Lander Team Science Definition Team Co-Chairs: Alison Murray, DRI/Univ. NV Reno, Jim Garvin, GSFC; Kevin Hand, JPL • Ken Edgett, MSSS • Sarah Horst, JHU • Bethany Ehlmann, Caltech • Peter Willis, JPL • Jonathan Lunine, Cornell • Alex Hayes, Cornell • Alyssa Rhoden, ASU • Brent Christner, Univ FL • Will Brinkerhoff, GSFC • Chris German, WHOI • Alexis Templeton, CU Boulder • Aileen Yingst, PSI • Michael Russell, JPL • David Smith, MIT • Tori Hoehler, NASA Ames • Chris Paranicas, APL • Ken Nealson, USC • Britney Schmidt, GA Tech Planetary scientists, Microbiologists, Geochemists Pre-Decisional Information — For Planning and Discussion Purposes Only 2 Europa Lander Mission Concept Key Parameters: • Lander would be launched as a separate mission. • Target launch: 2024-2025 on SLS rocket. • Battery powered mission: 20+ day surface lifetime. • Spacecraft provides 42.5 kg allocation for science payload (with reserves). • Baseline science includes: • Analyses of 5 samples, • Samples acquired from 10 cm depth or deeper (beneath radiation processed regolith) and from 5 different regions within the lander workspace, • Each sample must have a minimum volume of 7 cubic centimeters. Pre-Decisional Information — For Planning and Discussion Purposes Only Europa Lander Mission Concept Pre-Decisional Information — For Planning and Discussion Purposes Only Europa Lander Goals: A Robust Approach to Searching for Signs -
Warfare and the State, 1450–1900
Chapter Title: Warfare and the State, 1450–1900 Book Title: War and the World Book Subtitle: Military Power and the Fate of Continents, 1450-2000 Book Author(s): Jeremy Black Published by: Yale University Press Stable URL: http://www.jstor.com/stable/j.ctt1npk2b.13 JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms Yale University Press is collaborating with JSTOR to digitize, preserve and extend access to War and the World This content downloaded from 79.147.42.147 on Sat, 06 Jun 2020 05:03:48 UTC All use subject to https://about.jstor.org/terms 8 Warfare and the State, 1450-1900 War as the cause, course and consequence of state-building is an established and cur rently fashionable means of approaching history among both historians and political scientists: war equals state-building and state-building equals war. In place of an organic, or alternatively episodic, account that might focus on socio-economic trends or constitutional-political developments centring on domestic situations, war offers an explanatory model that makes it possible to relate international and domestic spheres and to align state-building - a central, structural feature of contemporary political society - with chronological specifics: the derails of conflicts. -
Tayf - the Soqotra Newsletter
July 2005 ISSUE 2 Tayf - the Soqotra Newsletter Issued By FRIENDS OF SOQOTRA and SOCOTRA CONSERVATION FUND Soqotra Nomination as a World Heritage Site UNESCO has formally established a small Task Force in charge of assisting Yemen in finalizing the WHS nomination file for Socotra. UNESCO has assigned Dr Mario Caruso, Italian Architect, who has significant experience in preparing successful UNESCO World Heritage Sites nomination files for high-profile Tsunami damage in Mifrahin. Photo SCF. SCF. Photo in Mifrahin. damage Tsunami cultural sites in Italy. Edoardo and Asian Tsunami – Impacts on Soqotra Teresa Zandri are also on the initial Task Force. SCDP, SCF and FoS are Leaving a trail of destruction behind, waves generated by the East Asian seaquake all offering support to this important moved through the Indian Ocean at high speed, hitting the Maldives on their way, venture. which reduced the energy of the northern part of the tsunami before it reached the southern coast of Soqotra. The wave crashing into East Africa (mainly Somalia and Kenya) passed just below the island, but the energy with which it hit in the south-eastern coast (Noged) was high enough to have a profound effect on local fishing communities. The wave hit the south coast about 5 pm on Sunday evening. Along the north coast there was just a swelling of the tide which came up over the beach in an unusual manner. At Qalansiya the sea went out just before the swell came in, and a boy (Salim Abdullah Salim Al Qiyssi, from the Qalansiyah Directorate was killed; about 5 years old) was drowned trying to run out and pick up stranded fish. -
LOWELL OBSERVATORY in Flagstaff Embodies the Legacy of Arizona's VISIONARY ASTRONOMER
dby eSALLY BsENFORtD /iphontographsaby DAVItD Hi. SMoITH n PERCIVAL LOWELL NEVER CONSIDERED 1966, Lowell Observatory was registered as a LOWELL himself a dreamer. A stargazer, perhaps, but National Historic Landmark. Today, professional OBSERVATORY never a dreamer. and amateur stargazers go to the observatory, In the summer of 1894, Lowell thought he one of the world’s largest, privately operated, in Flagstaff had proof that intelligent life existed on Mars. nonprofit astronomical research observatories. The Harvard-educated mathematician, who Lowell’s 24-inch Clark refractor telescope, Embodies hailed from Boston blue-blooded society, spent which he used for his Mars observations, now the Legacy of night after night perched on a lonely serves as an instrument for public viewing. ponderosa pine-studded mesa above Flagstaff, Even in the 21st century, Lowell seems to Arizona’s gazing through a telescope at Mars, taking oversee the operation as he peers from a large notes and making calculations. By the end of painting that hangs in the observatory’s Steele VISIONARY summer, Lowell decided he had enough Visitor Center lobby. Hand on hip and staring ASTRONOMER information to publish his findings. straight into the future, Lowell stands amid Lowell never proved his theory of life on modern-day and historical space observational Mars, but such theories sparked a firestorm devices. The center serves as the entry point of controversy about Martians, adding a for all observatory programs, telescopes and fascination with space to the developing literary exhibits. People come to learn the observatory’s genre of science fiction. Author H.G. Wells history and for a chance to look through published his novel War of the Worlds in 1898 Lowell’s telescopes.