Acceptance Speech (Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

Acceptance Speech (Pdf) Your Majesty, Your Excellencies, ladies and gentlemen: I’m very happy to be in this beautiful country again, and very much honored by this award. The field of mathematics is a marvelous mosaic built up out of contributions by people from many different cultures, speaking many different languages, and stretching back over many hundreds of years. From the beginning mathematics has had a dual nature, partly abstract and self contained, but intimately concerned with understanding of the physical world around us. Much important mathematics was first inspired by real world problems; and mathematics has often contributed in totally unexpected ways. No one could have guessed that Riemann’s study of curvature would form the basis for Einstein’s theory of gravity; or that Hilbert’s theory of infinite dimensional vector spaces would provide the foundations for quantum mechanics. The British mathematician G. H. Hardy proudly bragged that his work in number theory would never be sullied by applications. He would have been horrified to learn that it is now the basis for methods in cryptography which are fundamentally important in commercial applications and also in military applications. The connections between mathematics and other sciences work in both directions. Claude Shannon’s work on communication theory was inspired by the work of physicists on statistical mechanics, and now has important applications not only in computer science but also in the mathematical theory of dynamical systems. The mathematical theory of Riemannn surfaces is now very important to mathematical physicists. Conversely, tools developed by mathematical physicists play a very important role in topology. I have been very lucky to have been able to enjoy this magnificent mosaic of mathematics for more than sixty years, and to make some contributions to it. But of course the contribu- tions of any one person must depend in a very essential way on the cumulative contributions of older generations of mathematicians. The work of Niels Henrik Abel provides a necessary background for a great deal of present day mathematics. The groups studied by Sophus Lie are important in many branches of mathematics. We learn not only from our mathematical ancestors, but also to a great extent from our contemporaries. I have personally benefited from the the work of a number of the previous Abel Prize winners. The thesis of Jean-Pierre Serre provided a foundation for nearly all subsequent work on homotopy groups. His beautiful Cours d’Arithm´etique taught me about the quadratic forms which play an important role in understanding the topology of manifolds. In fact, this study of quadratic forms was so addictive that I spent some years studying problems in algebra for their own sake. Michael Atiyah’s work on K-theory provided the inspiration for my own work on algebraic K-theory; while John Tate helped me to understand the relationship between algebraic K-theory, quadratic forms and Galois cohomology. One great advantage of the long mathematical life which I have enjoyed is that it has enabled me to see amazing progress by others on problems which I had helped to formulate. Thus the work on quadratic forms which I just mentioned led to conjectures which were later verified in very deep work by Vladimir Voevodsky. Similarly, Misha Gromov’s work on the growth of finitely generated groups went far beyond anything which I had been able to achieve. In conclusion, let me say that I am very grateful to the Abel Committee for this award. I want to thank all of you here today for helping me to celebrate it..
Recommended publications
  • Differential Calculus and by Era Integral Calculus, Which Are Related by in Early Cultures in Classical Antiquity the Fundamental Theorem of Calculus
    History of calculus - Wikipedia, the free encyclopedia 1/1/10 5:02 PM History of calculus From Wikipedia, the free encyclopedia History of science This is a sub-article to Calculus and History of mathematics. History of Calculus is part of the history of mathematics focused on limits, functions, derivatives, integrals, and infinite series. The subject, known Background historically as infinitesimal calculus, Theories/sociology constitutes a major part of modern Historiography mathematics education. It has two major Pseudoscience branches, differential calculus and By era integral calculus, which are related by In early cultures in Classical Antiquity the fundamental theorem of calculus. In the Middle Ages Calculus is the study of change, in the In the Renaissance same way that geometry is the study of Scientific Revolution shape and algebra is the study of By topic operations and their application to Natural sciences solving equations. A course in calculus Astronomy is a gateway to other, more advanced Biology courses in mathematics devoted to the Botany study of functions and limits, broadly Chemistry Ecology called mathematical analysis. Calculus Geography has widespread applications in science, Geology economics, and engineering and can Paleontology solve many problems for which algebra Physics alone is insufficient. Mathematics Algebra Calculus Combinatorics Contents Geometry Logic Statistics 1 Development of calculus Trigonometry 1.1 Integral calculus Social sciences 1.2 Differential calculus Anthropology 1.3 Mathematical analysis
    [Show full text]
  • Prvních Deset Abelových Cen Za Matematiku
    Prvních deset Abelových cen za matematiku The first ten Abel Prizes for mathematics [English summary] In: Michal Křížek (author); Lawrence Somer (author); Martin Markl (author); Oldřich Kowalski (author); Pavel Pudlák (author); Ivo Vrkoč (author); Hana Bílková (other): Prvních deset Abelových cen za matematiku. (English). Praha: Jednota českých matematiků a fyziků, 2013. pp. 87–88. Persistent URL: http://dml.cz/dmlcz/402234 Terms of use: © M. Křížek © L. Somer © M. Markl © O. Kowalski © P. Pudlák © I. Vrkoč Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Summary The First Ten Abel Prizes for Mathematics Michal Křížek, Lawrence Somer, Martin Markl, Oldřich Kowalski, Pavel Pudlák, Ivo Vrkoč The Abel Prize for mathematics is an international prize presented by the King of Norway for outstanding results in mathematics. It is named after the Norwegian mathematician Niels Henrik Abel (1802–1829) who found that there is no explicit formula for the roots of a general polynomial of degree five. The financial support of the Abel Prize is comparable with the Nobel Prize, i.e., about one million American dollars. Niels Henrik Abel (1802–1829) M. Křížek a kol.: Prvních deset Abelových cen za matematiku, JČMF, Praha, 2013 87 Already in 1899, another famous Norwegian mathematician Sophus Lie proposed to establish an Abel Prize, when he learned that Alfred Nobel would not include a prize in mathematics among his five proposed Nobel Prizes.
    [Show full text]
  • 1 Getting a Knighthood
    Getting a knighthood (Bristol, June 1996) It's unreal, isn't it? I've always had a strong sense of the ridiculous, of the absurd, and this is working overtime now. Many of you must have been thinking, ‘Why Berry?’ Well, since I am the least knightly person I know, I have been asking the same question, and although I haven't come up with an answer I can offer a few thoughts. How does a scientist get this sort of national recognition? One way is to do something useful to the nation, that everyone agrees is important to the national well- being or even survival. Our home-grown example is of course Sir Charles Frank's war work. Or, one can sacrifice several years of one's life doing high-level scientific administration, not always received with gratitude by the scientific hoi polloi but important to the smooth running of the enterprise. Sir John Kingman is in this category. Another way – at least according to vulgar mythology – is to have the right family background. Well, my father drove a cab in London and my mother ruined her eyes as a dressmaker. Another way is to win the Nobel Prize or one of the other huge awards like the Wolf or King Faisal prizes, like Sir George Porter as he then was, or Sir Michael Atiyah. The principle here I suppose is, to those that have, more shall be given. I don't qualify on any of these grounds. The nearest I come is to have have won an fairly large number of smaller awards.
    [Show full text]
  • Cadenza Document
    2017/18 Whole Group Timetable Semester 1 Mathematics Module CMIS Room Class Event ID Code Module Title Event Type Day Start Finish Weeks Lecturer Room Name Code Capacity Size 3184417 ADM003 Yr 1 Basic Skills Test Test Thu 09:00 10:00 18-20 Tonks, A Dr Fielding Johnson South Wing FJ SW 485 185 Basement Peter Williams PW Lecture Theatre 3198490 ADM003 Yr 1 Basic Skills Test Test Thu 09:00 10:00 18-20 Leschke K Dr KE 323, 185 KE 101, ADR 227, MSB G62, KE 103 3203305 ADM003 Yr 1 Basic Skills Test Test Thu 09:00 10:00 18-20 Hall E J C Dr Attenborough Basement ATT LT1 204 185 Lecture Theatre 1 3216616 ADM005 Yr 2 Basic Skills Test Test Fri 10:00 11:00 18 Brilliantov N BEN 149 Professor F75b, MSB G62, KE 103, KE 323 2893091 MA1012 Calculus & Analysis 1 Lecture Mon 11:00 12:00 11-16, Tonks, A Dr Ken Edwards First Floor KE LT1 249 185 18-21 Lecture Theatre 1 2893092 MA1012 Calculus & Analysis 1 Lecture Tue 11:00 12:00 11-16, Tonks, A Dr Attenborough Basement ATT LT1 204 185 18-21 Lecture Theatre 1 2893129 MA1061 Probability Lecture Thu 10:00 11:00 11-16, Hall E J C Dr Ken Edwards First Floor KE LT1 249 185 18-21 Lecture Theatre 1 2893133 MA1061 Probability Lecture Fri 11:00 12:00 11-16, Hall E J C Dr Bennett Upper Ground Floor BEN LT1 244 185 18-21 Lecture Theatre 1 2902659 MA1104 ELEMENTS OF NUMBER Lecture Tue 13:00 14:00 11-16, Goedecke J Ken Edwards Ground Floor KE LT3 150 100 THEORY 18-21 Lecture Theatre 3 2902658 MA1104 ELEMENTS OF NUMBER Lecture Wed 10:00 11:00 11-16, Goedecke J Astley Clarke Ground Floor AC LT 110 100 THEORY 18-21 Lecture
    [Show full text]
  • EVARISTE GALOIS the Long Road to Galois CHAPTER 1 Babylon
    A radical life EVARISTE GALOIS The long road to Galois CHAPTER 1 Babylon How many miles to Babylon? Three score miles and ten. Can I get there by candle-light? Yes, and back again. If your heels are nimble and light, You may get there by candle-light.[ Babylon was the capital of Babylonia, an ancient kingdom occupying the area of modern Iraq. Babylonian algebra B.M. Tablet 13901-front (From: The Babylonian Quadratic Equation, by A.E. Berryman, Math. Gazette, 40 (1956), 185-192) B.M. Tablet 13901-back Time Passes . Centuries and then millennia pass. In those years empires rose and fell. The Greeks invented mathematics as we know it, and in Alexandria produced the first scientific revolution. The Roman empire forgot almost all that the Greeks had done in math and science. Germanic tribes put an end to the Roman empire, Arabic tribes invaded Europe, and the Ottoman empire began forming in the east. Time passes . Wars, and wars, and wars. Christians against Arabs. Christians against Turks. Christians against Christians. The Roman empire crumbled, the Holy Roman Germanic empire appeared. Nations as we know them today started to form. And we approach the year 1500, and the Renaissance; but I want to mention two events preceding it. Al-Khwarismi (~790-850) Abu Ja'far Muhammad ibn Musa Al-Khwarizmi was born during the reign of the most famous of all Caliphs of the Arabic empire with capital in Baghdad: Harun al Rashid; the one mentioned in the 1001 Nights. He wrote a book that was to become very influential Hisab al-jabr w'al-muqabala in which he studies quadratic (and linear) equations.
    [Show full text]
  • Formulation of the Group Concept Financial Mathematics and Economics, MA3343 Groups Artur Zduniak, ID: 14102797
    Formulation of the Group Concept Financial Mathematics and Economics, MA3343 Groups Artur Zduniak, ID: 14102797 Fathers of Group Theory Abstract This study consists on the group concepts and the four axioms that form the structure of the group. Provided below are exam- ples to show different mathematical opera- tions within the elements and how this form Otto Holder¨ Joseph Louis Lagrange Niels Henrik Abel Evariste´ Galois Felix Klein Camille Jordan the different characteristics of the group. Furthermore, a detailed study of the formu- lation of the group theory is performed where three major areas of modern group theory are discussed:The Number theory, Permutation and algebraic equations the- ory and geometry. Carl Friedrich Gauss Leonhard Euler Ernst Christian Schering Paolo Ruffini Augustin-Louis Cauchy Arthur Cayley What are Group Formulation of the group concept A group is an algebraic structure consist- The group theory is considered as an abstraction of ideas common to three major areas: ing of different elements which still holds Number theory, Algebraic equations theory and permutations. In 1761, a Swiss math- some common features. It is also known ematician and physicist, Leonhard Euler, looked at the remainders of power of a number as a set. All the elements of a group are modulo “n”. His work is considered as an example of the breakdown of an abelian group equipped with an algebraic operation such into co-sets of a subgroup. He also worked in the formulation of the divisor of the order of the as addition or multiplication. When two el- group. In 1801, Carl Friedrich Gauss, a German mathematician took Euler’s work further ements of a group are combined under an and contributed in the formulating the theory of abelian groups.
    [Show full text]
  • The History of the Abel Prize and the Honorary Abel Prize the History of the Abel Prize
    The History of the Abel Prize and the Honorary Abel Prize The History of the Abel Prize Arild Stubhaug On the bicentennial of Niels Henrik Abel’s birth in 2002, the Norwegian Govern- ment decided to establish a memorial fund of NOK 200 million. The chief purpose of the fund was to lay the financial groundwork for an annual international prize of NOK 6 million to one or more mathematicians for outstanding scientific work. The prize was awarded for the first time in 2003. That is the history in brief of the Abel Prize as we know it today. Behind this government decision to commemorate and honor the country’s great mathematician, however, lies a more than hundred year old wish and a short and intense period of activity. Volumes of Abel’s collected works were published in 1839 and 1881. The first was edited by Bernt Michael Holmboe (Abel’s teacher), the second by Sophus Lie and Ludvig Sylow. Both editions were paid for with public funds and published to honor the famous scientist. The first time that there was a discussion in a broader context about honoring Niels Henrik Abel’s memory, was at the meeting of Scan- dinavian natural scientists in Norway’s capital in 1886. These meetings of natural scientists, which were held alternately in each of the Scandinavian capitals (with the exception of the very first meeting in 1839, which took place in Gothenburg, Swe- den), were the most important fora for Scandinavian natural scientists. The meeting in 1886 in Oslo (called Christiania at the time) was the 13th in the series.
    [Show full text]
  • All About Abel Dayanara Serges Niels Henrik Abel (August 5, 1802-April 6,1829) Was a Norwegian Mathematician Known for Numerous Contributions to Mathematics
    All About Abel Dayanara Serges Niels Henrik Abel (August 5, 1802-April 6,1829) was a Norwegian mathematician known for numerous contributions to mathematics. Abel was born in Finnoy, Norway, as the second child of a dirt poor family of eight. Abels father was a poor Lutheran minister who moved his family to the parish of Gjerstad, near the town of Risr in southeast Norway, soon after Niels Henrik was born. In 1815 Niels entered the cathedral school in Oslo, where his mathematical talent was recognized in 1817 by his math teacher, Bernt Michael Holmboe, who introduced him to the classics in mathematical literature and proposed original problems for him to solve. Abel studied the mathematical works of the 17th-century Englishman Sir Isaac Newton, the 18th-century German Leonhard Euler, and his contemporaries the Frenchman Joseph-Louis Lagrange and the German Carl Friedrich Gauss in preparation for his own research. At the age of 16, Abel gave a proof of the Binomial Theorem valid for all numbers not only Rationals, extending Euler's result. Abels father died in 1820, leaving the family in straitened circumstances, but Holmboe and other professors contributed and raised funds that enabled Abel to enter the University of Christiania (Oslo) in 1821. Abels first papers, published in 1823, were on functional equations and integrals; he was the first person to formulate and solve an integral equation. He had also created a proof of the impossibility of solving algebraically the general equation of the fifth degree at the age of 19, which he hoped would bring him recognition.
    [Show full text]
  • Banknote Character Advisory Committee Minutes
    BANKNOTE CHARACTER ADVISORY COMMITTEE (1) MINUTES Bank of England, Threadneedle Street 13.45 ‐ 15.00: 14 March 2018 Advisory Committee Members: Ben Broadbent (Chair), Sir David Cannadine, Victoria Cleland, Sandy Nairne, Baroness Lola Young Also present: Head of Banknote Resilience Programme Manager, Banknote Transformation Programme Senior Manager, Banknote Development Secretary to the Committee Minutes 1 Introduction and background 1.1 The Chair welcomed the Committee. He reminded members that their discussions should remain confidential. 1.2 Following the successful launch of the £5 and £10, the Bank was considering plans to launch a polymer £50. Governors and Court had approved a polymer £50 and the Banknote Character Advisory Committee had been re‐convened. 1.3 The Chair advised that the Chancellor’s Spring Statement the previous day had announced a call for evidence relating to the future of cash. The results of this exercise could impact the future of the £50 and it would be inappropriate for the Bank to press forward with a polymer £50 while the Government was considering the future denominational mix. 1.4 The closing date for receipt of evidence is 5 June and a decision might be expected around the Autumn budget. If HM Treasury decided to continue with the denomination and the Bank chose to develop a polymer £50, the Bank could presumptively make an announcement in early 2019 to avoid the public nomination process spanning Christmas 2018. 1 2 Equality considerations for selecting the field 2.1 The Bank reminded the Committee that equality considerations need to be consciously considered during the character selection process.
    [Show full text]
  • Institut F¨Ur Informatik Und Praktische Mathematik Christian-Albrechts-Universit¨At Kiel
    INSTITUT FUR¨ INFORMATIK UND PRAKTISCHE MATHEMATIK Pose Estimation Revisited Bodo Rosenhahn Bericht Nr. 0308 September 2003 CHRISTIAN-ALBRECHTS-UNIVERSITAT¨ KIEL Institut f¨ur Informatik und Praktische Mathematik der Christian-Albrechts-Universit¨at zu Kiel Olshausenstr. 40 D – 24098 Kiel Pose Estimation Revisited Bodo Rosenhahn Bericht Nr. 0308 September 2003 e-mail: bro@ks.informatik.uni-kiel.de “Dieser Bericht gibt den Inhalt der Dissertation wieder, die der Verfasser im April 2003 bei der Technischen Fakult¨at der Christian-Albrechts-Universit¨at zu Kiel eingereicht hat. Datum der Disputation: 19. August 2003.” 1. Gutachter Prof. G. Sommer (Kiel) 2. Gutachter Prof. D. Betten (Kiel) 3. Gutachter Dr. L. Dorst (Amsterdam) Datum der m¨undlichen Pr¨ufung: 19.08.2003 ABSTRACT The presented thesis deals with the 2D-3D pose estimation problem. Pose estimation means to estimate the relative position and orientation of a 3D ob- ject with respect to a reference camera system. The main focus concentrates on the geometric modeling and application of the pose problem. To deal with the different geometric spaces (Euclidean, affine and projective ones), a homogeneous model for conformal geometry is applied in the geometric algebra framework. It allows for a compact and linear modeling of the pose scenario. In the chosen embedding of the pose problem, a rigid body motion is represented as an orthogonal transformation whose parameters can be es- timated efficiently in the corresponding Lie algebra. In addition, the chosen algebraic embedding allows the modeling of extended features derived from sphere concepts in contrast to point concepts used in classical vector cal- culus.
    [Show full text]
  • The Atiyah-Singer Index Theorem, Formulated and Proved in 1962–3, Is a Vast Generalization to Arbitrary Elliptic Operators on Compact Manifolds of Arbitrary Dimension
    THE ATIYAH-SINGER INDEX THEOREM DANIEL S. FREED In memory of Michael Atiyah Abstract. The Atiyah-Singer index theorem, a landmark achievement of the early 1960s, brings together ideas in analysis, geometry, and topology. We recount some antecedents and motivations; various forms of the theorem; and some of its implications, which extend to the present. Contents 1. Introduction 2 2. Antecedents and motivations from algebraic geometry and topology 3 2.1. The Riemann-Roch theorem 3 2.2. Hirzebruch’s Riemann-Roch and Signature Theorems 4 2.3. Grothendieck’s Riemann-Roch theorem 6 2.4. Integrality theorems in topology 8 3. Antecedents in analysis 10 3.1. de Rham, Hodge, and Dolbeault 10 3.2. Elliptic differential operators and the Fredholm index 12 3.3. Index problems for elliptic operators 13 4. The index theorem and proofs 14 4.1. The Dirac operator 14 4.2. First proof: cobordism 16 4.3. Pseudodifferential operators 17 4.4. A few applications 18 4.5. Second proof: K-theory 18 5. Variations on the theme 19 5.1. Equivariant index theorems 19 5.2. Index theorem on manifolds with boundary 21 5.3. Real elliptic operators 22 5.4. Index theorems for Clifford linear operators 22 arXiv:2107.03557v1 [math.HO] 8 Jul 2021 5.5. Families index theorem 24 5.6. Coverings and von Neumann algebras 25 6. Heat equation proof 26 6.1. Heat operators, zeta functions, and the index 27 6.2. The local index theorem 29 6.3. Postscript: Whence the Aˆ-genus? 31 7. Geometric invariants of Dirac operators 32 7.1.
    [Show full text]
  • The Royal Society of Edinburgh Issue 15 • Winter 2006
    news THE ROYAL SOCIETY OF EDINBURGH ISSUE 15 • WINTER 2006 RESOURCE THE NEWSLETTER OF SCOTLAND’S NATIONAL ACADEMY Microcrystals promise major medical benefits A new technology being developed in Scotland could transform the treatment of many diseases by enabling protein medicines that currently need to be injected, to be taken with an inhaler. Recognising the importance of this breakthrough, Dr Marie Claire Parker was presented with the nation’s top award for innovation at a Ceremony held in the Royal Museum of Scotland on 27 October 2006. Dr Parker is CEO of XstalBio Ltd, a University of Glasgow and University of Strathclyde spin-out company, which developed as a result of an RSE/Scottish Enterprise Enterprise Fellowship held by Dr Parker in 2001. The Gannochy Trust Innovation Award of the Royal Society of Edinburgh has been created to encourage and reward Scotland’s young innovators for work which benefits Scotland’s wellbeing. This coveted award also carries a cheque for £50,000 and a specially commissioned gold medal, which was presented to Dr Parker by the President of the RSE, Sir Michael Atiyah. Dr Parker plans to use the £50,000 award to help develop the manufacturing process of stable, cost-effective vaccines and the advancement of a high quality biotechnology manufacturing company in Scotland, boosting our economy. Events around Scotland Christmas Lecture 2006 International Exchanges Recognising Excellence GANNOCHY TRUST INNOVATION AWARD OF THE ROYAL SOCIETY OF EDINBURGH Entitled “Protein-coated Microcrystal (PCMC) Technology”, Dr Parker’s new process can attach proteins such as insulin to crystals that are so tiny (between one and five thousandths of a millimetre) that they can be inhaled, allowing the drug to enter the body via the lung.
    [Show full text]