Re-Evaluating the Green Versus Red Signal in Eukaryotes with Secondary Plastid of Red Algal Origin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland
fmicb-10-01332 June 8, 2019 Time: 10:19 # 1 ORIGINAL RESEARCH published: 11 June 2019 doi: 10.3389/fmicb.2019.01332 Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland Anna Maria Fiore-Donno1,2*, Tim Richter-Heitmann3, Florine Degrune4,5, Kenneth Dumack1,2, Kathleen M. Regan6, Sven Marhan7, Runa S. Boeddinghaus7, Matthias C. Rillig4,5, Michael W. Friedrich3, Ellen Kandeler7 and Michael Bonkowski1,2 1 Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany, 2 Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany, 3 Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany, 4 Institute of Biology, Plant Ecology, Freie Universität Berlin, Berlin, Germany, 5 Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany, 6 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, United States, 7 Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany Edited by: Soil protists are increasingly appreciated as essential components of soil foodwebs; Jaak Truu, University of Tartu, Estonia however, there is a dearth of information on the factors structuring their communities. Reviewed by: Here we investigate the importance of different biotic and abiotic factors as key Anne Winding, drivers of spatial and seasonal distribution of protistan communities. We conducted Aarhus University, Denmark 2 Ida Karlsson, an intensive survey of a 10 m grassland plot in Germany, focusing on a major group Swedish University of Agricultural of protists, the Cercozoa. From 177 soil samples, collected from April to November, Sciences, Sweden we obtained 694 Operational Taxonomy Units representing 6 million Illumina reads. -
A Revised Classification of Naked Lobose Amoebae (Amoebozoa
Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility. -
Diversity and Distribution of Heterotrophic Flagellates in the Arctic Ocean
Diversity and distribution of heterotrophic flagellates in the Arctic Ocean Thèse Mary Thaler Doctorat en Océanographie Philosophiae Doctor (PhD.) Québec, Canada © Mary Thaler, 2014 2 Résumé Dans les environnements marins arctiques, les protistes unicellulaires constituent les premiers maillons du réseau trophique. Les flagellés hétérotrophes (HF) jouent un rôle clé au sein de ce réseau trophique comme brouteurs de bactéries et de phytoplanctons, étant broutés à leur tour par les microzooplanctons comme les dinoflagellés ou les ciliés. Les scientifiques prévoient que les changements environnementaux extrêmes qui ont présentement lieu dans l‟Océan Arctique transformeront ces communautés de protistes. Le sujet de cette thèse porte sur la composition taxonomique des communautés marines HF dans l‟Océan Arctique, et leur réponse aux facteurs environnementaux. L‟approche a été d‟utiliser le comptage sur microscope à l‟aide de l‟hybridation fluorescente in situ pour évaluer l‟abondance de deux taxons HF importants, le genre Cryothecomonas et le clade MAST-1 parmi les straménopiles marins. Une approche complémentaire a été de décrire la répartition de tous les taxons HF, y compris l‟ordre Cryomonadida, les straménopiles marins, Picozoa, Telonemia, et les choanoflagellés, par l‟utilisation du séquençage à haut débit. Les résultats des deux approches nous ont permis de capturer les tendances environnementales sur une large échelle géographique dans l‟Arctique. Il a été mis en évidence une composition taxonomique structurée, principalement dû à l‟influence de la glace de mer et d‟autres facteurs environnementaux. Les cellules de Cryothecomonas semblaient provenir de la glace de mer, et au sein de la colonne d‟eau ils se trouvaient les plus nombreuses près du bord de glace. -
Diversity, Phylogeny and Phylogeography of Free-Living Amoebae
School of Doctoral Studies in Biological Sciences University of South Bohemia in České Budějovice Faculty of Science Diversity, phylogeny and phylogeography of free-living amoebae Ph.D. Thesis RNDr. Tomáš Tyml Supervisor: Mgr. Martin Kostka, Ph.D. Department of Parasitology, Faculty of Science, University of South Bohemia in České Budějovice Specialist adviser: Prof. MVDr. Iva Dyková, Dr.Sc. Department of Botany and Zoology, Faculty of Science, Masaryk University České Budějovice 2016 This thesis should be cited as: Tyml, T. 2016. Diversity, phylogeny and phylogeography of free living amoebae. Ph.D. Thesis Series, No. 13. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 135 pp. Annotation This thesis consists of seven published papers on free-living amoebae (FLA), members of Amoebozoa, Excavata: Heterolobosea, and Cercozoa, and covers three main topics: (i) FLA as potential fish pathogens, (ii) diversity and phylogeography of FLA, and (iii) FLA as hosts of prokaryotic organisms. Diverse methodological approaches were used including culture-dependent techniques for isolation and identification of free-living amoebae, molecular phylogenetics, fluorescent in situ hybridization, and transmission electron microscopy. Declaration [in Czech] Prohlašuji, že svoji disertační práci jsem vypracoval samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své disertační práce, a to v úpravě vzniklé vypuštěním vyznačených částí archivovaných Přírodovědeckou fakultou elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce. -
Rhizaria: Cercozoa) in a Temperate Grassland
bioRxiv preprint doi: https://doi.org/10.1101/531970; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Environmental selection and spatiotemporal structure of a major group of 2 soil protists (Rhizaria: Cercozoa) in a temperate grassland 3 Running title (50 char): Community structure of soil protists (Cercozoa) 4 Anna Maria Fiore-Donno1,2*, Tim Richter-Heitmann3, Florine Degrune4,5, Kenneth 5 Dumack1,2, Kathleen M. Regan6, Sven Mahran7, Runa S. Boeddinghaus7, Matthias C. 6 Rillig4,5, Michael W. Friedrich3, Ellen Kandeler7, Michael Bonkowski1,2 7 1Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany 8 2Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany 9 3Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, 10 Bremen, Germany 11 4Insitute of Biology, Plant Ecology, Freie Universität Berlin, Berlin, Germany 12 5Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany 13 6Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA USA 14 7Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of 15 Hohenheim, Stuttgart-Hohenheim, Germany. 16 Correspondence: Anna Maria Fiore-Donno, [email protected], Biozentrum 17 Koeln, Zuelpicher Str. 47b, 50674 Cologne, Germany. Phone +49 221 470 2927 18 Keywords: biogeography, functional traits, soil ecology, protozoa, microbial assembly, 19 environmental selection, dispersal limitation 20 Abstract 21 Soil protists are increasingly appreciated as essential components of soil foodwebs; however, 22 there is a dearth of information on the factors structuring their communities. -
The Architecture of the Plasmodiophora Brassicae Nuclear and Mitochondrial Genomes Suzana Stjelja1, Johan Fogelqvist1, Christian Tellgren-Roth2 & Christina Dixelius1*
www.nature.com/scientificreports OPEN The architecture of the Plasmodiophora brassicae nuclear and mitochondrial genomes Suzana Stjelja1, Johan Fogelqvist1, Christian Tellgren-Roth2 & Christina Dixelius1* Plasmodiophora brassicae is a soil-borne pathogen that attacks roots of cruciferous plants causing clubroot disease. The pathogen belongs to the Plasmodiophorida order in Phytomyxea. Here we used long-read SMRT technology to clarify the P. brassicae e3 genomic constituents along with comparative and phylogenetic analyses. Twenty contigs representing the nuclear genome and one mitochondrial (mt) contig were generated, together comprising 25.1 Mbp. Thirteen of the 20 nuclear contigs represented chromosomes from telomere to telomere characterized by [TTTTAGGG] sequences. Seven active gene candidates encoding synaptonemal complex-associated and meiotic-related protein homologs were identifed, a fnding that argues for possible genetic recombination events. The circular mt genome is large (114,663 bp), gene dense and intron rich. It shares high synteny with the mt genome of Spongospora subterranea, except in a unique 12 kb region delimited by shifts in GC content and containing tandem minisatellite- and microsatellite repeats with partially palindromic sequences. De novo annotation identifed 32 protein-coding genes, 28 structural RNA genes and 19 ORFs. ORFs predicted in the repeat-rich region showed similarities to diverse organisms suggesting possible evolutionary connections. The data generated here form a refned platform for the next step involving functional analysis, all to clarify the complex biology of P. brassicae. Unicellular eukaryotes or protists can be found in any habitat worldwide and fossil records are available for certain taxa where some are dated as early as the Precambrian period1. -
Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
PROF. SINA ADL (Orcid ID : 0000-0001-6324-6065) PROF. DAVID BASS (Orcid ID : 0000-0002-9883-7823) DR. CÉDRIC BERNEY (Orcid ID : 0000-0001-8689-9907) DR. PACO CÁRDENAS (Orcid ID : 0000-0003-4045-6718) DR. IVAN CEPICKA (Orcid ID : 0000-0002-4322-0754) DR. MICAH DUNTHORN (Orcid ID : 0000-0003-1376-4109) PROF. BENTE EDVARDSEN (Orcid ID : 0000-0002-6806-4807) DR. DENIS H. LYNN (Orcid ID : 0000-0002-1554-7792) DR. EDWARD A.D MITCHELL (Orcid ID : 0000-0003-0358-506X) PROF. JONG SOO PARK (Orcid ID : 0000-0001-6253-5199) DR. GUIFRÉ TORRUELLA (Orcid ID : 0000-0002-6534-4758) Article DR. VASILY V. ZLATOGURSKY (Orcid ID : 0000-0002-2688-3900) Article type : Original Article Corresponding author mail id: [email protected] Adl et al.---Classification of Eukaryotes Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla, David Bassb,c, Christopher E. Laned, Julius Lukeše,f, Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj, Matthew W. Brownk,l, Fabien Burkim, Paco Cárdenasn, Ivan Čepičkao, Ludmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s, Bente Edvardsent, Yana Eglitu, Laure Guillouv, Vladimír Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Sergey Karpovh, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,aa, Daniel J. G. Lahrab, Enrique Laraac,ad, Line Le Gallae, Denis H. Lynnaf,ag, David G. Mannah, Ramon Massana i Moleraq, Edward A. D. Mitchellac,ai , Christine Morrowaj, Jong Soo Parkak, Jan W. Pawlowskial, Martha J. Powellam, Daniel J. Richteran, Sonja Rueckertao, Lora Shadwickap, Satoshi Shimanoaq, Frederick W. Spiegelap, Guifré Torruella i Cortesar, Noha Youssefas, Vasily Zlatogurskyh,at, Qianqian Zhangau,av. -
Download File
Acta Protozool. (2012) 51: 291–304 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.12.023.0783 PROTOZOOLOGICA Ultrastructure of Diplophrys parva, a New Small Freshwater Species, and a Revised Analysis of Labyrinthulea (Heterokonta) O. Roger ANDERSON1 and Thomas CAVALIER-SMITH2 1Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, U.S.A.; 2Department of Zoology, University of Oxford, South Parks Road, Oxford, UK Abstract. We describe Diplophrys parva n. sp., a freshwater heterotroph, using fi ne structural and sequence evidence. Cells are small (L = 6.5 ± 0.08 μm, W = 5.5 ± 0.06 μm; mean ± SE) enclosed by an envelope/theca of overlapping scales, slightly oval to elongated-oval with rounded ends, (1.0 × 0.5–0.7 μm), one to several intracellular refractive granules (~ 1.0–2.0 μm), smaller hyaline peripheral vacuoles, a nucleus with central nucleolus, tubulo-cristate mitochondria, and a prominent Golgi apparatus with multiple stacked saccules (≥ 10). It is smaller than pub- lished sizes of Diplophrys archeri (~ 10–20 μm), modestly less than Diplophrys marina (~ 5–9 μm), and differs in scale size and morphology from D. marina. No cysts were observed. We transfer D. marina to a new genus Amphifi la as it falls within a molecular phylogenetic clade extremely distant from that including D. parva. Based on morphological and molecular phylogenetic evidence, Labyrinthulea are revised to include six new families, including Diplophryidae for Diplophrys and Amphifi lidae containing Amphifi la. The other new families have dis- tinctive morphology: Oblongichytriidae and Aplanochytriidae are distinct clades on the rDNA tree, but Sorodiplophryidae and Althorniidae lack sequence data. -
The Neomuran Revolution and Phagotrophic Origin of Eukaryotes and Cilia in the Light of Intracellular Coevolution and a Revised Tree of Life
Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press The Neomuran Revolution and Phagotrophic Origin of Eukaryotes and Cilia in the Light of Intracellular Coevolution and a Revised Tree of Life Thomas Cavalier-Smith Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom Correspondence: [email protected] Three kinds of cells exist with increasingly complex membrane-protein targeting: Uni- bacteria (Archaebacteria, Posibacteria) with one cytoplasmic membrane (CM); Negibacte- ria with a two-membrane envelope (inner CM; outer membrane [OM]); eukaryotes with a plasma membrane and topologically distinct endomembranes and peroxisomes. I combine evidence from multigene trees, palaeontology, and cell biology to show that eukaryotes and archaebacteria are sisters, forming the clade neomura that evolved 1.2 Gy ago from a posibacterium, whose DNA segregation and cell division were destabilized by murein wall loss and rescued by the evolving novel neomuran endoskeleton, histones, cytokinesis, and glycoproteins. Phagotrophy then induced coevolving serial major changes making eu- karyote cells, culminating in two dissimilar cilia via a novel gliding–fishing–swimming scenario. I transfer Chloroflexi to Posibacteria, root the universal tree between them and Heliobacteria, and argue that Negibacteria are a clade whose OM, evolving in a green posibacterium, was never lost. THE FIVE KINDS OF CELLS mechanisms of the radical transitions between them. Figure 1 highlights three fundamentally he eukaryotic cell originated by the most different kinds of prokaryote differing great- Tcomplex set of evolutionary changes since ly in membrane topology and membrane and life began: eukaryogenesis. Their complexity wall chemistry. -
The Evolutionary History of Haptophytes and Cryptophytes
Proc. R. Soc. B (2012) 279, 2246–2254 doi:10.1098/rspb.2011.2301 Published online 1 February 2012 The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins Fabien Burki, Noriko Okamoto, Jean-Franc¸ois Pombert and Patrick J. Keeling* Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 Animportantmissingpieceinthepuzzleofhowplastidsspreadacrosstheeukaryotictreeoflifeisarobust evolutionary framework for the host lineages. Four assemblages are known to harbour plastids derived from red algae and, according to the controversial chromalveolate hypothesis, these all share a common ancestry. Phylogenomic analyses have consistently shown that stramenopiles and alveolates are closely related, but hap- tophytes and cryptophytes remain contentious; they have been proposed to branch together with several heterotrophic groups in the newly erected Hacrobia. Here, we tested this question by producing a large expressed sequence tag dataset for the katablepharid Roombia truncata, one of the last hacrobian lineages for which genome-level data are unavailable, and combined this dataset with the recently completed genome of the cryptophyte Guillardia theta to build an alignment composed of 258 genes. Our analyses strongly support haptophytes as sister to the SAR group, possibly together with telonemids and centrohelids. We also confirmed the common origin of katablepharids and cryptophytes, but these lineages were not related to other hacrobians; instead, they branch with plants. Our study resolves the evolutionary position of haptophytes, an ecologically critical component of the oceans, and proposes a new hypothesis for the origin of cryptophytes. Keywords: phylogenomics; plastid; haptophyte; cryptophyte; katablepharid; tree of life 1. INTRODUCTION haptophytes and cryptophytes, altogether forming the Eukaryotes first acquired photosynthesis through endosym- Chromalveolata supergroup [11]. -
Evolution of Rhizaria
Burki et al. BMC Evolutionary Biology 2010, 10:377 http://www.biomedcentral.com/1471-2148/10/377 RESEARCH ARTICLE Open Access Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists Fabien Burki1*, Alexander Kudryavtsev2,3, Mikhail V Matz4, Galina V Aglyamova4, Simon Bulman5, Mark Fiers5, Patrick J Keeling1, Jan Pawlowski6* Abstract Background: Recent phylogenomic analyses have revolutionized our view of eukaryote evolution by revealing unexpected relationships between and within the eukaryotic supergroups. However, for several groups of uncultivable protists, only the ribosomal RNA genes and a handful of proteins are available, often leading to unresolved evolutionary relationships. A striking example concerns the supergroup Rhizaria, which comprises several groups of uncultivable free-living protists such as radiolarians, foraminiferans and gromiids, as well as the parasitic plasmodiophorids and haplosporids. Thus far, the relationships within this supergroup have been inferred almost exclusively from rRNA, actin, and polyubiquitin genes, and remain poorly resolved. To address this, we have generated large Expressed Sequence Tag (EST) datasets for 5 species of Rhizaria belonging to 3 important groups: Acantharea (Astrolonche sp., Phyllostaurus sp.), Phytomyxea (Spongospora subterranea, Plasmodiophora brassicae) and Gromiida (Gromia sphaerica). Results: 167 genes were selected for phylogenetic analyses based on the representation of at least one rhizarian species for each gene. Concatenation of these genes -
Novel Cultured Protists Identify Deep-Branching Environmental DNA Clades of Cercozoa: New Genera Tremula, Micrometopion, Minimassisteria, Nudifila, Peregrinia
Protist, Vol. 162, 332–372, April 2011 http://www.elsevier.de/protis Published online date 4 February 2011 ORIGINAL PAPER Novel Cultured Protists Identify Deep-branching Environmental DNA Clades of Cercozoa: New Genera Tremula, Micrometopion, Minimassisteria, Nudifila, Peregrinia Alexis T. Howea,1, David Bassb,1,2, Josephine M. Scoblea, Rhodri Lewisa, Keith Vickermanc, Hartmut Arndtd, and Thomas Cavalier-Smitha aDepartment of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK bDepartment of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK cDivision of Environmental and Evolutionary Biology, University of Glasgow, Glasgow G12 8QQ, UK dDepartment of General Ecology and Limnology, Zoological Institute, University of Cologne, 50923 Cologne, Germany Submitted April 25, 2010; Accepted September 6, 2010 Monitoring Editor: Michael Melkonian We describe three new orders of filosan Cercozoa, five new deep-branching genera, eight new species of Thaumatomonas, Reckertia, Spongomonas, Rhogostoma, Agitata, Neoheteromita and Paracercomonas, sequence their 18S rDNA, and construct 18S rDNA trees for 148 Cercozoa. Our phylogeny indicates that Filosa were ancestrally gliding flagellates; non-flagellate filose amoebae evolved from them five times independently. The new genera are more closely related to environ- mental DNA sequences than cultured organisms. Tremula longifila, a zooflagellate glider on both flagella (unlike other Cercozoa), is the most divergent filosan (Tremulida ord. n.). Micrometopion nutans is a eukaryote-eating gliding zooflagellate like Metopion and Metromonas. Minimassisteria diva is a widespread trimorphic marine amoeboflagellate granofilosan. Peregrinia clavideferens, a non-testate, scale-bearing, filose amoeba, branches deeply in Thaumatomonadida, which are probably sisters to Spongomonadida. Nudifila producta is a filose amoeboflagellate related to Clautriavia and Marimona- dida (ord.