Canola Section 7 Insect Control

Total Page:16

File Type:pdf, Size:1020Kb

Canola Section 7 Insect Control SOUTHERN SEPTEMBER 2018 CANOLA SECTION 7 INSECT CONTROL INTEGRATED PEST MANAGEMENT | INCIDENCE OF INSECT PESTS IN CANOLA | EARTH MITES | LUCERNE FLEA | SLUGS | DIAMONDBACK MOTH | APHIDS | RUTHERGLEN BUGS | HELICOVERPA PUNCTIGERA (NATIVE BUDWORM) | SNAILS | SOIL PESTS Table of Contents SECTION 7 CANOLA - Insect control Feedback December 2015 SECTION 7 Insect control Insects that can pose a problem in canola include blue oat mites (Penthaleus spp.), Stay informed redlegged earth mites (Halotydeus destructor), Bryobia mites (Bryobia spp.), Balaustium Stay informed mites (Balaustium medicagoense), cutworms, diamondback moth (DBM, Plutella about invertebrate xylostella), aphids, slugs, snails, earwigs, millipedes, slaters, lucerne flea (Sminthurus pest threats viridis) and Rutherglen bugs (RGB, Nysius vinitor). throughout the winter Viruses can also occur in canola, carried by aphids that suck sap from leaves, growing season transferring the virus and causing yield loss and sometimes plant death. Protection by subscribing to against early aphid infestation in seedling canola may reduce the incidence of viruses in SARDI’s PestFacts the crop. South Australia and ® cesar’s PestFacts Gaucho (imidacloprid) is the only seed dressing registered for control of aphids in south eastern. canola. Sowing canola into standing cereal stubble may help to reduce aphid numbers and hence virus infection (Figure 1). 1 Subscribers to PestFacts also benefit from special access to cesar’s extensive Insect Gallery, which can be used to improve identification skills of pest and beneficial insects. More i information SARDI: PestFacts South Australia cesar: PestNotes cesar: PestFacts south eastern GRDC Update Papers: Viral diseases in canola and winter pulses Figure 1: Sowing canola into standing cereal stubble may help to reduce aphid numbers and GRDC Update Papers: hence virus infection. (Photo: Penny Heuston) Emerging insect pests GRDC: ‘Serial pests’ wrap up—lessons from 2014 and 2015 and some research updates CropPro: Canola 1 L Serafin, J Holland, R Bambach, D McCaffery (2005) Canola: northern NSW planting guide. NSW Department of Primary Industries, http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0016/148300/canola- northern-NSW-planting-guide.pdf Know more. Grow more. 1 Table of Contents SECTION 7 CANOLA - Insect control Feedback December 2015 More 7.1 Integrated pest management i information Pests are best managed by using an integrated pest management (IPM) approach. IPM Workshops: Careful planning prior to sowing, followed by regular monitoring of crops after sowing, Decision making for will ensure that potential problems are identified and, if necessary, treated early. insect management in The IPM approach uses a range of management tactics to keep pest numbers below grain crops the level where they cause economic damage. It focuses on natural regulation of pests, IPM Workshops: ‘Best particularly by encouraging natural enemies, and on using broad-spectrum chemicals Bet’ IPM strategy only as a last resort. IPM relies on monitoring the crop regularly, having pests and beneficial insects correctly identified and making strategic control decisions according NIPI: I SPY, Insects of to established damage thresholds. 2 southern Australian broadacre farming systems identification 7.1.1 Key IPM considerations for canola manual Integrated pest management is a year-round approach to pest management and includes ‘off-season’ operations and planning as well as crop management: DEDJTR: Pest insects • Monitor regularly and record numbers of pests and beneficials. Review checking and mites data for population trends. Research paper: Insect • Tolerate early damage. Canola can compensate for early damage by setting new pests buds and pods to replace those damaged by pests. Excessive early damage may cesar: PestFacts south- reduce yield. eastern • Use aphid-selective products (e.g. pirimicarb) to preserve the beneficial insects, potentially reducing the need for follow-up applications. • Biopesticides used in vegetative canola prior to flowering will preserve beneficials. • Nuclear polyhedrosis virus (NPV) is effective against Helicoverpa larvae <7 mm long. • Bacillus thuringiensis (Bt) is effective against DBM and Helicoverpa (<7 mm long). • Consider the use of spray oils where aphid populations are low to moderate (repeat applications required). • Where pests invade from adjacent fields, consider spraying only borders and not the whole field. • Control some pests (e.g. lucerne flea or mites) in preceding pasture or broadleaf crops. • Seed dressings may be the most effective control for some soil insects, as well as the least disruptive to natural enemies. • Consider cultural control or biological control methods (Table 1). 3 2 K Hertel, K Roberts, P Bowden (2013) Insect and mite control in field crops. NSW DPI Management Guide. NSW Department of Primary Industries, http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0005/284576/ Insect-and-mite-control-in-field-crops-2013.pdf 3 IPM guidelines—Canola. National Invertebrate Pest Initiative, http://ipmguidelinesforgrains.com.au/crops/ canola/ Know more. Grow more. 2 Table of Contents SECTION 7 CANOLA - Insect control Feedback December 2015 Table 1: Summary of ‘Best Bet’ IPM strategies 4 Summer–autumn Winter Spring Aphids, particularly green peach aphid (GPA) Assess virus risk. Monitor crops for aphid Monitor trends in aphid and beneficial populations over colonisation from late winter time. High risk where: when daily temperatures start • summer rainfall creates a to rise. High risk where: Brassica green bridge • aphid populations rapidly increasing during early • warm conditions favour early High risk where: flowering–bud formation aphid buildup and timing of • mild winter • forecast is for warm and dry conditions to continue flights • GPA present on vegetative • low or no beneficial activity plants If high risk: • broad-spectrum insecticides (e.g. synthetic • forecast is for warm and • use an insecticide seed pyrethroids (SPs)/organophosphates (OPs) have been dry conditions that favour treatment to manage virus used to control DBM or native budworm) aphid development spread (e.g. Beet western Use thresholds to guide spray decisions, considering crop yellows virus) by GPA • no beneficial activity (predation or parasitism) stage (% flowering) and moisture stress. NSW, SA, WA • manage Brassica weeds and thresholds: 10–50% of plants infested. volunteers (ideally area wide) 3–4 weeks before sowing If spraying: • sow early to promote early • use soft products (pirimicarb) to retain beneficials flowering in spring before • consider border sprays to prevent/delay buildup aphids peak • rotate insecticide groups to reduce selection for resistance in GPA Rutherglen bug (RGB) Remove summer–autumn weeds Increased risk where: Monitor crops from flowering to windrowing–harvest. (especially fleabane, wireweed, and • abundant weed hosts cape weed) in and around fields overwinter allowing build- High risk where: 3–4 weeks before sowing. Monitor up of local populations • hot, dry conditions in spring and early summer force crops for RGB and other pests RGB to move from weed hosts during establishment. • moisture stressed plants (limited compensation potential) High risk if: • long-distance migration into cropping areas • warm conditions in late summer–autumn Use economic thresholds to guide spray decisions, • nearby weeds (in or near crop) considering moisture stress. drying off If spraying, monitor for reinvasion and the need for repeat If spraying: sprays. Large numbers of RGB at harvest may pose a live- • border-spray infested areas of insect contamination risk. crop and nearby host weeds NSW threshold: 10 adults or 20 nymphs per plant (podfill– • monitor for reinvasion and the harvest) need for repeat application Diamondback moth (DBM) Manage Brassica weeds and Monitor crops for moths and Monitor crop with a sweep-net for larvae until maturity. volunteers (ideally area wide) 3–4 larvae from midwinter. weeks before sowing. High risk where: High risk where: • warm and dry conditions favour rapid population High risk where: development • DBM population present in • high summer rainfall creates a • low beneficial activity and/or DBM parasitism (note: mid–late winter green bridge of Brassica hosts this can also happen if SPs/OPs are used) • warm temperatures in (e.g. wild radish, volunteer • moisture-stressed plants canola) mid–late winter • warm summer–autumn • seasonal forecast is for a Use thresholds to guide spray decisions, considering crop conditions favour early DBM warm/dry spring stage and moisture stress. If spraying: buildup • avoid SPs/OPs, which destroy beneficial insects (may If high risk: flare pests) and increase resistance selection in DBM • consider a Bt spray to • consider Bt to control small larvae delay population buildup. Best results where most • consider emamectin or spinetoram to control larger larvae are small and larvae beneficial activity and/ • rotate insecticide groups across seasons or DBM parasitism (e.g. • ensure good spray penetration into the canopy Diadegma sp.) is detected. • monitor after spraying to determine need for repeat application SA threshold: Mid–late flowering: 20 larvae per 10 sweeps Pod maturation: 50 larvae per 10 sweeps 4 ‘Best Bet’ IPM strategy. IPM Workshops, http://ipmworkshops.com.au/wp-content/uploads/BestBet_ Canola2014.pdf Know more. Grow more. 3 Table of Contents SECTION 7 CANOLA - Insect control Feedback December 2015 Summer–autumn Winter Spring Helicoverpa punctigera
Recommended publications
  • Pollination Ecology and Evolution of Epacrids
    Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes.
    [Show full text]
  • Mandalotus Weevils Mandalotus Spp
    Mandalotus weevils Mandalotus spp. click for html version Other common name: Rubble bug Summary: Mandalotus is a large genus of small, cryptic, native Australian weevils. At least ten species attack germinating canola crops in parts of south-eastern Australia. They occur mainly in areas with lighter soil types and are particularly common in Mallee regions. Weevil populations often recur within the same areas of paddocks across seasons. For these pests, understanding historical problem areas/paddocks, monitoring of emerging canola crops and early detection of weevil damage are critical to prevent crop losses. Occurrence: Mandalotus weevils occur in parts of South Australia, Victoria and southern New South Wales, but are not recorded from Western Australia. They are found primarily on ‘rubbly’ or lighter calcareous soil types and are most commonly reported in Mallee regions. Mandalotus weevil populations are resident within paddocks and may recur in the same areas across seasons. The pest status of Mandalotus weevils in broad-acre crops has increased since the late 1990s, coincident with a dramatic expansion in canola production. The genus Mandalotus currently contains approximately 163 described species and a large number of undescribed species. At least ten species are known to damage to crops in south-eastern Australia. At least ten Mandalotus weevil species are damaging to crops in southeastern Australia, and occur most commonly in areas with lighter soil types. Examples of variation between Mandalotus species that attack crops (Source: SARDI) Description: Mandalotus adults are small, flightless weevils approximately 3-5 mm in length. They are round and dull brown in appearance, often resembling a small clod of dirt.
    [Show full text]
  • Important Insect Groups and Identification Keys
    This document is part of a larger publication “I Spy – Insects of Southern Australian Broadacre Farming Systems Identification Manual and Educational Resource” (ISBN 978-0-6482692-1-2) produced under the National Invertebrate Pest Initiative (NIPI) and is subject to the disclaimers and copyright of the full version from which it was extracted. The remaining sections and the full version of this publication, as well as updates and other legal information, can be found at https://grdc.com.au/ by searching for “I SPY”. 2018 © The development of this edition of I SPY has been possible due to the financial support from: Insects of Southern Australian Broadacre Farming Systems Identification Manual and Education Resource Education Resource Manual and Identification Systems Farming Insects Broadacre of Southern Australian SECTION 3 Important Insect Groups and Identification Keys Introduction . 2 Identification keys . 12 Larval forms to main orders/families . 12 Beetle larvae to main families . 13 Moth/butterfly larvae to main families/species . 14 Beetles (adults) to main families/species . 16 Moths (adults) to main families/species . 17 Crop damage pest identification keys . 18 Cereals . 18 Canola . 20 Pulses . 22 Annual pastures and lucerne . 24 Tables Table 3.1 Mouthpart types and associated damage symptoms . 4 Table 3.2 Key characters of insects of agricultural importance . 7 Insects of Southern Australian Broadacre Farming Systems Identification Manual and Education Resource Education Resource Manual and Identification Systems Farming Insects Broadacre of Southern Australian © 2018 1 SECTION 3 IMPORTANT INSECT GROUPS AND IDENTIFICATION KEYS Introduction The key features to use when identifying invertebrates Head to order level are presented in this section .
    [Show full text]
  • Assessing the Invertebrate Fauna Trajectories in Remediation Sites of Winstone Aggregates Hunua Quarry in Auckland
    ISSN: 1179-7738 ISBN: 978-0-86476-417-1 Lincoln University Wildlife Management Report No. 59 Assessing the invertebrate fauna trajectories in remediation sites of Winstone Aggregates Hunua quarry in Auckland by Kate Curtis1, Mike Bowie1, Keith Barber2, Stephane Boyer3 , John Marris4 & Brian Patrick5 1Department of Ecology, Lincoln University, PO Box 85084, Lincoln 7647 2Winstone Aggregates, Hunua Gorge Road, Red Hill 2110, Auckland 3Department of Nature Sciences, Unitec Institute of Technology, PO Box 92025, Auckland 1142. 4Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln 7647. 5Consultant Ecologist, Wildlands, PO Box 33499, Christchurch. Prepared for: Winstone Aggregates April 2016 Table of Contents Abstract……………………………………………………………………………………....................... 2 Introduction…………………………………………………………………………………………………… 2 Methodology…………………………………………………………………………………………………. 4 Results…………………………………………………………………………………………………………… 8 Discussion……………………………………………………………………………………………………. 31 Conclusion…………………………………………………………………………………………………… 37 Recommendations………………………………………………………………………………………. 38 Acknowlegdements……………………………………………………………………………………… 38 References…………………………………………………………………………………………………… 39 Appendix……………………………………………………………………………………………………… 43 1 Abstract This study monitored the invertebrates in restoration plantings in the Winstone Aggregates Hunua Quarry. This was to assess the re-establishment of invertebrates in the restoration planting sites and compare them with unplanted control and mature sites. This study follows on from
    [Show full text]
  • Canola Pests in NSW
    FarmLink Research Report 2019 05Managing early season canola pests in NSW Report Authors Phil Bowden Trial Site Location NSW Introduction Canola is a major cash crop in NSW and has benefits for the cropping rotation as the main break crop for cereals. In many systems, canola often follows pastures, benefiting from the nitrogen fixed by legumes during the pasture phase. This strategy means canola faces high pressures from various arthropod species that commonly inhabit and infest pastures. The widespread change to zero till has also benefited many pest species, or species not previously regarded as pests, whose habitat has been enhanced by the increase in stubble. Canola is subject to attack by more than 30 species of invertebrate pests, although the composition of this pest complex varies between regions. This project consisted of two objectives. The first was to put together the technical material in a new easy-to-read guide for growers and advisors (Managing Early Season Pests of Canola, BMP Guide) and the workshop material (PowerPoint and practical activities). This was done with the CESAR Pestfacts team of Dr Jessica Lye and Julia Severi and the FarmLink extension team (Phil Bowden, Melina Miles, Don McCaffery, Penny Heuston, Peter Watt, Lisa Castleman, Zorica Duric and James Holding). The second objective was a March 2019 roadshow to 15 NSW locations, from at Croppa Creek in the north to Deniliquin in the south. The FarmLink team brought considerable agronomy, pest management and presentation skills to deliver the workshops, crop walks and webinar. Activities included hands-on workshops, paddock walks and discussion groups, giving growers and advisors the opportunity to interact with the presenters and receive the most current and practical pest management advice.
    [Show full text]
  • Beetles in a Suburban Environment: a New Zealand Case Study. The
    tl n brbn nvrnnt: lnd td tl n brbn nvrnnt: lnd td h Idntt nd tt f Clptr n th ntrl nd dfd hbtt f nfld Alnd (4-8 GKhl . : rh At SI lnt rttn Mnt Albrt rh Cntr rvt Alnd lnd • SI lnt rttn prt • EW EAA EAME O SCIEIIC A IUSIA ESEAC 199 O Ο Ν Ε W Ε Ν ttr Grnt rd Τ Ε Ρ Ο Ι Ο Τ ie wi e suo o a oey Sciece eseac Ga om e ew eaa oey Gas oa is suo is gaeuy ackowege Ρ EW EAA SI ' EAME O lnt SCIEIIC A rttn IUSIA Wāhn ESEAC Mn p Makig Sciece Wok o ew eaa KUSCE G eees i a suua eiome a ew eaa case suy e ieiy a saus o Coeoea i e aua a moiie aias o yie Aucka (197-199 / G Kusce — Aucka SI 199 (SI a oecio eo ISS 11-1 ; o3 IS -77-59- I ie II Seies UC 5957(93111 © Cow Coyig uise y SI a oecio M Ae eseac Cee iae ag Aucka ew eaa eceme 199 ie y Geea iig Seices eso ew eaa Etiam pristina in aua Asο i a aua seig summa securitas et futura sweet tranquility and nature ., OISIECE e oe-eeig emoyci eee ioycus uuus (ou o is aie ooca os kaikaea (acycaus acyioies om e yie eee suey aea Aucka ew eaa e wie gaues o e eee ae oe cuses a ass ees is eee as a eic saus o uike a o e uaaa (Seoo as ossi eiece sows a e weei gou was iig i uassic imes way ack i e ea o e iosaus a gymosems moe a 1 miio yeas ago OEWO As a small boy in the 1930s I used to collect butterflies on the South Downs in southern England.
    [Show full text]
  • Fifty Million Years of Beetle Evolution Along the Antarctic Polar Front
    Fifty million years of beetle evolution along the Antarctic Polar Front Helena P. Bairda,1, Seunggwan Shinb,c,d, Rolf G. Oberprielere, Maurice Hulléf, Philippe Vernong, Katherine L. Moona, Richard H. Adamsh, Duane D. McKennab,c,2, and Steven L. Chowni,2 aSchool of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; bDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; cCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; dSchool of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; eAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; fInstitut de Génétique, Environnement et Protection des Plantes, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Université de Rennes, 35653 Le Rheu, France; gUniversité de Rennes, CNRS, UMR 6553 ECOBIO, Station Biologique, 35380 Paimpont, France; hDepartment of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431; and iSecuring Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 6, 2021 (received for review August 24, 2020) Global cooling and glacial–interglacial cycles since Antarctica’s iso- The hypothesis that diversification has proceeded similarly in lation have been responsible for the diversification of the region’s Antarctic marine and terrestrial groups has not been tested. While marine fauna. By contrast, these same Earth system processes are the extinction of a diverse continental Antarctic biota is well thought to have played little role terrestrially, other than driving established (13), mounting evidence of significant and biogeo- widespread extinctions.
    [Show full text]
  • Western Australian Viticulture Industry Biosecurity Plan
    Western Australian Viticulture Industry Biosecurity Plan Version 1.1; August 2017 Contributing Organisations The Western Australian Viticulture Industry Biosecurity Plan was coordinated by the Department of Primary Industries and Regional Development and developed through a partnership approach using government and industry resources and expertise. The development of this plan was made possible by Royalties for Regions Funding. The following organisations and agencies were involved in the review of the plan: • The Department of Primary Industries and Regional Development. • Wines of Western Australia • Table Grapes Western Australia Document citation DPIRD 2017, Western Australian Viticulture Industry Biosecurity Plan, version 1.1. Department of Primary Industries and Regional Development, Western Australia. Copyright © Western Australian Agriculture Authority, 2017 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Primary Industries and Regional Development resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever without prior written permission of the Western Australian Agriculture Authority.
    [Show full text]
  • Invertebrate Monitoring As Measure of Ecosystem Change Mélissa Jane
    Invertebrate monitoring as measure of ecosystem change Mélissa Jane Houghton B. Arts and Sciences M. Environmental Management A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2020 School of Biological Sciences Centre for Biodiversity and Conservation Science Abstract Islands and their biodiversity have high conservation value globally. Non-native species are largely responsible for island extinctions and island ecosystem disruption and are one of the major drivers of global biodiversity loss. Developing tools to effectively measure and understand island ecosystem change is therefore vital to future island conservation management, specifically island communities and the threatened species within them. One increasing utilised island conservation management tool is invasive mammal eradication. Such programs are increasing in number and success, with high biodiversity gains. Typically, it is assumed that the removal of target non-native species equates to management success and in some instances, recovery of a key threatened or charismatic species affected by the pest species are monitored. Yet to date, there are few published studies quantifying post- eradication ecosystem responses. Such monitoring helps to calculate return-on-investment, understand the conservation benefits of management and inform conservation decision- making associated with current and future restoration programs. Not only are there few studies providing empirical evidence of whole-of-ecosystem recovery following mammal eradications,
    [Show full text]
  • Invertebrate Warra
    The DISTRIBUTIONS of INVERTEBRATE species along the The DISTRIBUTIONS of WARRA-MOUNT WELD WARRA-MOUNT INVERTEBRATE species along the WARRA- MOUNT WELD altitudinal transect in altitudinal transect in 2001–2002 2001–2002 and identification of taxa restricted by altitude and identification of taxa restrictedby altitude MICHAEL DRIESSEN and STEPHEN MALLICK (editors) NATURE CONSERVATION REPORT 13/4 Department of Primary Industries, Parks, Water and Environment The distributions of invertebrate species along the Warra-Mount Weld Altitudinal Transect in 2001–2002 and identification of taxa restricted by altitude Reports on invertebrate groups by: Alastair Richardson (Amphipoda) Robert Mesibov (Chilopoda and Diplopoda) Lynne Forster and Simon Grove (Coleoptera) Penelope Greenslade and Singarayer Florentine (Collembola) Richard Bashford and Peter McQuillan (Formicidae) Kevin Bonham (Gastropoda) Michael Driessen (Orthoptera) edited by Michael Driessen and Stephen Mallick Nature Conservation Report 13/4 Department of Primary Industries, Parks, Water and Environment The distributions of invertebrate species along the Warra-Mount Weld Altitudinal Transect in 2001–2002 and identification of taxa restricted by altitude. Edited by Michael M. Driessen and Stephen A. Mallick Nature Conservation Report 13/4 This report was prepared under the direction of the Department of Primary Industries, Parks, Water and Environment (World Heritage Area fauna program). Commonwealth Government funds were provided for this project through the World Heritage Area program.
    [Show full text]
  • Download Full Article 1.3MB .Pdf File
    https://doi.org/10.24199/j.mmv.1964.26.06 8 May 1964 MEM. NAT. MUS. VICT. 26^1963 125 SUMMARY OF ENTOMOLOGICAL WORK OF 0. G. OKE, WITH INFORMATION ON TYPES NOW INCLUDED IN THE NATIONAL MUSEUM OF VICTORIA COLLECTION. By A. Neboiss, Acting Curator of Insects, National Museum of Victoria. Summary. The main objective of this publication is to summarize the whereabouts of type specimens of species described by the late C. G. Oke, who in his papers indicated that the majority are in his collection. Shortly before death, he donated his collection to the National Museum of Victoria. It contained approximately 10,000 specimens of Coleoptera. The sorting of this collection occupied rather according a long time, and even then it was not possible to locate all types, which to publications, should be there. Introduction. A donation of a coleopterous collection, consisting of over 10,000 specimens was received by the National Museum of Victoria on December, 1958. It was presented by Mr. 0. G. Oke, for who was the assistant curator of insects in that institution sonic years until his retirement in 1953. due to The entire colled ion was housed in store-boxes, hut neglected the owners failing health was unfortunately somewhat for heavy insect for the last two or three years. This counted to nest infestation in some store-boxes causing serious damage to he in parts of the collection. The entire material appeared grouped and arranged process of sorting, with only small sections store-boxes were chaotic, in systematic order. A number of all imaginable specimens partly without locality labels, and of these factors presented families in haphazard arraim-eme.it.
    [Show full text]
  • I SPY: Insects of Southern Australian Broadacre Farming Systems
    I spy Insects of Southern Australian Broadacre Farming Systems Identification Manual and Education Resource This document is part of a larger publication “I Spy – Insects of Southern Australian Broadacre Farming Systems Identification Manual and AboutEducational I SPY Resource” (ISBN 978-0-646-53795-5) produced under the © Department of Primary Industries andI Resources spy South This manual was compiled by: AustraliaI SPY (PIRSA)National forms and part the Invertebrate Departmentof the invertebrate of Agriculture Pest Initiativeidentification and (NIPI)Judy Bellati and , isSouth subject Australian to theResearch disclaimers and Food training(DAFWA)and package Westerncopyright developed Australia. of the for broadacrefull version crops from in the whichDevelopment it was Institute extracted. (SARDI); The remaining Insectssouthernsections and of western and Southern the grain full belt version regions Australian ofof Australia.this publication, Peter Broadacre Mangano as ,well Department Farmingas updates of Agriculture and Systems other and Food Copyright protects this publication. Except for purposes Western Australia (DAFWA); I SPY haslegal been information, developed under thecan National be found Invertebrate at: http://www.grdc.com.au/i-spy-manual permittedPest Initiative by theIdentification Copyright (NIPI), a project Act 1968 funded (Commonwealth), through Manual the Grains andPaul Umina Education, CESAR, The University Resource of Melbourne; and no partResearch of this publication and Development (including Corporation images,
    [Show full text]