LPB Studies Performed in Bahía La

Total Page:16

File Type:pdf, Size:1020Kb

LPB Studies Performed in Bahía La Appendix 1. Supplementary material. Information sources: LPB studies performed in Bahía La Paz; NLPB studies performed in ecosystems near to Bahía La Paz; and EE studies performed in other marine areas including ecologically equivalent taxa. Number of As prey As predator Functional group ID Node group LPB NLPB EE LPB NLPB EE 1 Detritus D 7; 9; 20; 6; 41; 51; 1; 5; 59; - - - 2 Phytoplankton Fi 7; 20; 29; 16; 37; 63; 53; 59; 14; - - - 3 Chlorophyceae M1 9; 7; 32; 41; 51; 26; 46; 50; 59; - - - 4 Phaeophyceae M2 9; 32; 47; 41; 64; 46; 50; 57; 59; - - - 5 Rhodophyceae M3 9; 32; 47; 41; 46; 64; 53; 50; - - - 6 Cynophyceae M4 9; 14; 41; - - - - 7 Zooplankton Zoo 7; 9; 19; 20; 23; 34; 37; 60; 18; 38; 53; 56; 59; - - - 8 Radiolaria IN1 9; 16; - - - - 9 Foraminifera IN2 9; 41; 1; 5; - - - 10 Porifera IN3 9; 32; 34; 41; 59; - - - 11 Bryozoa IN4 9; 32; 41; 57; 59; - - - 12 Hydrozoa IN5 9; 20; 41; 50; 65; 39; - - - 13 Anthozoa IN6 9; 41; - - - - 14 Nemertinos IN7 9; 41; - - - - 15 Annelida IN8 7; 8; 9; 21; 36; 42; 38; 59; - - - 16; 27; 42; 46; 51; 16 Polychaeta IN9 7; 9; 25; 26; 37; 48; 59; - - - 64; 17 Sipuncula IN10 - 22; 26; 41; 42; - - - - 18 Mollusca IN11 7; 9; 6; 41; 42; 59; - - - 19 Polyplacophora IN12 9; 41; 26; 63; - - 20 Monoplacophora IN13 - - - 63; - - 21 Bivalvia IN14 9; 26; 41; 51; 64; 1; 5; 59; - - 59; 22 Megapitaria aurantiaca IN15 20; 58; - 20; - - 23 Chione californiensis IN16 - - - 29; - - 24 Gasteropoda IN17 9; 6; 51; 48; 59; 32; - 59; 25 Nudibranchia IN18 9; - - - - - 26 Cephalopoda IN19 6; 9; 1; 4; 5; 24; 41; 68; 3; - - 59; 27 Argonauta spp. IN20 - 4; 5; 68; 55; 3; 31; - - - 28 Octopidae IN21 - - - - 6; - 2; 21; 40; 29 Loliginidae IN22 - - 2; 21; 40; 66; - - 66; 30 Dosidicus gigas IN23 - - - - - 55; 31 Crustacea IN24 - - - - - - 32 Cirripeda IN25 - - - - - - 40; 2; 21; 33 Copepoda IN26 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 34 Ostracoda IN27 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 35 Malacostraca IN28 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 36 Leptostraca IN29 - - 2; 21; 40; 66; - - 66; 37 Stomatopoda IN30 - - - - - 59; 2; 21; 40; 38 Mysidacea IN31 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 39 Amphipoda IN32 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 40 Isopoda IN33 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 41 Tanaidacea IN34 - - 40; 2; 21; 66; - - 66; 2; 21; 40; 42 Cumacea IN35 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 43 Eufausiacea IN35 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 44 Decapoda IN37 - - 2; 21; 40; 66; - - 66; 45 Penaeoidea (shrimps) IN38 - - 7; - 59; 46 Caridea IN39 - - - 7; - - 47 Palinura (lobster) IN40 - - 59; 2; 21; 40; 48 Anomura (hermit crtabs) IN41 - - 2; 21; 40; 66; - - 66; 49 Brachyura IN42 - - - - - 59; 50 Portunidae IN43 - - - - - 51; 59; 51 Echinodermata IN44 - - - - - 59; 52 Echinoidea (sea urchins) IN45 - - - - 59; 53 Tripneustes depressusi IN46 - - - 32; - - 54 Eucidaris thouarsii IN47 - - - 32; - - 2; 21; 40; 55 Asteroidea (starfish) IN48 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 56 Ophiuroidea IN49 - 2; 21; 40; 66; - - 66; Holothuroidea (sea 2; 21; 40; 57 IN50 - - 2; 21; 40; 66; - cucumner) 66; 2; 21; 40; 58 Ascidiacea IN51 2; 21; 40; 66; - - 66; 2; 21; 40; 59 Fish P1 - - 2; 21; 40; 66; - - 66; 60 Gymnothorax castaneus P2 - - - - 41; - 61 Muraena lentiginosa P3 - - - - 41; - 62 Malacotenus hubbsi P4 - - - 9; - - 63 Malacotenus gigas P5 - - - 9; - - 64 Labrisomus xanti P6 - - - 9; - - 65 Paraclinus beebei P7 - - - 9; - - 66 Xenomedea rhodopyga P8 - - - 9; - - 2; 21; 40; 67 Benthosema panamense P9 - - 2; 21; 40; 66; - - 66; 68 Opichthidae P10 - - - - - 48; 69 Ariidae P11 - - - - - 59; 70 Congridae P12 - - - - - 48; 2; 21; 40; 71 Nettastomidae P13 2; 21; 40; 66; - - 66; 2; 21; 40; 72 Pristigenys serrula P14 - - 2; 21; 40; 66; - - 66; 73 Engraulis mordax P15 - - - - - 16; 74 Opisthonema libertate P16 - - - - - 52; 53; 2; 21; 40; 75 Etrumeus teres P17 - - 2; 21; 40; 66; - - 66; 76 Sardinops sagax P18 - - - - - 37; 77 Sardinops caeruleus P19 - - - - - 37; 78 Harengula thrissina P20 - - - - - 37; 2; 21; 40; 79 Lile stolifera P21 - - 2; 21; 40; 66; - - 66; 80 Synodus scituliceps P22 - - - - - 25; 81 Ophidiidae P23 - - - - - 17; 82 Vinciguerria lucetia P24 - - - - 18; 83 Porichthys analis P25 - - 56; - - - 84 Porichthys margaritatus P26 - - 56; - - - 85 Mugil spp. P27 - - 69; - - 5; 1; 86 Mugil curema P28 - - 69; - - - 87 Sphyraenidae P29 - - - - - 48; 2; 21; 40; 88 Hyporhamphus naos P30 - - 2; 21; 40; 66; - - 66; 89 Exocoetus volitans P31 - - 28; - - - 2; 21; 40; 90 Belonidae P32 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 91 Tylosurus pacificus P33 - - 2; 21; 40; 66; - - 66; 92 Adioryx suborbitalis P34 - - - 9; - - 93 Myripristis leiognathus P35 - - - 9; - - 94 Sargocentron suborbitalis P36 - - - 9; - - 95 Fistularia commersonii P37 - - - 9; - - 96 Scorpaena guttata P38 - - - 9; - - 97 Scorpaena russula P39 - - - 9; - - 98 Scorpaena mystes P40 - - - 9; - - 99 Scorpaenodes xyris P41 - - - 54; - - 100 Prionotus ruscarius P42 - - 49; - - - 101 Prionotus stephanophrys P43 - - - - - 10; 102 Epinephelus afer P44 - - - 9; - - 103 Epinephelus labriformis P45 - - - 9; - - 104 Epinephelus analogus P46 - - - 9; - - 105 Mycteroperca rosacea P47 - - - 9; - - 106 Mycteroperca xenarca P48 - - - 9; - - 107 Paranthias colonus P49 - - - 9; - - 108 Serranus fasciatus P50 - - - 9; - - 109 Serranus psittacinus P51 - - - 9; - - 110 Alphestes multiguttatus P52 - - - - 41; - 111 Cephalopholis panamensis P53 - - - - 41; - 112 Apogon retrosella P54 - - - 9; - - 113 Nematistius pectoralis P55 - - - - 41; - 114 Decapterus macarellus P56 - - - - - 38; 115 Caranx caballus P57 - - - - - 26; 64; 2; 21; 40; 116 Caranx caninus P58 - - 2; 21; 40; 66; - - 66; 117 Caranx melampygus P59 - - - - - 39; 118 Caranx sexfasciatus P60 - - - - - 39; 2; 21; 40; 119 Gnathanodon speciosus P61 - - 2; 21; 40; 66; - - 66; 2; 21; 40; 120 Trachinotus rodophus P62 2; 21; 40; 66; - - 66; 2; 21; 40; 121 Seriola lalandi P63 - - 2; 21; 40; 66; - - 66; 122 Coryphaena hippurus P64 - - - - - 68; 123 Hoplopagrus guentherii P65 - - - 9; - - 124 Lutjanus argentiventris P66 - - - 9; 67; - 26; 68; 125 Lutjanus colorado P67 - - - 9; - - 126 Lutjanus novemfasciatus P68 - - - 9; - - 127 Lutjanus peru P69 - - - 20; 65; 61; 62; 128 Lutjanus viridis P70 - - - - 41; - 129 Eucinostomus spp. P71 7; - - 7; - - 130 Anisotremus interruptus P72 9; - - 9; - 26; 2; 21; 40; 131 Anisotremus taeniatus P73 - - 2; 21; 40; 66; - - 66; 132 Haemulon sexfasciatum P74 - - - 9; 41; 26; 133 Haemulon steindachneri P75 - - 28; 7; - - 134 Hemulon flaviguttatum P76 - - - - 41; - 135 Haemulon maculicauda P77 - - - - 41; - 136 Microlepidotus inornatus P78 - - - - 41; - 137 Calamus brachysomus P79 - - - 9; - - 138 Pareques viola P80 - - - 9; 36; 21; - 139 Mulloidichthys dentatus P81 - - - 9; 64; 26; Pseudopeneus 2; 21; 40; 140 P82 - - 2; 21; 40; 66; - - grandisquamis 66; 141 Forcipiger flavissimus P83 - - - 9; - - 142 Johnrandallia nigrirostris P84 - - - 9; 41; - 143 Chaetodon humeralis P85 - - - - 41; - 144 Kyphosus elegans P86 - - - 9; - - 145 Kyphosus vaigiensis P87 - - - 9; 64; - 146 Girella simplicidens P88 - - - 9; - - 147 Holacanthus passer P89 - - - 9; 41; 46; - 148 Pomacanthus zonipectus P90 - - - 9; 46; - 149 Holacanthus clarionensis P91 - - - - 41; - 150 Cirrhitichthys oxycephalus P92 - - - 9; 41; - 151 Cirrhitus rivulatus P93 - - - 9; 41; - 152 Stegastes spp. P94 - - - 9; - - 153 Abudefduf troschelii P95 - - - 9; 41; - 154 Microspathodon dorsalis P96 - - - 9; 41; - 155 Microspathodon bairdii P97 - - - - 41; - 156 Chromis atrilobata P98 - - - 9; 41; - 157 Chromis limbaughi P99 - - - 9; 41; - 158 Stegastes acapulcoensis P100 - - - - 41; - 159 Stegastes rectifraenum P101 - - - - 41; - 160 Stegastes favilatus P102 - - - - 41; - 161 Stegastes leucorus P103 - - - - 41; - 162 Caulolatilus affinis P104 - - - 23; - - 163 Bodianus diplotaenia P105 - - - 9; 41; - 164 Halichoeres dispilus P106 - - - 9; 41; - 165 Halichoeres nicholsi P107 - - - 9; 41; - 166 Halichoeres semicinctus P108 - - - 9; 41; - 167 Halichoeres chierchiae P109 - - - - 41; - 168 Thalassoma lucasanum P110 - - - 9; 41; - 169 Thalassoma grammaticum P111 - - - - 41; - 170 Novaculichthys taeniorus P112 - - - - 41; - 171 Xyrichtys pavo P113 - - - - 41; - 172 Scarus ghobban P114 - - - 9; 41; - 173 Scarus perrico P115 - - - 9; 41; - 174 Scarus rubroviolaceus P116 - - - 9; 41; - 175 Scarus compressus P117 - - - - 41; - 176 Crocodilichthys gracilis P118 - - - - 41; - 177 Hypsoblennius brevipinnis P119 - - - 9; - - 178 Hypsoblennius gentilis P120 - - - 9; - - 179 Hypsoblennius jenkinsi P121 - - - 9; - - 180 Ophioblennius steindachneri P122 - - - 9; 41; - 181 Malacotenus hubbsi P123 - - - - 41; - 182 Malacoctenus gigas P124 - - - - 41; - 183 Labrisomus xanti P125 - - - - 41; - 184 Paraclinus beebei P126 - - - - 41; - 185 Xenomedea rhodopyga P127 - - - - 41; - 186 Acanthemblemaria crockeri P128 - - - 9; - - Acanthemblemaria 187 P129 - - - 9; - - macrospilus 188 Coralliozetus angelicus P130 - - - 9; - - 189 Coralliozetus boehlkei P131 - - - 9; - - 190 Coralliozetus micropes P132 - - - 9; - - 191 Tomicodon boehlkei P133 - - - 9; - - 192 Tomicodon humeralis P134 - - - 9; - - 193 Tomicodon zebra P135 - - - 9; - - 194 Bathygobius ramosus P136 - - - 9; - - 195 Chriolepis zebra P137 - - - 9; - 196 Elacatinus digueti P138 - - - 9; - - 197 Elacatinus puncticulatus P139 - - - 9; - - 198 Gobiosoma chiquita P140 - - - 9; - - 199 Lytripnus dalli P141 - - - 9; - - 200 Chaetodipterus zonatus P142 - - - 9; - - 201 Zanclus cornutus P143 - - - 9; - - 202 Acanthurus xanthopterus P144 - - - 9; 41; - 203 Acanthurus nigricans P145 - - - - 41; - 204 Acanthurus triostegus P146 - - - - 41;
Recommended publications
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • The Global Trade in Marine Ornamental Species
    From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization.
    [Show full text]
  • Best Practices for the Marine Aquarium Trade 1
    Marine Aquarium Trade Best Practices E. Cohen1, G. Hodgson2 & M. Luna2,3 1Sea Dwelling Creatures, Inc. 2Reef Check Foundation, 3Comunidad y Biodiversidad August 5, 2010 Best Practices for the Marine Aquarium Trade 1 CONTRIBUTORS We are grateful to the following people for their important contributions to this manual: Andrea Sáenz Arroyo – Comunidad y Biodiversidad Francisco Javier Fernández Rivera Melo – Comunidad y Biodiversidad Laura Escobosa – Eco Alianza Loreto David Cripe - Monterey Bay Aquarium Jack Jewell - Shark Reef at Mandalay Bay Casino and Resort Gresham Hendee - Reef Nutrition Scott Cohen - Sea Dwelling Creatures, Inc. Brad Remmer - Sea Dwelling Creatures, Inc. We also thank the fishing cooperative “Mujeres del Golfo,” based in Loreto, Mexico, for allowing us to work with them, and to learn from and document their aquarium operations. Best Practices for the Marine Aquarium Trade 2 CONTENTS INTRODUCTION ............................................................................................................................................. 4 FISHERY MANAGEMENT ............................................................................................................................... 5 COLLECTION .................................................................................................................................................. 6 Collection techniques ................................................................................................................................ 6 Decompression ........................................................................................................................................
    [Show full text]
  • Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
    Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶ͹ǡ͹ͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ͹ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ͹͸ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻ͹ͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al.
    [Show full text]
  • SAIA List of Ecologically Unsustainable Species
    SAIA List of Ecologically Unsustainable Species Note The aquarium fishery in Southeast Asia contributes to the destruction of coral reefs. Although illegal, the use of cyanide to stun fish is still widespread, especially for species that seek shelter between coral branches, in holes, and among rocks (like damsels or gobies), but also those occurring at greater depths (e.g., dwarf angels, some anthias) or the ones fetching high prices (like angelfish or surgeonfish). While ideally the dosage is only intended to stun the targeted fish, it is often sufficient to kill the non-targeted invertebrates building the reef. As such, is a destructive fishing method, banned by regulation in Indonesia and the Philippines. Fish caught with cyanide are a product of illegal fishing. According to EU Regulation, the import of products from illegal, unreported, and unregulated (IUU) fishing is prohibited.* Similarly, the Lacey Act, a conservation law in the United States, prohibits trade in wildlife, fish, and plants that have been illegally taken, possessed, transported, or sold. However, enforcing these laws is difficult because there is insufficient control in both the countries of origin and in the markets. Therefore, the likelihood of purchasing a product from illegal fishing is real. Ask your dealer about the origin of the offered animals and insist on sustainable fishing methods! Inadequate or deficient fishery management is another, often underestimated, problem of aquarium fisheries in South East Asia. Many fish come from unreported and unregulated fisheries. For most coral fish species, but also invertebrates, no data exist. The status of local populations and catch volumes are thus unknown.
    [Show full text]
  • Familia De Peces Marinos De Panamá Y Su Correspondiente Número De Especies Familia Cuenta De Especie Fuente Acanthuridae 8 Froese, R
    Familia de peces marinos de Panamá y su correspondiente número de especies Familia Cuenta de Especie Fuente Acanthuridae 8 Froese, R. and D. Pauly. Editors. 2007.FishBase. Achiridae 6 World Wide Web electronic publication. Albulidae 2 www.fishbase.org, version (04/2007).
    [Show full text]
  • 61661147.Pdf
    Resource Inventory of Marine and Estuarine Fishes of the West Coast and Alaska: A Checklist of North Pacific and Arctic Ocean Species from Baja California to the Alaska–Yukon Border OCS Study MMS 2005-030 and USGS/NBII 2005-001 Project Cooperation This research addressed an information need identified Milton S. Love by the USGS Western Fisheries Research Center and the Marine Science Institute University of California, Santa Barbara to the Department University of California of the Interior’s Minerals Management Service, Pacific Santa Barbara, CA 93106 OCS Region, Camarillo, California. The resource inventory [email protected] information was further supported by the USGS’s National www.id.ucsb.edu/lovelab Biological Information Infrastructure as part of its ongoing aquatic GAP project in Puget Sound, Washington. Catherine W. Mecklenburg T. Anthony Mecklenburg Report Availability Pt. Stephens Research Available for viewing and in PDF at: P. O. Box 210307 http://wfrc.usgs.gov Auke Bay, AK 99821 http://far.nbii.gov [email protected] http://www.id.ucsb.edu/lovelab Lyman K. Thorsteinson Printed copies available from: Western Fisheries Research Center Milton Love U. S. Geological Survey Marine Science Institute 6505 NE 65th St. University of California, Santa Barbara Seattle, WA 98115 Santa Barbara, CA 93106 [email protected] (805) 893-2935 June 2005 Lyman Thorsteinson Western Fisheries Research Center Much of the research was performed under a coopera- U. S. Geological Survey tive agreement between the USGS’s Western Fisheries
    [Show full text]
  • Cleaner Shrimp As Biocontrols in Aquaculture
    ResearchOnline@JCU This file is part of the following work: Vaughan, David Brendan (2018) Cleaner shrimp as biocontrols in aquaculture. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5c3d4447d7836 Copyright © 2018 David Brendan Vaughan The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] Cleaner shrimp as biocontrols in aquaculture Thesis submitted by David Brendan Vaughan BSc (Hons.), MSc, Pr.Sci.Nat In fulfilment of the requirements for Doctorate of Philosophy (Science) College of Science and Engineering James Cook University, Australia [31 August, 2018] Original illustration of Pseudanthias squamipinnis being cleaned by Lysmata amboinensis by D. B. Vaughan, pen-and-ink Scholarship during candidature Peer reviewed publications during candidature: 1. Vaughan, D.B., Grutter, A.S., and Hutson, K.S. (2018, in press). Cleaner shrimp are a sustainable option to treat parasitic disease in farmed fish. Scientific Reports [IF = 4.122]. 2. Vaughan, D.B., Grutter, A.S., and Hutson, K.S. (2018, in press). Cleaner shrimp remove parasite eggs on fish cages. Aquaculture Environment Interactions, DOI:10.3354/aei00280 [IF = 2.900]. 3. Vaughan, D.B., Grutter, A.S., Ferguson, H.W., Jones, R., and Hutson, K.S. (2018). Cleaner shrimp are true cleaners of injured fish. Marine Biology 164: 118, DOI:10.1007/s00227-018-3379-y [IF = 2.391]. 4. Trujillo-González, A., Becker, J., Vaughan, D.B., and Hutson, K.S.
    [Show full text]
  • The Molecular Evolution of Rhodopsin in Marine-Derived
    THE MOLECULAR EVOLUTION OF RHODOPSIN IN MARINE-DERIVED AND OTHER FRESHWATER FISHES by Alexander Van Nynatten A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell and Systems Biology University of Toronto © Copyright by Alexander Van Nynatten (2019) THE MOLECULAR EVOLUTION OF RHODOPSIN IN MARINE-DERIVED AND OTHER FRESHWATER FISHES A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell and Systems Biology University of Toronto © Copyright by Alexander Van Nynatten (2019) ABSTRACT Visual system evolution can be influenced by the spectral properties of light available in the environment. Variation in the dim-light specialized visual pigment rhodopsin is thought to result in functional shifts that optimize its sensitivity in relation to ambient spectral environments. Marine and freshwater environments have been shown to be characterized by different spectral properties and might be expected to place the spectral sensitivity of rhodopsin under different selection pressures. In Chapter two, I show that the rate ratio of non- synonymous to synonymous substitutions is significantly elevated in the rhodopsin gene of a South American clade of freshwater anchovies with marine ancestry. This signature of positive selection is not observed in the rhodopsin gene of the marine sister clade or in non-visual genes. ii In Chapter three I functionally characterize the effects of positively selected substitutions occurring on another independent invasion of freshwater made by ancestrally marine croakers. In vitro spectroscopic assays on ancestrally resurrected rhodopsin pigments reveal a red-shift in peak spectral sensitivity along the transitional branch, consistent with the wavelengths of light illuminating freshwater environments.
    [Show full text]
  • Rapid Speciation and Ecological Divergence in the American Seven-Spined Gobies (Gobiidae, Gobiosomatini) Inferred from a Molecular Phylogeny
    Evolution, 57(7), 2003, pp. 1584±1598 RAPID SPECIATION AND ECOLOGICAL DIVERGENCE IN THE AMERICAN SEVEN-SPINED GOBIES (GOBIIDAE, GOBIOSOMATINI) INFERRED FROM A MOLECULAR PHYLOGENY LUKAS RUÈ BER,1,2 JAMES L. VAN TASSELL,3,4 AND RAFAEL ZARDOYA1,5 1Departamento de Biodiversidad y BiologõÂa Evolutiva, Museo Nacional de Ciencias Naturales, Jose GutieÂrrez Abascal 2, 28006 Madrid, Spain 2E-mail: [email protected] 3Department of Biology, Hofstra University, Hempstead, New York 11549 4E-mail: [email protected] 5E-mail: [email protected] Abstract. The American seven-spined gobies (Gobiidae, Gobiosomatini) are highly diverse both in morphology and ecology with many endemics in the Caribbean region. We have reconstructed a molecular phylogeny of 54 Gobio- somatini taxa (65 individuals) based on a 1646-bp region that includes the mitochondrial 12S rRNA, tRNA-Val, and 16S rRNA genes. Our results support the monophyly of the seven-spined gobies and are in agreement with the existence of two major groups within the tribe, the Gobiosoma group and the Microgobius group. However, they reject the monophyly of some of the Gobiosomatini genera. We use the molecular phylogeny to study the dynamics of speciation in the Gobiosomatini by testing for departures from the constant speciation rate model. We observe a burst of speciation in the early evolutionary history of the group and a subsequent slowdown. Our results show a split among clades into coastal-estuarian, deep ocean, and tropical reef habitats. Major habitat shifts account for the early signi®cant accel- eration in lineage splitting and speciation rate and the initial divergence of the main Gobiosomatini clades.
    [Show full text]
  • Inventory, Monitoring and Impact Assessment of Marine Biodiversity in the Seri Indian Territory, Gulf of California, Mexico
    INVENTORY, MONITORING AND IMPACT ASSESSMENT OF MARINE BIODIVERSITY IN THE SERI INDIAN TERRITORY, GULF OF CALIFORNIA, MEXICO by Jorge Torre Cosío ________________________ A Dissertation Submitted to the Faculty of the SCHOOL OF RENEWABLE NATURAL RESOURCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHYLOSOPHY WITH A MAJOR IN RENEWABLE NATURAL RESOURCES STUDIES In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 0 2 Sign defense sheet STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED:____________________________ ACKNOWLEDGMENTS The Consejo Nacional de Ciencia y Tecnología (CONACyT) and the Wallace Research Foundation provided fellowships to the author. The Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (grant FB463/L179/97), World Wildlife Fund (WWF) México and Gulf of California Program (grants PM93 and QP68), and the David and Lucile Packard Foundation (grant 2000-0351) funded this study. Administrative support for part of the funds was through Conservation International – México (CIMEX) program Gulf of California Bioregion and Conservación del Territorio Insular A.C.
    [Show full text]
  • How to Breed Marine Fish for Profit Or
    Contents How To Breed Marine Fish In Your Saltwater Aquarium ...................................... 3 Introduction to marine fish breeding........................................................................ 3 What are the advantages of captive bred fish? ....................................................... 4 Here is a list of marine fish that have now been successfully bred in aquariums ... 5 Breeding different fish in captivity ......................................................................... 17 How fish breed ...................................................................................................... 18 How can you breed fish? ...................................................................................... 18 How do you get marine fish to breed? .................................................................. 19 Critical keys for marine fish breeding success ...................................................... 20 General keys for marine fish breeding success .................................................... 21 How do you induce your marine fish to spawn? ................................................... 22 Opportunistic spawning in your aquarium ............................................................. 23 How marine fish actually spawn ........................................................................... 24 Housing fish larvae; the rearing tank .................................................................... 24 Moving eggs or larvae to the rearing tank is not ideal..........................................
    [Show full text]