Comparison on Growth Dynamic and Indicator Components of Different Germplasms of Lycium Ruthenicum

Total Page:16

File Type:pdf, Size:1020Kb

Comparison on Growth Dynamic and Indicator Components of Different Germplasms of Lycium Ruthenicum COMPARISON ON GROWTH DYNAMIC AND INDICATOR COMPONENTS OF DIFFERENT GERMPLASMS OF LYCIUM RUTHENICUM YEHONG GUO1, QIAN LI1, MEI HUI1, MEIYING LI2 AND AIMIN WANG1 1 College of Agronomy, Institute of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Standardization Production Technology Innovation, Gansu Agricultural University, Lanzhou 730070, Gansu, People’s Republic of China 2 Gansu Endangered Animal Protection Center, State Forestry Administration, Wuwei 733000, Gansu, People’s Republic of China Corresponding author’s email:[email protected]; Cell number:+86 13519652912; Abstract This study report a comparison of growth dynamics, chlorophyll content of fresh leaves, main components content in fruits -including polysaccharides, total flavonoids, anthocyanins and proantho cyanidins, moisture, total ash, and extract for three germplasm samples of Lycium ruthenicum. Plant height, stem diameter, and branch number of the three germplasm samples all increased with time, but the growth rate was different in each case. Among the materials tested, Qinghai strains showed the maximum plant height, on August 31st, while the average height was 104.87 cm. Minqin Qingtuhu strains showed the largest stem diameter, on August 31st, while the mean value was 1.06 cm. However, the branch number of Wuwei, the native wild type Lycium ruthenicum, decreased after August 8th. Minqin had the highest chlorophyll content (39.92 mg/g). Qinghai had the highest chlorophyll b content (chlorophyll b and total chlorophyll were 13.05 mg/g and 51.96 mg/g, respectively). Polysaccharide, anthocyanin content, moisture content, and amount of extract from Qinghai were highest. Total flavonoid and ash contents were highest in Wuwei strains. Lycium ruthenicum introduced from Qinghai were the dominant strains and had better nutritional properties than the other two strain collections. Overall, results indicate that Qinghai Lycium ruthenicum is suitable for planting in the Wuwei area. Key words: Lycium ruthenicum; growth dynamic; index component; introduction cultivation Introduction Lycium ruthenicum Murray is a perennial flowering shrub that belongs to the Solanaceae. It is also called the Su wolfberry (Yuan et al., 2013; Han et al., 2014). Fruits of L. ruthenicum are rich in unique functional ingredients such as procyanidins and anthocyanins (Zheng et al., 2011; Wang et al., 2011), which are effective natural water-soluble free radical scavengers (Wei, 2014; Duan et al., 2015), with anti-cancer effects. Vitamin and fat content in these fruits are also much higher than in fruits of the close relative, Lycium barbarum L. The fruit also contains polysaccharides, flavonoids, and other nutrients (Liu et al., 2014; Liu et al., 2016; Nzeuwa et al., 2017). L. ruthenicum is a valuable plant with antioxidant effects and useful for the prevention and treatment of cardiovascular and cerebrovascular diseases (Dong et al., 2008; Lin et al., 2012; Lv et al., 2014); It may also be helpful in preventing severe myopia and retinal detachment (Jin et al., 2015; Gong et al., 2016; Tang et al., 2017). L. ruthenicum has long attracted considerable attention worldwide owing to its high nutritional value and remarkable effects on human health. However, no breakthrough with regard to development of cultivation technology for the species has been made despite years of research. Present limitations owing to small scale production and germplasm scarcity are still key problems that limit industrial development of L. ruthenicum (Wang et al., 2011; Shen et al., 2012; Wang et al., 2014). In this work, the growth dynamics of the aboveground parts of L. ruthenicum, the anthocyanin content (Guo et al., 2016; Ma et al., 2017), and other indicators were studied to comprehensively evaluate the growth adaptability, fruit active ingredients, and quality advantage of L. ruthenicum (Lin et al., 2013; Li et al., 2017). This work aimed to provide a scientific sound basis for improving ecological adaptability, yield, quality, and standardized production and cultivation guidelines for L. ruthenicum. Our work can thus promote the cultivation of fine varieties and the expansion of the L. ruthenicum industry chain. Materials and Methods Experimental area: The experiment field is located northwest of Wuwei city (Gansu province) on the southwest margin of the Tengger Desert, which is characterized by a typical temperate continental climate. Geographic coordinates are longitude 102°43′-103°22′, latitude 38°05′-38°20′, and elevation 1632 m. The mean annual precipitation is 210 mm, evaporation volume amounts to 2600–3010 mm, and activity accumulated temperature is about 3003 ℃; The day/night temperature difference is 15 ℃ or more; The number of sunshine hours is usually around 3039, the frost-free period is 85–165 d. Light, heat, water, and soil conditions are suitable for L. ruthenicum cultivation. Experimental plant materials: The experiment was conducted from April 2016 through April 2017, at the National Forestry Administration of Gansu Endangered Animal Protection Center and at the General Laboratory of Gansu Agricultural University. Test materials included introduced an L. ruthenicum Qinghai (QH) germplasm collection; Wuwei (WH), a native wild type; and Minqin Qingtuhu (MH), a native wild type. The experiment was laid out as a single-factor randomized block design with three treatments and three replications; the experimental plots were 3 m × 6 m = 18 m2. Ten strains of L. ruthenicum were randomly selected from each district and marked. Mature leaves were sampled at 23-d intervals, placed in preservation bags, and brought back to the laboratory for analysis. Experimental methods: Measurement of aboveground growth index of three different L. ruthenicum germplasm samples: Plant height, stem diameter and branch number were measured at 23-d intervals starting May 22nd. A total of 10 strains single plants were measured with a tape gauge and a Vernier caliper. Determination of chlorophyll in leaves of different germplasm samples of L. ruthenicum: Chlorophyll content was determined and calculated as described by Mu et al. (2005). Polysaccharide extraction and determination: Polysaccharide content was extracted and determined as described by Zhang et al. (2006) and Lin et al. (2013). Preparation of standard curve: Anhydrous glucose (50.0 mg) was accurately weighed and transferred to a volumetric flask (50 mL), after which water was added to bring the solution to volume; 1.0, 2.0, 3.0, 4.0, 5.0 mL aliquots of this solution were drawn and transferred into 50 mL volumetric flasks, and again distilled water was added to bring the solution to volume. Finally, 1.0 mL aliquots of each standard solution were transferred into plug test tubes. Absorbance was determined according to the method described below (2.3.3.2). The standard curve was drawn with absorbance value as the abscissa and concentration (C) as the ordinate, and the regression equation was calculated. Precision experiment: Precise removal of the reference solution 1 mL and was set to 25 mL volumetric flask, respectively. One mL of each test solution was placed in a 10 mL plug test tube. The absorbance value was measured under 365nm and the RSD(Relative standard deviation) value was calculated (n = 5). Reproducibility experiment: Five samples from the same batch of Qinghai L. ruthenicum were accurately weighed. The polysaccharide solution was prepared according to the ultrasonic method, and polysaccharide content was determined and RSD value calculated (n = 5). Stability experiment: Test solution of Qinghai L. ruthenicum was sampled at different times (0.5, 1, 2, 4, and 8 h) to determine the absorbance; the RSD value (n = 5) was calculated in each case. The absorbance value was confirmed to remain constant for at least 8 h. Recovery experiment: One milliliter of a glucose reference solution (1.0 mg/mL) was transferred to a 25 mL volumetric flask. The solution (0.5 mL) was then placed in a 10 mL stoppered tube, to which was added 0.5 mL of a test solution. Absorbance was measured, and average recovery rate and RSD value (n = 5) were calculated. Determination of sample polysaccharide content: One milliliter of test solutions of Wuwei and Minqin Qingtuhu L. ruthenicum samples were placed in 10 mL plug test tubes, respectively. Absorbance was determined and polysaccharide content was calculated according to the following formula: Polysaccharide content (%) = CDf/W × 100 (1) Where, C is the glucose concentration (mg/mL) in the sample; D is the dilution factor for the sample solution; f = 3.17 (conversion factor (Chang et al., 2002); W is the powder quality (mg) of the sample. Extraction and determination of total flavonoid content: Total flavonoids were extracted and reported as reported by Zhang et al. (2006). Determination of procyanidins and anthocyanins: Anthocyanin content was calculated according to the following formula (Wang et al., 2016): MF = (A × V)/(98.2 × M) (2) Where, MF is the content of anthocyanins in the sample (mg/g); A is the absorbance at maximum wavelength; V is volume (mL) × dilution factor; M is the sample weight (g); and the value 98.2 is the average extinction coefficient of anthocyanin. Determination of moisture, total ash, and extract content: Moisture, total ash, and amount of extract were determined according to "Chinese Pharmacopoeia" (2015 edition). Statistical analysis:Excel 2013 software was used to generate images and the Duncan method was used for statistical analysis in SPSS 20.0 software. Results and Discussion
Recommended publications
  • Research Paper a Review of Goji Berry (Lycium Barbarum) in Traditional Chinese Medicine As a Promising Organic Superfood And
    Academia Journal of Medicinal Plants 6(12): 437-445, December 2018 DOI: 10.15413/ajmp.2018.0186 ISSN: 2315-7720 ©2018 Academia Publishing Research Paper A review of Goji berry (Lycium barbarum) in Traditional Chinese medicine as a promising organic superfood and superfruit in modern industry Accepted 3rd December, 2018 ABSTRACT Traditional Chinese Medicine (TCM) has been used for thousands of years by different generations in China and other Asian countries as foods to promote good health and as drugs to treat disease. Goji berry (Lycium barbarum), as a Chinese traditional herb and food supplement, contains many nutrients and phytochemicals, such as polysaccharides, scopoletin, the glucosylated precursor, amino acids, flaconoids, carotenoids, vitamins and minerals. It has positive effects on anitcancer, antioxidant activities, retinal function preservation, anti-diabetes, immune function and anti-fatigue. Widely used in traditional Chinese medicine, Goji berries can be sold as a dietary supplement or classified as nutraceutical food due to their long and safe traditional use. Modern Goji pharmacological actions improve function and enhance the body ,s ability to adapt to a variety of noxious stimuli; it significantly inhibits the generation and spread of cancer cells and can improve eyesight and increase reserves of muscle and liver glycogens which may increase human energy and has anti-fatigue effect. Goji berries may improve brain function and enhance learning and memory. It may boost the body ,s adaptive defences, and significantly reduce the levels of serum cholesterol and triglyceride, it may help weight loss and obesity and treats chronic hepatitis and cirrhosis. At Mohamad Hesam Shahrajabian1,2, Wenli present, they are considered functional food with many beneficial effects, which is Sun1,2 and Qi Cheng1,2* why they have become more popular recently, especially in Europe, North America and Australia, as they are considered as superfood with highly nutritive and 1 Biotechnology Research Institute, antioxidant properties.
    [Show full text]
  • PLANT SCIENCE TODAY, 2021 Vol 8(2): 278–282 HORIZON E-Publishing Group ISSN 2348-1900 (Online)
    PLANT SCIENCE TODAY, 2021 Vol 8(2): 278–282 HORIZON https://doi.org/10.14719/pst.2021.8.2.919 e-Publishing Group ISSN 2348-1900 (online) RESEARCH COMMUNICATION Growth and development of Lycium barbarum L. in the environment of Samarkand in Uzbekistan Nodira Nurullayeva*, Khislat Haydarov, Zebiniso Umurzakova & Dilfuza Safarova Department of Botany, Samarkand State University, Samarkand, 140163, Uzbekistan *Email: [email protected] ARTICLE HISTORY ABSTRACT Received: 17 August 2020 Shrub Lycium barbarum belongs of the family Solanaceae, is introduced and does not occur naturally in Accepted: 05 March 2021 Uzbekistan. Despite its numerous medicinal characteristics, in Uzbekistan, its growth and development Published: 01 April 2021 have not been studied. Therefore, our primary goal was to study the germination of seeds, stages of ontogenesis and some morphological signs of fruits. The highest seed germination rate of 74±0,12% as at the 20 ˚C. When studying ontogenesis, plant development was divided into ten stages and four KEYWORDS periods. The pre-reproductive period lasted 1-2 years. The reproductive period was determined for 2-3 seed germination; morphology; ontogeny; morphological variability years from the beginning of the growing season. For several months, an analysis of the changes in the of the fruit morphological characteristics of the fruits of L. barbarum was carried out and in May, relatively large ripened fruits were determined (length 2.18 ± 0.09, width 1.14 ± 0.11). Introduction arginine (Arg) (4-9). The L. barbarum is considered to have immune-enhancing, anti-aging, cancer Since the beginning of the 21st century, wolfberries prevention and anti-oxidative properties.
    [Show full text]
  • Goji Who? Morphological and DNA Based Authentication of a “Superfood”
    fpls-09-01859 December 16, 2018 Time: 13:5 # 1 ORIGINAL RESEARCH published: 18 December 2018 doi: 10.3389/fpls.2018.01859 Goji Who? Morphological and DNA Based Authentication of a “Superfood” Sascha Wetters*, Thomas Horn and Peter Nick Molecular Cell Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany “Goji” (Lycium barbarum and Lycium chinense) is a generic name for medical plants with a long historical background in the traditional Chinese medicine. With the emerging trend of “Superfoods” several years ago, Goji berries soon became an established product in European countries and not only are the most popular product of traditional Chinese medicine outside of China but to this day one of the symbols of the entire “Superfood” trend. However, since Goji is an umbrella term for different plant species that are closely related, mislabeling and adulterations (unconsciously or purposely) are possible. We carefully verified the identity of Goji reference plant material based on morphological traits, mainly floral structures of several inflorescences of each individual, Edited by: Jiang Xu, in order to create a robust background for the downstream applications that were used China Academy of Chinese Medical on those reference plants and additionally on commercial Goji products. We report Sciences, China morphological and molecular based strategies for the differentiation of Lycium barbarum Reviewed by: and Lycium chinense. The two different Goji species vary significantly in seed size, Rosemary White, Commonwealth Scientific with an almost double average seed area in Lycium chinense compared to Lycium and Industrial Research Organisation barbarum. Differences could be traced on the molecular level as well; using the psbA- (CSIRO), Australia Hugo J.
    [Show full text]
  • Medicinal Value of Wolfberry (Lycium Barbarum
    Journal of Medicinal Plants Studies 2019; 7(4): 90-97 ISSN (E): 2320-3862 ISSN (P): 2394-0530 Medicinal value of wolfberry (Lycium barbarum L.) NAAS Rating: 3.53 JMPS 2019; 7(4): 90-97 © 2019 JMPS Received: 04-05-2019 Suvd-Erdene Byambasuren, Junru Wang and Gokul Gaudel Accepted: 06-06-2019 Abstract Suvd-Erdene Byambasuren Wolfberry is a kind of the multipurpose medicinal plant. In world the genus Lycium (family Solanaceae) Shaanxi Key Laboratory of has eighty species. Lycium species hold diverse varieties of nutrients and bioactive elements, for example Natural Products & Chemical vitamins, carotenoids, flavonoids, polyunsaturated fatty acids, free amino acids and elemental Biology, College of Chemistry & Pharmacy, Northwest A&F components. It appears very effective in treatment of liver, eyes and many other diseases. It has a plenty University, 22 Xinong Road, of several pharmacological and therapeutic actions such as antioxidant, immunomodulatory, anti- Yangling 712100, Shaanxi, China inflammatory, anti-atherogenic, anti-fibrotic, anti-mutagenic, anti-tumer, anti-radiation, anti-fatigue, anti- aging, anti-stress, anti-yeast, cardio protective and wound healing. Wolfberry has attracted attention Junru Wang world over due to its nutritional and medicinal values. This review paper highlights the importance of Shaanxi Key Laboratory of Lycium plant parts, i.e., Fruit, flower, leaves, bark and root for curing, also encourages the upcoming Natural Products & Chemical researchers to work on wonder species. Biology, College of Chemistry & Pharmacy, Northwest A&F Keywords: Wolfberry, pharmacological, Lycium, medicine University, 22 Xinong Road, Yangling 712100, Shaanxi, China Introduction Gokul Gaudel The plant Lycium barbarum (belonging to the Solanaco family) has many names, but its (1) Key Laboratory of English name is Wolfberry, in China it is called “Gouqizi”.
    [Show full text]
  • Lycium Barbarum L.) Et Son Utilisation Dans La Santé Humaine
    Université de Lille Faculté de pharmacie de Lille Année Universitaire 2018/2019 THESE POUR LE DIPLOME D'ETAT DE DOCTEUR EN PHARMACIE Soutenue publiquement le 10/01/2019 Par M. LEBEAU Pierre-Antoine _____________________________ La baie de Goji (Lycium barbarum L.) et son utilisation dans la santé humaine _____________________________ Membres du jury : Président : DUPONT Fréderic ; Professeur des Universités Assesseur(s) : RIVIERE Cécile ; Maitre de Conférences Membre(s) extérieur(s) : VERMES Philippe ; Docteur en Pharmacie LANGRENE Olivia ; Docteur en Pharmacie 1 Faculté de Pharmacie de Lille 3, rue du Professeur Laguesse - B.P. 83 - 59006 LILLE CEDEX 03.20.96.40.40 - : 03.20.96.43.64 http://pharmacie.univ-lille2.fr Université de Lille Président : Jean-Christophe CAMART Premier Vice-président : Damien CUNY Vice-présidente Formation : Lynne FRANJIÉ Vice-président Recherche : Lionel MONTAGNE Vice-président Relations Internationales : François-Olivier SEYS Directeur Général des Services : Pierre-Marie ROBERT Directrice Générale des Services Adjointe : Marie-Dominique SAVINA Faculté de Pharmacie Doyen : Bertrand DÉCAUDIN Vice-Doyen et Assesseur à la Recherche : Patricia MELNYK Assesseur aux Relations Internationales : : Philippe CHAVATTE Assesseur à la Vie de la Faculté et aux Relations avec le Monde Professionnel : Thomas MORGENROTH Assesseur à la Pédagogie : Benjamin BERTIN Assesseur à la Scolarité : Christophe BOCHU Responsable des Services : Cyrille PORTA Liste des Professeurs des Universités - Praticiens Hospitaliers Civ. NOM Prénom Laboratoire Mme ALLORGE Delphine Toxicologie M. BROUSSEAU Thierry Biochimie M. DÉCAUDIN Bertrand Pharmacie Galénique M. DEPREUX Patrick ICPAL M. DINE Thierry Pharmacie clinique Mme DUPONT-PRADO Annabelle Hématologie M. GRESSIER Bernard Pharmacologie M. LUYCKX Michel Pharmacie clinique M. ODOU Pascal Pharmacie Galénique M.
    [Show full text]
  • Lycium Barbarum and Polygonum Multiflorum)
    ANTIOXIDANT PROPERTIES OF TRADITIONAL CHINESE MEDICINAL HERBS (Lycium barbarum AND Polygonum multiflorum) WITH DIFFERENT PREPARATION METHODS By CHENG KAH MUN A project report submitted to the Department of Agricultural and Food Science Faculty of Science Universiti Tunku Abdul Rahman in partial fulfilment of the requirements for the degree of Bachelor of Science (Hons) Food Science August 2017 ABSTRACT ANTIOXIDANT PROPERTIES OF TRADITIONAL CHINESE MEDICINAL HERBS (Lycium barbarum AND Polygonum multiflorum) WITH DIFFERENT PREPARATION METHODS Cheng Kah Mun In this study, phytochemicals of two traditional Chinese medicinal herbs (Lycium barbarum and Polygonum multiflorum) were extracted using two different preparation methods, which were decoction and grounded methods. The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity of each crude extract and their respective positive control (commercial extract pulveres of L. barbarum and P. multiflorum) were also examined quantitatively using the Folin-Ciocalteu reagent method, aluminium chloride colorimetric method, and DPPH scavenging activity assay, respectively. There were significant differences (P < 0.05) between the results obtained from the same herb prepared by different methods in TPC, TFC, and DPPH assay. The crude extract of P. multiflorum prepared by decoction method possessed the highest phenolic (70.21 ± 5.18 mg GAE/g DW) and flavonoids (168.57 ± 6.36 mg QE/g DW) contents among all the extracts. Results also showed that the crude extract of P. multiflorum prepared by decoction method exhibited the highest radical scavenging activity (EC50 = 24.22 ± 0.14 µg/mL) among all the extracts with references to ascorbic acid (EC50 = 9.29 ± 0.04 µg/mL).
    [Show full text]
  • Genome Sequencing Survey and Identi Cation of SSR of Lycium
    Genome sequencing survey and identication of SSR of Lycium ruthenicum Defang Zhang ( [email protected] ) Research Keywords: Lycium ruthenicum, genome size, heterogeneity percentage, repetitive sequence Posted Date: April 24th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-23380/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/12 Abstract Background Lycium ruthenicum had high economic and ecological role in western China due to the high content of active substances and tolerance to drought and salinity stress. But its genomic information was lack, which seriously affected the next breeding and forestation. We surveyed the genomic size and developed SSRs of L. ruthenicum based on the next generation sequencing technology to lay a theoretical foundation for next genomic research in this study. Results Totally 451,721,828 bp raw data were generated, 4,596,439 scaffolds were obtained after assembly. The estimated genome size of L. ruthenicum was 3,249.33 Mb, the heterozygosity rate was 1.13%, and repeat rate was 73.13%. Totally 958,619 SSRs were identied. The average SSRs density were 163.95 SSRs/Mb, the dinucleotide repeat motif accounted for larger proportion in all motifs, the AT/AT, AC/GT and AG/CT are dominant repeat motifs in L. ruthenicum genome. Conclusion These results could lay a foundation for next genome sequencing. And SSR data could alarge the molecular resources for L. ruthenicum and relatives, such as genetic mapping, QTL and population genetic study. Background Lycium ruthenicum Murrray (Solanaceae), mainly distributed in Qinghai Provinces, Ningxia and Xinjiang autonomous regions in China (Chinese ora,2006).
    [Show full text]
  • OAEC Mother Garden Nursery 2020 Perennial Plants (Annual
    OAEC Mother Garden Nursery 2020 Perennial Plants (Annual vegetables, herbs, etc listed at the end) A B C D E 1 Latin Name Common Name/Variety ready by June 6 Size Price 2 Culinary Herbs (perennial) 3 Acorus gramineus Licorice Sweet Flag yes 4", gallon 4.25, 9.25 4 Acorus gramineus 'Pusillus Minimus Aureus' Dwarf Golden Sweet Flag yes 4", gallon 4.25, 9.25 5 Acorus gramineus variegatus Grassy Sweet Flag yes 4", gallon 4.25, 9.25 6 Agastache foeniculum Blue Anise Hyssop yes 3" 3.00 7 Agastache foeniculum White Anise Hyssop yes 3" 3.00 8 Agastache scrophulariifolia Giant Anise Hyssop not available now gallon 9.25 9 Allium schoenoprasum Chives yes 4" 4.25 10 Allium tuberosum Garlic Chives/Chinese Chives yes - new! 4" 4.25 11 Aloysia citrodora Lemon Verbena not available now gallon 9.25 12 Alpinia galanga Greater Galangal yes gallon 9.25 13 Alpinia officinarum Lesser Galangal not available now 9.25 14 Armoracia rusticana Horseradish not available now gallon 9.25 15 Artemisia dracunculus French Tarragon yes gallon 9.25 16 Clinopodium douglasii Yerba Buena not available now 9.25 17 Clinopodium vulgare Wild Basil not available now 9.25 18 Cryptotaenia japonica Mitsuba yes gallon 9.25 19 Cucurma longa Turmeric not available now 9.25 20 Cymbopogon flexuosus East Indian Lemongrass yes gallon 9.25 21 Ephedra nevadensis Mormon Tea yes gallon 20.00 22 Eriocephalus africanus African Rosemary yes gallon 9.25 23 Foeniculum vulgare Copper/BronZe Fennel yes - new! 3" 3.00 24 Hyssopus officinalis Hyssop Blue-Flowered not available now gallon 9.25 25 Hyssopus officinalis Hyssop Pink-Flowered yes gallon 9.25 26 Hyssopus officinalis Hyssop White-Flowered not available now gallon 9.25 27 Ilex paraguariensis Yerba Mate not available now 2 gallon 25.00 28 Lavandula angustifolia English Lavender not available now gallon 9.25 29 Lavandula angustifolia Pink Perfume Lavender not available now gallon 9.25 30 Lavandula dentata var.
    [Show full text]
  • Phytonyms and Plant Knowledge in Sven Hedin's
    GLIMPSES OF LOPTUQ FOLK BOTANY: PHYTONYMS AND PLANT KNOWLEDGE IN SVEN HEDIN’S HERBARIUM NOTES FROM THE LOWER TARIM RIVER AREA AS A SOURCE FOR ETHNOBIOLOGICAL RESEARCH Patrick Hällzon, Sabira Ståhlberg and Ingvar Svanberg Uppsala University This interdisciplinary study discusses the vernacular phytonyms and other ethnobiological aspects of vegetation in the Loptuq (Loplik) habitat on the Lower Tarim River. This small Turkic-speaking group lived as fisher-foragers in the Lopnor (Lop Lake) area in East Turkestan, now the Xinjiang Uyghur Autonomous Region in China. Information about this unique group, and especially the folk knowledge of plants in the area, is scant. In 1900, Swedish explorer Sven Hedin collected plant voucher specimens for the Swedish Natural History Museum in Stockholm. He noted local names on herbarium labels, thus providing modern researchers a rare glimpse into the Loptuq world. As the traditional way of life is already lost and the Loptuq language almost extinct, every trace of the former culture is of significance when trying to understand the peculiarities of human habitats and survival in arid areas. The ethnobiological analysis can further contribute to other fields, such as climate change, and define the place of the Loptuq on the linguistic and cultural map of Central Asia. LANGUAGE AND FOLK BOTANY Language reflects not only cultural reality and the way of life, but also human habitat and the physical environment.1 Rich biodiversity-based knowledge about the surrounding landscape and its biota (the living organisms of a specific region) has usually constituted an essential component of traditional and pre-industrial societies across the world (Lévi-Strauss 1962; Svanberg et al.
    [Show full text]
  • Effect of Outgroup on Phylogeny Reconstruction: a Case Study of Family Solanaceae
    Pure Appl. Biol., 8(4): 2213-2227, December, 2019 http://dx.doi.org/10.19045/bspab.2019.80167 Research Article Effect of outgroup on phylogeny reconstruction: a case study of family Solanaceae Ishrat Jamil*, Syeda Qamarunnisa and Abid Azhar The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi-Pakistan *Corresponding author’s email: [email protected] Citation Ishrat Jamil, Syeda Qamarunnisa and Abid Azhar. Effect of outgroup on phylogeny reconstruction: a case study of family Solanaceae. Pure and Applied Biology. Vol. 8, Issue 4, pp2213-2227. http://dx.doi.org/10.19045/bspab.2019.80167 Received: 06/02/2019 Revised: 10/07/2019 Accepted: 15/07/2019 Online First: 23/07/2019 Abstract In phylogenetic analysis, direction of ingroup evolution depends on outgroup, therefore, the determination of correct outgroup is very critical. In the current study, effect of different outgroups on tree topology within Solanaceae was examined using Bayesian analysis. Different outgroups were selected from closely related families of Solanaceae (Convolvulaceae, Hydrolaceae and Montiniaceae), distantly related families (Acantaceae, Scrophularaceae and Boraginaceae) and more distantly related group (Gymnospermic families; Cycadaceae and Pinaceae). Single taxa from each family, multiple taxa from a single genus and multiple taxa from different genera of the same sister family were selected to evaluate their resolving power. The single taxa of a genus belong to Convolvulaceae produced more consistent result as compared to the multiple taxa of the single genus. In addition, single taxa produced similar tree topology as produced by multiple taxa of different genera. Among single taxa, Evolvulus pilosus, observed to be the best outgroup because it resolved the associations between genus, tribes, and subfamilies within Solanaceae followed by Humbertiama dagascariensis.
    [Show full text]
  • Goji (Fruits of Lycium Spp.): Traditional Uses, Quality Assessment, and Value Chain Analysis
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Goji (fruits of Lycium spp.): traditional uses, quality assessment, and value chain analysis Yao, Ruyu Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-152761 Dissertation Published Version Originally published at: Yao, Ruyu. Goji (fruits of Lycium spp.): traditional uses, quality assessment, and value chain analysis. 2018, University of Zurich, Faculty of Science. Goji (Fruits of Lycium spp.): Traditional Uses, Quality Assessment, and Value Chain Analysis Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Ruyu Yao aus der V.R. China Promotionskommission Prof. Dr. Peter H. Linder (Vorsitz) Dr. Caroline S. Weckerle Prof. Dr. Michael Heinrich Prof. Dr. Elena Conti Prof. Dr. Chunlin Long (externes Gutachten) Prof. Dr. Salvador Cañigueral (externes Gutachten) Zürich, 2018 ACKNOWLEDGMENTS This PhD project is financially supported by Chinese Government Scholarship (No. 201306910001) and Claraz Schenkung. These funds are sincerely acknowledged. I meet the long winter of Zurich for the fifth time. The botanical garden likes the cold but lively Swiss winter, by when it is embraced by the odorous witch hazels (Hamamelis mollis Oliver), dressed up by the shy snowdrops (Leucojum spp.), and kissed by the passionate saffron (Crocus spp.). Everything is just as beautiful as the the first sight we met, however, for me, it is the time to leave. To bid farewell to some place where you wrote lots of stories (include but not limited to the academic articles) is never comfortable, and gratitudes are always to the fullest to the nice people there.
    [Show full text]
  • 2. LYCIUM Linnaeus, Sp. Pl. 1: 191. 1753. 枸杞属 Gou Qi Shu Shrubs, Often Armed with Thorns, Pubescent with Simple Hairs
    Flora of China 17: 301–304. 1994. 2. LYCIUM Linnaeus, Sp. Pl. 1: 191. 1753. 枸杞属 gou qi shu Shrubs, often armed with thorns, pubescent with simple hairs. Leaves usually fasciculate on short shoots, petiolate or subsessile; leaf blade small, plane or linear-cylindric, entire. Inflorescences solitary or fasciculate axillary flowers; peduncle absent. Flowers pedicellate. Calyx campanulate, 2- or 5-dentate or -lobed. Corolla funnelform or campanulate; tube short, limb usually (4- or) 5-lobed, enlarged at throat. Stamens inserted high in corolla tube, included or exserted; anthers oblong-elliptic, dehiscing longitudinally. Ovary 2-locular; ovules 1 to many. Style slender. Berry red, orange, yellow, or black, globose, ovoid, or oblong, fleshy or juicy; fruiting calyx slightly enlarged. Seeds numerous or few, compressed, pitted. About 80 species: South America, S Africa, a few in temperate Europe and Asia; seven species in China. Lycium cochinchinense Loureiro (Fl. Cochinch. 1: 134. 1790) is excluded from this treatment. According to Merrill (Trans. Amer. Acad. n.s., 24: 401. 1935), “it is clearly not a Lycium and is not a solanaceous plant.” While this name, with its early publication date, may have priority for some Chinese plant, it is unlikely to affect names in Lycium. 1a. Berry purple-black, globose; thorns occurring singly at nodes; leaves narrowly linear, fleshy; corolla tube 3–4×as long as limb and lobes; filaments pubescent .................................................................................................................... 1. L. ruthenicum 1b. Berry red or orange-yellow, elongated or sometimes globose; thorns usually clustered with leaves and flowers, rarely lacking; leaves broader, linear-lanceolate, lanceolate, or elliptic, fleshy or not; corolla tube ca.
    [Show full text]