Demands, Solutions, and Improvements for Linux Filesystem Security
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomy of Linux Kernel Vulnerability Solutions
Taxonomy of Linux Kernel Vulnerability Solutions Serguei A. Mokhov Marc-Andre´ Laverdiere` Djamel Benredjem Computer Security Laboratory Computer Security Laboratory Computer Security Laboratory Concordia Institute for Concordia Institute for Concordia Institute for Information Systems Engineering Information Systems Engineering Information Systems Engineering Concordia University, Concordia University, Concordia University, Montreal, Quebec, Canada Montreal, Quebec, Canada Montreal, Quebec, Canada Email: [email protected] Email: ma [email protected] Email: d [email protected] Abstract—This paper presents the results of a case study on C programs in general, as well as statistics on their relative software vulnerability solutions in the Linux kernel. Our major importance. We also introduce a new methodology to track contribution is the introduction of a classification of methods used the patch solving a security issue based only on the contents to solve vulnerabilities. Our research shows that precondition validation, error handling, and redesign are the most used of the security advisory. methods in solving vulnerabilities in the Linux kernel. This The paper is organized as follows: we examine previous contribution is accompanied with statistics on the occurrence work that was done regarding Linux and C security in of the different types of vulnerabilities and their solutions that Section II, followed by a description of the methodology we observed during our case study, combined with example used in order to obtain the solutions to the vulnerabilities in source code patches. We also combine our findings with existing programming guidelines to create the first security-oriented Section III. Afterwards, in Section IV, we show our results, coding guidelines for the Linux kernel. -
High Velocity Kernel File Systems with Bento
High Velocity Kernel File Systems with Bento Samantha Miller, Kaiyuan Zhang, Mengqi Chen, and Ryan Jennings, University of Washington; Ang Chen, Rice University; Danyang Zhuo, Duke University; Thomas Anderson, University of Washington https://www.usenix.org/conference/fast21/presentation/miller This paper is included in the Proceedings of the 19th USENIX Conference on File and Storage Technologies. February 23–25, 2021 978-1-939133-20-5 Open access to the Proceedings of the 19th USENIX Conference on File and Storage Technologies is sponsored by USENIX. High Velocity Kernel File Systems with Bento Samantha Miller Kaiyuan Zhang Mengqi Chen Ryan Jennings Ang Chen‡ Danyang Zhuo† Thomas Anderson University of Washington †Duke University ‡Rice University Abstract kernel-level debuggers and kernel testing frameworks makes this worse. The restricted and different kernel programming High development velocity is critical for modern systems. environment also limits the number of trained developers. This is especially true for Linux file systems which are seeing Finally, upgrading a kernel module requires either rebooting increased pressure from new storage devices and new demands the machine or restarting the relevant module, either way on storage systems. However, high velocity Linux kernel rendering the machine unavailable during the upgrade. In the development is challenging due to the ease of introducing cloud setting, this forces kernel upgrades to be batched to meet bugs, the difficulty of testing and debugging, and the lack of cloud-level availability goals. support for redeployment without service disruption. Existing Slow development cycles are a particular problem for file approaches to high-velocity development of file systems for systems. -
Cryptographic File Systems
Cryptographic Filesystems Background and Implementations for Linux and OpenBSD Background ● Loop device primer ● Keys, cipher modes, salting, key hashing ● Journaling file systems and encrypted swap ● Offset, sizelimit, hard/soft block size paramters explained ● Issues with software suspend Loopback Primer /dev/hda1 losetup /dev/loop0 myloop.dat /dev/loop0 /dev/hda2 losetup /dev/loop1 \ /dev/hda2 Filesystem with various /dev/loop1 files and directories Loopback Primer G76g(*gF *^tF0OB( 6g)%)f5( /dev/loop0 *&(*6bP( Dear Bob, this is the message ● The loopback device supports cryptographic transforms ● Knowing the key reveals a filesystem within a normal file (or block device) Keys ● Encryption with user supplied key ● Encryption with hashed key – rmd160, sha256, sha384, sha512, ... ● Using multiple keys (typically 64) – every sector (512b) uses different key Basic block cipher modes ● Currently only ECB (Electronic Code Book) and CBC (Cipher Block Chaining) widely supported ● ECB directly encipher plaintext – Same plaintext block always encrypts to same ciphertext. Is considered weak. ● CBC uses the previous block as IV – Basically solves ECB's dictionary problem – Only provides very limited integrity Key iterations and salt ● Key can be hashed 1000 times – significantly slows down brute force attack on password ● Salt is a string appended to the password – slows down brute force attack on password – poor man's two factor authentication Journaling ● Fine on device backed loop device ● Avoid on file backed loop devices – The VM can write -
Comparison of Kernel and User Space File Systems
Comparison of kernel and user space file systems — Bachelor Thesis — Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg Vorgelegt von: Kira Isabel Duwe E-Mail-Adresse: [email protected] Matrikelnummer: 6225091 Studiengang: Informatik Erstgutachter: Professor Dr. Thomas Ludwig Zweitgutachter: Professor Dr. Norbert Ritter Betreuer: Michael Kuhn Hamburg, den 28. August 2014 Abstract A file system is part of the operating system and defines an interface between OS and the computer’s storage devices. It is used to control how the computer names, stores and basically organises the files and directories. Due to many different requirements, such as efficient usage of the storage, a grand variety of approaches arose. The most important ones are running in the kernel as this has been the only way for a long time. In 1994, developers came up with an idea which would allow mounting a file system in the user space. The FUSE (Filesystem in Userspace) project was started in 2004 and implemented in the Linux kernel by 2005. This provides the opportunity for a user to write an own file system without editing the kernel code and therefore avoid licence problems. Additionally, FUSE offers a stable library interface. It is originally implemented as a loadable kernel module. Due to its design, all operations have to pass through the kernel multiple times. The additional data transfer and the context switches are causing some overhead which will be analysed in this thesis. So, there will be a basic overview about on how exactly a file system operation takes place and which mount options for a FUSE-based system result in a better performance. -
Cryptographic File Systems Performance: What You Don't Know Can Hurt You Charles P
Cryptographic File Systems Performance: What You Don't Know Can Hurt You Charles P. Wright, Jay Dave, and Erez Zadok Stony Brook University Appears in the proceedings of the 2003 IEEE Security In Storage Workshop (SISW 2003) Abstract interact with disks, caches, and a variety of other com- plex system components — all having a dramatic effect Securing data is more important than ever, yet cryp- on performance. tographic file systems still have not received wide use. In this paper we perform a real world performance One barrier to the adoption of cryptographic file systems comparison between several systems that are used is that the performance impact is assumed to be too high, to secure file systems on laptops, workstations, and but in fact is largely unknown. In this paper we first moderately-sized file servers. We also emphasize multi- survey available cryptographic file systems. Second, programming workloads, which are not often inves- we perform a performance comparison of a representa- tigated. Multi-programmed workloads are becoming tive set of the systems, emphasizing multiprogrammed more important even for single user machines, in which workloads. Third, we discuss interesting and counterin- Windowing systems are often used to run multiple appli- tuitive results. We show the overhead of cryptographic cations concurrently. We expect cryptographic file sys- file systems can be minimal for many real-world work- tems to become a commodity component of future oper- loads, and suggest potential improvements to existing ating systems. systems. We have observed not only general trends with We present results from a variety of benchmarks, an- each of the cryptographic file systems we compared but alyzing the behavior of file systems for metadata op- also anomalies based on complex interactions with the erations, raw I/O operations, and combined with CPU operating system, disks, CPUs, and ciphers. -
New Methods in Hard Disk Encryption
New Methods in Hard Disk Encryption Clemens Fruhwirth <[email protected]> Institute for Computer Languages Theory and Logic Group Vienna University of Technology July 18, 2005 Abstract This work investigates the state of the art in hard disk cryptography. As the choice of the cipher mode is essential for the security of hard disk data, we discuss the recent cipher mode developments at two standardisation bodies, NIST and IEEE. It is a necessity to consider new developments, as the most common cipher mode – namely CBC – has many security problems. This work devotes a chapter to the analysis of CBC weaknesses. Next to others, the main contributions of this work are (1) efficient algorithms for series of multiplications in a finite field (Galois Field), (2) analysis of the security of password-based cryptography with respect to low entropy attacks and (3) a design template for secure key management, namely TKS1. For the latter, it is assumed that key management has to be done on regular user hardware in the absence of any special security hardware like key tokens. We solve the problems arising from magnetic storage by introducing a method called anti-forensic information splitter. This work is complemented by the presentation of a system implementing a variant of TKS1. It is called LUKS and it was developed and implemented by the author of this work. Contents Preface v 1 Introduction 1 2 Design ingredients 3 2.1 The many faces of n ........................ 3 2.2 Galois Field arithmetic . 4 2.3 Algorithms for GF(2η)....................... 9 2.4 Sequences of multiplications in GF(2η) . -
Software Defined Storage Overview
Software Defined Storage Overview August 2019 Juan Jose Floristan Cloud Specialist Solution Architect 1 AGENDA 1. Why Red Hat Storage? 2. Red Hat Ceph Storage 3. Red Hat Gluster Storage 4. Red Hat Openshift Container Storage 2 Why Red Hat Storage? 3 Why Red Hat Storage? STORAGE IS EVOLVING TRADITIONAL STORAGE OPEN, SOFTWARE-DEFINED STORAGE Complex proprietary silos Standardized, unified, open platforms USER USER USER USER ADMIN Control Plane (API, GUI) ADMIN ADMIN ADMIN Software Ceph Gluster +++ Open Source Custom GUI Custom GUI Custom GUI Proprietary Hardware Proprietary Hardware Proprietary Hardware Standard Computers and Disks Proprietary Proprietary Proprietary Standard Hardware Software Software Software 4 Why Red Hat Storage? WHY THIS MATTERS PROPRIETARY Common, Lower cost, standardized supply chain HARDWARE off-the-shelf hardware SCALE-UP Scale-out Increased operational flexibility ARCHITECTURE architecture HARDWARE-BASED Software-based More programmability, agility, INTELLIGENCE intelligence and control CLOSED DEVELOPMENT Open development More flexible, well-integrated PROCESS process technology 5 Why Red Hat Storage? A RISING TIDE Software-Defined Storage is leading SDS-P MARKET SIZE BY SEGMENT $1,395M a shift in the global storage industry, Block Storage File Storage $1,195M with far-reaching effects. Object Storage $1,029M Hyperconverged “By 2020, between 70%-80% of unstructured $859M data will be held on lower-cost storage managed $705M $592M by SDS.” $475M Innovation Insight: Separating Hype From Hope for Software-Defined Storage “By 2019, 70% of existing storage array products will also be available as software-only versions.” 2013 2014 2015 2016 2017 2018 Innovation Insight: Separating Hype From Hope for Software-Defined Storage 2019 Source: IDC 6 Why Red Hat Storage? THE RED HAT STORAGE MISSION To offer a unified, open software-defined storage portfolio that delivers a range of data services for next generation workloads, thereby accelerating the transition to modern IT infrastructures. -
Efficient Cache Attacks on AES, and Countermeasures
J. Cryptol. (2010) 23: 37–71 DOI: 10.1007/s00145-009-9049-y Efficient Cache Attacks on AES, and Countermeasures Eran Tromer Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, G682, Cambridge, MA 02139, USA [email protected] and Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel Dag Arne Osvik Laboratory for Cryptologic Algorithms, Station 14, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland dagarne.osvik@epfl.ch Adi Shamir Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel [email protected] Communicated by Lars R. Knudsen Received 20 July 2007 and revised 25 June 2009 Online publication 23 July 2009 Abstract. We describe several software side-channel attacks based on inter-process leakage through the state of the CPU’s memory cache. This leakage reveals memory access patterns, which can be used for cryptanalysis of cryptographic primitives that employ data-dependent table lookups. The attacks allow an unprivileged process to attack other processes running in parallel on the same processor, despite partitioning methods such as memory protection, sandboxing, and virtualization. Some of our meth- ods require only the ability to trigger services that perform encryption or MAC using the unknown key, such as encrypted disk partitions or secure network links. Moreover, we demonstrate an extremely strong type of attack, which requires knowledge of nei- ther the specific plaintexts nor ciphertexts and works by merely monitoring the effect of the cryptographic process on the cache. We discuss in detail several attacks on AES and experimentally demonstrate their applicability to real systems, such as OpenSSL and Linux’s dm-crypt encrypted partitions (in the latter case, the full key was recov- ered after just 800 writes to the partition, taking 65 milliseconds). -
Lamassu: Storage-Efficient Host-Side Encryption
Lamassu: Storage-Efficient Host-Side Encryption Peter Shah and Won So NetApp Inc. Abstract moves downstream through the stack. This strategy can Many storage customers are adopting encryption solu- take many forms, such as built-in application encryption, tions to protect critical data. Most existing encryption OS-based file system encryption or VM-level encryp- solutions sit in, or near, the application that is the source tion [3, 19, 22]. We term any encryption that runs on of critical data, upstream of the primary storage system. the same physical hardware as the primary application Placing encryption near the source ensures that data re- data-source encryption. mains encrypted throughout the storage stack, making it In general, existing data-source encryption solutions easier to use untrusted storage, such as public clouds. interfere with content-driven data management features Unfortunately, such a strategy also prevents down- provided by storage systems — in particular, deduplica- stream storage systems from applying content-based fea- tion. If a storage controller does not have access to the tures, such as deduplication, to the data. In this paper, we keys used to secure data, it cannot compare the contents present Lamassu, an encryption solution that uses block- of encrypted data to determine which sections, if any, are oriented, host-based, convergent encryption to secure duplicates. data, while preserving storage-based data deduplication. In this paper, we present an alternative encryption Unlike past convergent encryption systems, which typi- strategy that provides the benefits of upstream encryp- cally store encryption metadata in a dedicated store, our tion while preserving storage-based data deduplication system transparently inserts its metadata into each file’s on downstream storage. -
E:\Ghcstop\AESOP Ghcstop Doc\Kernel\Ramdisk Howto\060405-Aesop2440-Ramdisk-Howto.Txt 200 06-04-06, 12:43:53오후 Aesop 2440 Kernel 2.6.13 Ramdisk Howto
파일: E:\ghcstop\AESOP_ghcstop_doc\kernel\ramdisk_howto\060405-aesop2440-ramdisk-howto.txt 200 06-04-06, 12:43:53오후 aesop 2440 kernel 2.6.13 ramdisk howto - 20060406(까먹고 민방위 못간날...^^) by godori 1. kernel설정을 다음과 같이 바꾼다. Device Drivers -> Block device쪽을 보시면.... Linux Kernel v2.6.13-h1940-aesop2440 Configuration qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq lqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq Block devices qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqk x Arrow keys navigate the menu. <Enter> selects submenus --->. x x Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, x x <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> x x for Search. Legend: [*] built-in [ ] excluded <M> module < > module x x lqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqk x x x < > XT hard disk support x x x x <*> Loopback device support x x x x < > Cryptoloop Support x x x x <*> Network block device support x x x x < > Low Performance USB Block driver x x x x <*> RAM disk support x x x x (8) Default number of RAM disks x x x x (8192) Default RAM disk size (kbytes) x x x x [*] Initial RAM disk (initrd) support x x x x () Initramfs source file(s) x x x x < > Packet writing on CD/DVD media x x x x IO Schedulers ---> x x x x < > ATA over Ethernet support x x x x x x x x x x x x x x x x x x x mqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqj x tqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqu x <Select> < Exit > < Help > x mqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqj 여기서 8192 는 ramdisk size 입니다 . 만드는 ramdisk 크기에 맞게끔 바꿔주시고... File systems쪽에서 Linux Kernel v2.6.13-h1940-aesop2440 Configuration qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq lqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq File systems qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqk x Arrow keys navigate the menu. -
Comparison of Disk Encryption Software 1 Comparison of Disk Encryption Software
Comparison of disk encryption software 1 Comparison of disk encryption software This is a technical feature comparison of different disk encryption software. Background information Name Developer First released Licensing Maintained? ArchiCrypt Live Softwaredevelopment Remus ArchiCrypt 1998 Proprietary Yes [1] BestCrypt Jetico 1993 Proprietary Yes BitArmor DataControl BitArmor Systems Inc. 2008-05 Proprietary Yes BitLocker Drive Encryption Microsoft 2006 Proprietary Yes Bloombase Keyparc Bloombase 2007 Proprietary Yes [2] CGD Roland C. Dowdeswell 2002-10-04 BSD Yes CenterTools DriveLock CenterTools 2008 Proprietary Yes [3][4][5] Check Point Full Disk Encryption Check Point Software Technologies Ltd 1999 Proprietary Yes [6] CrossCrypt Steven Scherrer 2004-02-10 GPL No Cryptainer Cypherix (Secure-Soft India) ? Proprietary Yes CryptArchiver WinEncrypt ? Proprietary Yes [7] cryptoloop ? 2003-07-02 GPL No cryptoMill SEAhawk Proprietary Yes Discryptor Cosect Ltd. 2008 Proprietary Yes DiskCryptor ntldr 2007 GPL Yes DISK Protect Becrypt Ltd 2001 Proprietary Yes [8] cryptsetup/dmsetup Christophe Saout 2004-03-11 GPL Yes [9] dm-crypt/LUKS Clemens Fruhwirth (LUKS) 2005-02-05 GPL Yes DriveCrypt SecurStar GmbH 2001 Proprietary Yes DriveSentry GoAnywhere 2 DriveSentry 2008 Proprietary Yes [10] E4M Paul Le Roux 1998-12-18 Open source No e-Capsule Private Safe EISST Ltd. 2005 Proprietary Yes Dustin Kirkland, Tyler Hicks, (formerly [11] eCryptfs 2005 GPL Yes Mike Halcrow) FileVault Apple Inc. 2003-10-24 Proprietary Yes FileVault 2 Apple Inc. 2011-7-20 Proprietary -
D3.5 Design and Implementation of P2P Infrastructure
INNOVATION ACTION H2020 GRANT AGREEMENT NUMBER: 825171 WP3 – Vision Materialisation and Technical Infrastructure D3.5 – Design and implementation of P2P infrastructure Document Info Contractual Delivery Date: 31/12/2019 Actual Delivery Date: 31/12/2019 Responsible Beneficiary: INOV Contributing Beneficiaries: UoG Dissemination Level: Public Version: 1.0 Type: Final This project has received funding from the European Union’s H2020 research and innovation programme under the grant agreement No 825171 ` DOCUMENT INFORMATION Document ID: D3.5: Design and implementation of P2P infrastructure Version Date: 31/12/2019 Total Number of Pages: 36 Abstract: This deliverable describes the EUNOMIA P2P infrastructure, its design, the EUNOMIA P2P APIs and a first implementation of the P2P infrastructure and the corresponding APIs made available for the remaining EUNOMIA modules to start integration (for the 1st phase). Keywords: P2P design, P2P infrastructure, IPFS AUTHORS Full Name Beneficiary / Organisation Role INOV INESC INOVAÇÃO INOV Overall Editor University of Greenwich UoG Contributor REVIEWERS Full Name Beneficiary / Organisation Date University of Nicosia UNIC 23/12/2019 VERSION HISTORY Version Date Comments 0.1 13/12/2019 First internal draft 0.6 22/12/2019 Complete draft for review 0.8 29/12/2019 Final draft following review 1.0 31/12/2019 Final version to be released to the EC Type of deliverable PUBLIC Page | ii H2020 Grant Agreement Number: 825171 Document ID: WP3 / D3.5 EXECUTIVE SUMMARY This deliverable describes the P2P infrastructure that has been implemented during the first phase of the EUNOMIA to provide decentralized support for storage, communication and security functions. It starts with a review of the main existing P2P technologies, where each one is analysed and a selection of candidates are selected to be used in the project.