UTAH PESTS Staff
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bright-White Beetle Scales Optimise Multiple Scattering of Light
OPEN Bright-White Beetle Scales Optimise SUBJECT AREAS: Multiple Scattering of Light OPTICAL PHYSICS Matteo Burresi1,2, Lorenzo Cortese1,3, Lorenzo Pattelli1,3, Mathias Kolle4, Peter Vukusic5, OPTICS AND PHOTONICS Diederik S. Wiersma1,3, Ullrich Steiner6 & Silvia Vignolini6,7 BIOLOGICAL PHYSICS BIOPHYSICS 1European Laboratory for Non-linear Spectroscopy (LENS), Universita` di Firenze, 50019 Sesto Fiorentino (FI), Italy, 2Istituto Nazionale di Ottica (CNR-INO), Largo Fermi 6, 50125 Firenze (FI), Italy, 3Universita` di Firenze, Dipartimento di Fisica e Astronomia, 50019 Sesto Fiorentino (FI), Italy, 4School of Engineering and Applied Sciences Harvard University 29 Oxford St., Received Cambridge, MA, 02138, USA and Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 28 January 2014 Massachusetts Avenue, Cambridge, MA 02139, USA, 5Thin Film Photonics, School of Physics, Exeter University, Exeter EX4 4QL, UK, 6Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K, Accepted 7Department of Chemistry, University of Cambridge Lensfield Road, Cambridge CB2 1EW UK. 4 July 2014 Published Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering 15 August 2014 in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma Correspondence and beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense requests for materials scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free should be addressed to path reported to date for low-refractive-index systems. -
Proceedings of the Thirty-Sixth Meeting of the Canadian Forest Genetics Association
PROCEEDINGS OF THE THIRTY-SIXTH MEETING OF THE CANADIAN FOREST GENETICS ASSOCIATION PART 1 Minutes and Member’s Reports PART 2 Symposium Applied Forest Genetics – Where do we want to be in 2049? Génétique forestière appliquée - où voulons-nous être en 2049? COMPTES RENDUS DU TRENTE-SIXIÈME CONGRÈS DE L’ASSOCIATION CANADIENNE DE GÉNÉTIQUE FORESTIÈRE 1re PARTIE Procès-verbaux et rapports des membres 2e PARTIE Colloque National Library of Canada cataloguing in publication data Canadian Forest Genetics Association. Meeting (36th : 2019 : Lac Delage, QC) Proceedings of the Thirty-sixth Meeting of the Canadian Forest Genetics Association Includes preliminary text and articles in French. Contents: Part 1 Minutes and Member's Reports. Part 2 Symposium CODE TO BE DETERMINED CODE TO BE DETERMINED 1 Forest genetics – Congresses. 2 Trees – Breeding – Congresses. 3 Forest genetics – Canada – Congresses. I Atlantic Forestry Centre II Title: Applied Forest Genetics – Where do we want to be in 2049? III Title: Proceedings of the Thirty-sixth Meeting of the Canadian Forest Genetics Association Données de catalogage avant publication de la Bibliothèque nationale du Canada L'Association canadienne de génétique forestière. Conférence (36e : 2019 : Lac Delage, QC) Comptes rendus du trente-sixième congrès de l'Association canadienne de génétique forestière Comprend des textes préliminaires et des articles en français. Sommaire : 1re partie Procès-verbaux et rapports des membres. 2e partie Colloque CODAGE CODAGE 1 Génétiques forestières – Congrès. 2 Arbres – Amélioration – Congrès. 3 Génétiques forestières – Canada – Congrès. I Centre de foresterie de l’Atlantique II Titre : Génétique forestière appliquée - où voulons-nous être en 2049? III Titre : Comptes rendus du trente-sixième congrès de l'Association canadienne de génétique forestière PROCEEDINGS OF THE THIRTY-SIXTH MEETING OF THE CANADIAN FOREST GENETICS ASSOCIATION PART 1 Minutes and members’ reports Lac Delage, Quebec August 19 – 23, 2019 Editors D.A. -
An Introduction to Biomimetic Photonic Design
feaTureS biomimeTiC PHoToniC deSign An introduction to biomimetic photonic design I S.M. Luke and P. Vukusic - DOI: 10.1051/epn/2011302 I College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QL, UK. nature uses a large number of optical Highly saturated colours, such as those found on the phenomena to create a vast array of coloured blue wings of many Morpho butterflies, oen result appearances. The brightest colours and most from coherent scattering [1]. is arises when light is scattered from periodically-arranged discrete changes dazzling optical effects are often those which in refractive index. A strongly scattered reflection maxi - are created through the use of intricate mum arises at a given wavelength and therefore with a microstructures that manipulate light. distinctive colour. e colour depends on the periodi - Bio-inspired designs are increasingly city, the refractive indices of the materials and the leading to improvements in diverse arrays angles of illumination and observation. Multilayer structures that offer such periodicity are of products for which manipulation of common in nature. ey are oen found in brightly light and appearance is important. coloured beetle species such as the buprestid C hrysoch - roa raja (shown in figure 1) [2]. In this species a 1.5 µm layer on the wing casing surface contains alternating he natural world exhibits many examples of layers of two materials, each with a thickness of efficient design and specialised functionality. approximately 100 nm. e characteristic reflection Scientists have long sought inspiration from from this structure is the bright green colour seen at T the natural world; biomimetic design is res - normal incidence. -
PP Elm Seed Bug, Arocatus Melanocephalus: an Exotic Invasive
Elm seed bug, Arocatus melanocephalus: an exotic invasive pest new to the U.S. Idaho State Department of Agriculture In summer 2012, the elm seed bug (ESB), an invasive insect new to the U.S., was first identified from specimens collected in Ada and Canyon counties in Idaho. During 2013 it was found to have spread to Elmore, Gem, Owyhee, Payette, and Washington counties as well as Malheur County, Oregon. Commonly distributed in south-central Europe, ESB feeds primarily on the seeds of elm trees, although they have also been collected from oak and linden trees in Europe. The insect does not damage trees or buildings, nor does it present any threat to human health. However, due to its habit of entering houses and other buildings in large numbers to escape the summer heat and later to Adult elm seed bugs overwinter, it can be a significant nuisance to ISDA photo homeowners. Elm seed bug biology Elm seed bugs spend the winter as hibernating adults, mate during the spring and lay eggs on elm trees. Immature ESB feed on elm seeds from May through June becoming adults by early summer. Elm seed bugs are most noticeable in springtime as overwintering ESB begin to emerge inside buildings and try to escape, during hot periods in the summer when ESB attempt to enter buildings to get away from the heat, and in the autumn when they enter buildings to overwinter. When disturbed or crushed, the bugs produce Current reported range of Elm Seed Bug in the US an unpleasant odor. Map from USDA APHIS PPQ PP Photos courtesy of Charles Olsen, USDA APHIS PPQ – Bugwood.org Identification Elm seed bug belongs to the order Hemiptera (the “true bugs”) and is related to the boxelder bug and stink bug. -
Scarabaeidae, Melolonthinae, Melolonthini) with Consideratiton of Divisions of the Subtribe Melolonthina
Elytra, Tokyo, 38(2): 239ῌ247, November 13, 2010 Taxonomic Study on the Genus Psilopholis BG:CH@: (Scarabaeidae, Melolonthinae, Melolonthini) with Consideratiton of Divisions of the Subtribe Melolonthina Takeshi MATSUMOTO Nishi-miyahara 2ῌ6ῌ20ῌ102, Yodogawa-ku, Osaka, 532ῌ0004 Japan Abstract AnewspeciesofthegenusPsilopholis is described from the moun- tainous areas of Borneo, East Malaysia under the name of P. gigantea. Tricholepis vestita is synonymized with Psilopholis grandis,thetypespeciesofthisgenus.So-called generic characters of the genus Psilopholis are scrutinized. Division of the subtribe Melolonthina into two lineages by only the di#erence in the number of segments of the antennal club is not sustainable. The subtribe Melolonthina cannot be reasonably divided into the two lineages by any other morphological characters. Up to the present, the melolonthine genus Psilopholis has been monotypical, represented by the species, Psilopholis grandis alone, which has been known from the Malay Peninsula to Borneo via Java. In the course of my activities for collecting SE Asian melolonthines, I have accumulated a series of remarkably large specimens closely resembling the type species from Borneo. Lately, I searched for accounts that fit for these large specimens, but was unable to find any. I have noticed from these scrutinies that this species belongs to a new species. Therefore, I decided to describe it herein. Because neither BG:CH@: nor the succeeding researchers pointed out the generic characteristics in detail, I would like to describe them at this place. Furthermore, I will synonymize a S=6GE’s species with P. grandis. The subtribe Melolonthina has been divided into two lineages only by the di#erence in the number of segments of the antennal club by European and American researchers as in L¨D7A &SB:I6C6 (2006) without adequate discussions. -
Investigation of the Selective Color-Changing Mechanism
www.nature.com/scientificreports OPEN Investigation of the selective color‑changing mechanism of Dynastes tityus beetle (Coleoptera: Scarabaeidae) Jiyu Sun1, Wei Wu2, Limei Tian1*, Wei Li3, Fang Zhang3 & Yueming Wang4* Not only does the Dynastes tityus beetle display a reversible color change controlled by diferences in humidity, but also, the elytron scale can change color from yellow‑green to deep‑brown in specifed shapes. The results obtained by focused ion beam‑scanning electron microscopy (FIB‑SEM), show that the epicuticle (EPI) is a permeable layer, and the exocuticle (EXO) is a three‑dimensional photonic crystal. To investigate the mechanism of the reversible color change, experiments were conducted to determine the water contact angle, surface chemical composition, and optical refectance, and the refective spectrum was simulated. The water on the surface began to permeate into the elytron via the surface elemental composition and channels in the EPI. A structural unit (SU) in the EXO allows local color changes in varied shapes. The refectance of both yellow‑green and deep‑brown elytra increases as the incidence angle increases from 0° to 60°. The microstructure and changes in the refractive index are the main factors that infuence the process of reversible color change. According to the simulation, the lower refectance causing the color change to deep‑brown results from water infltration, which increases light absorption. Meanwhile, the waxy layer has no efect on the refection of light. This study lays the foundation to manufacture engineered photonic materials that undergo controllable changes in iridescent color. Te varied colors of nature have a great visual impact on human beings. -
Workshop on Supercritical Fluids and Energy
workshop on supercritical fl uids and energy ESTA OBRA FOI IMPRESSA EM PAPEL RECICLATO 75% PRÉ-CONSUMO, 25 % PÓS-CONSUMO, A PARTIR DE IMPRESSÕES E TIRAGENS SUSTENTÁVEIS. CUMPRIMOS NOSSO PAPEL NA EDUCAÇÃO E NA PRESERVAÇÃO DO MEIO AMBIENTE. workshop on supercritical fl uids and energy Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil) Workshop em fluídos supercríticos e energia / M. Angela A. Meireles e Erdogan Kiran. (organizadores). – Campinas, SP : Mercado de Letras, 2013. – (Mercado de Letras Temas) ISBN 978-85-7591-301-7 1. Biocombustíveis 2. Energia – Fontes alternativas 3. Fluídos supercríticos I. Meireles, M. Angela A. II. Kiran, Erdogan III. Série. 13-12026 CDD-541.34 Índices para catálogo sistemático: 1. Fluídos supercríticos e energia 541.34 Capa e Projeto Gráfico: Vande Rotta Gomide Layout e Editoração: André S. Tavares da Silva Revisão: Gabriela Lopes Adami DIREITOS RESERVADOS PARA A LÍNGUA INGLESA: © MERCADO DE LETRAS EDIÇÕES E LIVRARIA LTDA. Rua João da Cruz e Souza, 53 Telefax: (19) 3241-7514 – CEP 13070-116 Campinas SP Brasil www.mercado-de-letras.com.br [email protected] 1a edição dezembro/2013 IMPRESSÃO DIGITAL IMPRESSO NO BRASIL Esta obra está protegida pela Lei 9610/98. É proibida sua reprodução parcial ou total sem a autorização prévia do Editor. O infrator estará sujeito às penalidades previstas na Lei. CONTENTS Preface. 7 Presentation . .13 Goals . 15 Committee . 17 OVERVIEW/PLENARy LECTURES ON ThE ROLE OF SUPERCRITICAL FLUIDS AND TEChNOLOGy (SCFs&T) State of SCFs&T — Future Directions and Progress in Commercialization. .19 SCFs&T for Bio-based Fuel processes . -
Evolutionary-Optimized Photonic Network Structure in White Beetle Wing Scales
Evolutionary-Optimized Photonic Network Structure in White Beetle Wing Scales Bodo D. Wilts#,∗, Xiaoyuan Sheng∗, Mirko Holler, Ana Diaz, Manuel Guizar-Sicairos, J¨orgRaabe, Robert Hoppe, Shu-Hao Liu, Richard Langford, Olimpia D. Onelli, Duyu Chen, Salvatore Torquato, Ullrich Steiner, Christian G. Schroer, Silvia Vignolini, and Alessandro Sepe# Whiteness arises from the random scattering of inci- of the diffusion approximation is limited, since sin- dent light from disordered structures.[1] Opaque white gle scattering elements are difficult to be identified.[7] materials have to contain a sufficiently large num- To fully understand the correlation between the struc- ber of scatterers and therefore usually require thicker, ture and (optical) properties of complex materials, the material-rich nanostructures than structural color aris- detailed real-space structure in combination with a ing from the coherent interference of light.[2,3] In na- suitable model unravels this relationship. In optics, ture, bright white appearance arises from the dense these include finite-element modeling (FEM) or finite- arrays of pterin pigments in pierid butterflies,[4] gua- difference time-domain (FDTD) techniques, which can nine crystals in spiders,[5] or leucophore cells in the be employed for materials with arbitrary structures.[11] [6] flexible skin of cuttlefish. A striking example of such Distortion-free three-dimensional imaging of biolog- whiteness is found in the chitinous networks of white ical tissue with sub-micrometer resolution in a large [7{9] beetles, -
And Raglius Alboacuminatus (Goeze, 1778), and a Range Extension for a Third Species, Rhyparochromus Vulgaris (Schilling, 1829) (Hemiptera: Heteroptera)
!74 J. ENTOMOL. SOC. BRIT. COLUMBIA 113, DECEMBER 2016 NATURAL HISTORY AND OBSERVATIONS First Canadian records for two invasive seed-feeding bugs, Arocatus melanocephalus (Fabricius, 1798) and Raglius alboacuminatus (Goeze, 1778), and a range extension for a third species, Rhyparochromus vulgaris (Schilling, 1829) (Hemiptera: Heteroptera) SUSANNA ACHEAMPONG1, WARD B. STRONG2, MICHAEL D. SCHWARTZ3, ROBERT J. HIGGINS4, MOLLY A.THURSTON5, EMMA J. WALKER6, AND J. ROBERTS7 New invasive insect species affect agriculture, the environment, landscapes, and homeowners. Invasive species are difficult and challenging to manage due to limited availability of direct control products or other management strategies. Nuisance insect outbreaks can have negative impacts on homeowners and businesses; if they reach high densities, they can cause anxiety and discomfort and additional management costs. We report here the first records from Canada for two new invasive pests, Arocatus melanocephalus and Raglius alboacuminatus, and provide a range extension for Rhyparochromus vulgaris (Schilling), reported as new to British Columbia by Scudder (in press, this volume). The elm seed bug, Arocatus melanocephalus Fabricius (Hemiptera: Heteroptera: Lygaeidae), is native to Europe and widely distributed in central and southern Europe (Ferracini and Alma 2008); it was reported in China in 2013 (Gao et al. 2013). Arocatus melanocephalus was first detected in the United States, in Idaho, in 2009 and is present in Oregon, Washington, and Utah (Collman and Bush 2016). An infestation of A. melanocephalus was reported by a homeowner in the Rutland area of Kelowna, British Columbia, in June 2016. There were large numbers of adults in and around the home and on Chinese elm wood piles in the yard. -
Entomology for Master Gardeners
Entomology for Master Gardeners Objectives Learn the basic anatomy of insects and spiders. Learn how insects and spiders develop. Learn the characteristics of 8 insect orders, with examples of some common species. Learn how to use a dichotomous key for identification Classification & Names Phylum: Arthropoda Class Insecta = Insects (Class Arachnida = Spiders) Order: The technical name of the orders we learn today describes the wings. e.g.: Coleoptera: “coleo” = sheath; “ptera” = wing; that is, a sheath-wing insect. Family; Genus and species Scientific name = the Latin name; the genus and species. Genus begins with a capital letter; species begins with a small letter. Genus and species names underlined when handwritten, in italics when in print. (Genus is singular; genera is plural; species is both singular and plural.) Common name Glossary (See MG Handbook) Illustrations in MG Handbook & this handout are Metamorphosis (Insect development) not to scale. 4 possible life stages: egg; larva or nymph; pupa; adult. Hatch = the youngster hatches from the egg. Emerge = the adult emerges from the pupa. Molt = Shed exoskeleton A. Complete metamorphosis Complete metamorphosis 4 distinct life stages: egg larva pupa adult Larva very different form/shape than the adult. Larva often feeds on different food than the adult; in some species, adults don’t feed. Examples: Beetles; butterflies and moths; ants, bees, sawflies and wasps; flies. Note: After an insect becomes an adult, it is full-sized; a small adult fly will always be small. B. Simple metamorphosis = (a.) Gradual, metamorphosis; (b.) Incomplete metamorphosis a) Gradual metamorphosis 3 life stages: egg nymph (3 to 5 stages) adult wing pad e.g.: Box elder bugs; earwigs; grasshoppers; stink bugs Larva (nymph) resembles adult without wings. -
Infestazioni Stagionali Di Cimici Associate a Piante Forestali Ed Ornamentali
28 FEDERICO PEDRaZZOLI, CRISTIna Salvatori Infestazioni stagionali di cimici associate a piante forestali ed ornamentali Introduzione nel corso degli ultimi anni si è assistito, in Trentino-alto adige così come in altre Sempre più frequentemente i tecnici ope- aree italiane ed europee, alla rapida e massi- ranti nel settore della difesa delle piante fo- va diffusione di alcune cimici, tra cui Lepto- restali ed ornamentali si trovano a dover far glossus occidentalis Heidemann ed Aroca- fronte a vere e proprie “emergenze” causate tus melanocephalus (Fabricius), due Eterot- dalla pullulazione d’insetti fitofagi, connota- teri (Rhynchota, Heteroptera) appartenenti te non tanto dal danno fitosanitario, quanto rispettivamente alle famiglie Lygaeidae e dall’impatto delle stesse sulla popolazione. Coreidae. La prima è una specie invasiva Le ripercussioni sociali originate da infesta- proveniente dall’america settentrionale, la zioni entomatiche non sono nuove, se si pensa seconda, invece, è stata segnalata in Italia solo alla gestione dei problemi causati dalla più di un secolo fa (leSSona, 1878), ma ha presenza in bosco, e più ancora in aree urba- trovato condizioni favorevoli all’espansione ne e periurbane, di larve di processionaria del del suo areale solo negli ultimi anni, proba- pino o delle querce provviste di peli urticanti. bilmente anche in conseguenza dei cambia- a fronte di tali situazioni, che espongono sia menti climatici in atto. gli operatori, sia i fruitori del verde ad un re- Il presente lavoro, oltre a fornire indica- ale rischio sanitario (irritazioni, allergie), altre zioni su distribuzione, morfologia e bioeco- volte il problema si configura come un disa- logia delle due specie, affronta il problema gio determinato dalle caratteristiche etologi- del loro contenimento in un’ottica ecologi- che degli insetti in questione, soprattutto dalla ca e di reale valutazione del danno da esse loro abitudine ad invadere in gran numero le cagionato. -
Some Notes on the Occurrence of Arocatus Genus (Heteroptera, Lygaeidae) in Slovakia
Folia faunistica Slovaca, 2003, 8: 75-77 ISSN 1335-7522 SOME NOTES ON THE OCCURRENCE OF AROCATUS GENUS (HETEROPTERA, LYGAEIDAE) IN SLOVAKIA ZUZANA BIANCHI 1, OĽGA ŠTEPANOVIČOVÁ 2 1 Department of Zoology, Faculty of Sciences, Comenius University, Mlynská dolina B1, 842 15 Bratislava, Slovakia 2 Medená 7, 811 02 Bratislava, Slovakia Keywords: Heteroptera; Arocatus, Slovakia The genus of Arocatus Spinola, 1837 (Heteroptera, especially from Germany. For example GÜNTHER Lygaeidae) is in Palaearctic region represented by 9 (1981) mentions its occurrence on willows and alders species. 6 of them occur on Eastern-palaearctic coun- in the surroundings of INGELHEIM et al. (1992) present tries, especially in China, Mongolia, Far East of Rus- several sites of A. roeselii in Baden Würtenberg and sia as well as in Near East and Northern Africa. In its presence on sycamores and European alder (Alnus Europe there are only 3 recorded species: Arocatus incana). There is an interesting record by CARAYON roeselii (Schilling, 1829), Arocatus longiceps Stal, (1989) on the occurrence on sycamores in Paris. 1872 and Arocatus melanocephalus (Fabricius, 1798). Arocatus longiceps is a rare Pont Mediterranean Data on occurrence of all the 3 species from Euro- species originally distributed just in southern parts of pean countries appear in many, especially older refer- Europe and Asia (Fig. 2). In the recent years there is ences and many of them are almost not available. a significant spreading out of this species towards the Most of them are presented by Péricart (1998) in the North, into Central Europe. This fact has been proved first volume of his 3-volumed monograph on Lygaei- by its occurrence in the following countries.