First Occurrence of Megaselia Scalaris (Loew) (Diptera: Phoridae) in Pupae of Palaeosepsis Sp

Total Page:16

File Type:pdf, Size:1020Kb

First Occurrence of Megaselia Scalaris (Loew) (Diptera: Phoridae) in Pupae of Palaeosepsis Sp International Journal of Research in Pharmacy and Biosciences Volume 5, Issue 3, 2018, PP 7-9 ISSN 2394-5885 (Print) & ISSN 2394-5893 (Online) First occurrence of Megaselia scalaris (Loew) (Diptera: Phoridae) in pupae of Palaeosepsis sp. (Diptera: Sepsidae) Carlos Henrique Marchiori Graduated in Biological Sciences from the Universidade Federal de Uberlândia, MA in Parasitology from the University of Campinas and PhD in Parasitology from the University of Campinas. *Corresponding Author: Carlos Henrique Marchiori, Graduated in Biological Sciences from the Universidade Federal de Uberlândia, MA in Parasitology from the University of Campinas and PhD in Parasitology from the University of Campinas. Email: [email protected] ABSTRACT The objective of this study was to report the first occurrence of Megaselia scalaris (Loew) (Diptera: Phoridae) on pupae of Palaeosepsis sp. (Diptera: Sepsidae). Human feces were used as bait to collect insects. Host pupae were obtained by the flotation method and placed individually in gelatin capsules until adults emergence of the dipterous. In this study, six pupae of Palaeosepsis sp. were obtained, of which five produced the M. scalaris. Keywords: Insecta, Bait, Ptifall, Traps, Brazil INTRODUCTION The objective of this work is to report the first Phoridae are small or minute flies which can occurrence of M. scalaris in pupae of be recognized by their humpbacked appearance. Palaeosepsis sp. (Diptera: Sepsidae) (Fig. 2). The adults are fairly common in many habitats, but occur especially in decaying animal or vegetable matter. Some occur in fungi [1] and some are internal parasitoids [1, 2, 3] of various other insects [1]. Megaselia scalaris (Loew) (Diptera: Phoridae) (Fig. 1) is found in various environments and can explore large variety of ecological niches. The larvae can cause myiasis in different animals and in humans [4, 5, 6, 7]. Figure2. Palaeosepsis sp. Source: http://sepsidnet-rmbr.nus.edu.sg/ MATERIAL AND METHODS The study was conducted at the Campus da Faculdade de Agronomia in the city of Itumbiara, State of Goiás, Brazil. Each trap (pitfall) (Fig. 3) consisted of a plastic receptacle (basin) of 15 cm in diameter by 10 cm in height. Each receptacle was buried in Figure1. Megaselia scalaris earth, such as its upper extremity was at the Source: www.hispabase.com/galeria/albums/ userpic ground surface level. One liter of water, 20 ml s/10895/_J1N3750_R... of detergent and 2 ml of formol were poured in International Journal of Research in Pharmacy and Biosciences V5 ● I3● 2018 7 First occurrence of Megaselia scalaris (Loew) (Diptera: Phoridae) in pupae of Palaeosepsis sp. (Diptera: Sepsidae) each receptacle. A 200 ml pot was attached to Triatoma brasiliensis Neiva (Hemiptera: the basin by means of a thin wire that went Reduviidae) [8]. across it close to its edge, so as to keep the pot Some authors identified a novel phorid, M. hanging and centralized in the basin. The bait, scalaris, as a possible parasitoid of honey bee in consisting of human feces, was placed in this Brazil. Recently, in Europe, Diptera from the pot. This trap was protected by another plastic genus Megaselia was found able to parasitize receptacle of the same measurements (15 x adults of Apis mellifera L. (Hymenoptera: 10 cm), which about more adequate as a Apidae) [9]. cover. Megaselia scalaris is a polyphagous organism that generally acts as saprophagous, sarcophagous, and necrophagous [8]. In addition, it could be a facultative parasitoid affecting different organisms [10]. CONCLUSION Further research should be conducted in order to obtain more information about the biology of M. scalaris. Further this paper report the first occurrence of M. scalaris in pupae Palaeosepsis sp. (Diptera: Sepsidae) in Brazil. REFERENCES [1] D.J. Borror, D.M. Delong, An introduction to the study of insects, Library of Congress, Figure 3. Ptifall Columbus, 1971. Source: https://www.researchgate.net/figure/Armadi [2] C.J. Veríssimo, Inimigos naturais do carrapato lha-do-tipo-pitfall_fig4_305508702 parasita dos bovinos, Agrop. Catarinense. This contained four diametrically opposite 8(1999) 35-37. holes of around 5 cm in diameter and 7 cm [3] R. Andreotti et al., Ocurrence of the Megaselia scalaris (Loew, 1866) (Diptera, Phoridae) as a in height, and was supported on a metal parasitoid of Boophilus microplus in campo wire suspended 10 cm from the group. Six traps Grande, MS, Brazil. Rev. Bras. Parasitol. Vet. were used, with separations of two meters 12 (2003) 46-47. between each other, placed randomly placed, at [4] W.H. Robinson, Megaselia (M.) scalaris two meters of distance from each other. The (Diptera: Phoridae) associated with laboratory bait was replaced every 15 days. The pupae cockroach colonies, Proc. Entomol. Soc. Wash. that were found in the bait were separated 77 (1975) 384-390. out by means of the floatation method. These [5] J.S. Silva et al, Megaselia scalaris (Diptera: were then individually packed in gelatin Phoridae) causing myiasis in Crotalus durissus capsules until the dipterous emerged. terrificus (Serpentes: Viperidae) in Brasil, J. Med. Entomol. 36(1999) 630-631. RESULTS AND DISCUSSION [6] L.M.L Carvalho et al., A checklist of arthropods associated with pig carrion and In February 2005, six pupae of Palaeosepsis sp. human corpses in Southeastern Brazil, Mem. were found in human feces, from which four Inst. Oswaldo Cruz. 95(2000) 135:138. specimens of M. scalaris emerged. Probably this [7] P.T. Hira et al., Myiasis in Kuwait: nosocomial specie, in certain circumstances, such as the infections caused by Lucilia sericata and variations in the quality and availability of food Megaselia scalaris. Am. J. Trop. Med. Hyg. resources or the density of hosts behave as larva 70(2004) 386-389. or pupa exploratory flies. [8] J. Costa et al., First record of Megaselia scalaris (Loew) (Diptera: Phoridae) infesting Reports in the current literature there is laboratory colonies of Triatoma brasiliensis reference referring to this species acting as a Neiva (Hemiptera: Reduviidae), Neotrop. tick females parasitoid [3] and in colonies of Entomol. 36(2007) 987-989. 8 International Journal of Research in Pharmacy and Biosciences V5 ● I3 ● 2018 First occurrence of Megaselia scalaris (Loew) (Diptera: Phoridae) in pupae of Palaeosepsis sp. (Diptera: Sepsidae) [9] L. Ricchiuti, Infestation of Apis mellifera colonies [10] C.P.Campobasso, R.H.L. Disney, F. Introna, A case of Megaselia scalaris(Loew) (Dipt., by Megaselia scalaris (Loew, 1866) in Abruzzo Phoridae) breeding in a human corpse, and Molise regions, central-southern Italy, J. Aggrawal's Internet J. Forensic Med. Apic. Res 55(2016) 187-192. Toxicol. 5(2004) 3–5. Citation: Carlos Henrique Marchiori," First occurrence of Megaselia scalaris (Loew) (Diptera: Phoridae) in pupae of Palaeosepsis sp. (Díptera: Sepsidae) in Brazil ", International Journal of Research in Pharmacy and Biosciences, vol. 5, no. 3, pp. 7-9, 2018. Copyright: © 2018 Carlos Henrique Marchiori. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. International Journal of Research in Pharmacy and Biosciences V5 ● I3● 2018 9 .
Recommended publications
  • The Effect of Burned Liver on the Length, Weight and Development of Megaselia Scalaris (Loew)(Diptera: Phoridae)–A Preliminary Assessment and Implications in Forensic Entomology
    Jurnal Sains Kesihatan Malaysia 16(1) 2018: 29-33 DOI : http://dx.doi.org./10.17576/JSKM-2018-1601-04 Komunikasi Pendek/Short Communication The Effect of Burned Liver on the Length, Weight and Development of Megaselia scalaris (Loew) (Diptera: Phoridae) – A Preliminary Assessment and Implications in Forensic Entomology (Kesan Penggunaan Hati Lembu Dibakar terhadap Panjang, Jisim dan Perkembangan Megaselia scalaris (Loew) (Diptera: Phoridae) – Penilaian Awal dan Kesannya di Bidang Entomologi Forensik) NUR AQIDAH AHMAD, AMIRAH SUHAILAH RAMLI & RAJA MUHAMMAD ZUHA ABSTRACT Development of insects in laboratory for minimum post mortem interval estimation (mPMI) or time of colonisation (TOC) in forensic entomology can be affected by the type and quality of food consumed during larval period. Since mPMI estimation also involves analysis of larval specimens collected from burned human remains, it is important to study if burned tissues could affect growth of sarcosaprophagous larvae. This study investigated the effect of burned tissues on the size and developmental period of Megaselia scalaris (Loew) (Diptera: Phoridae), a species of forensic importance. Development of M. scalaris on 75 g burned cow’s liver was compared with control liver in three study replicates. Mean larval length (2.87 ± 0.11 mm) and weight (0.81 ± 0.08 mg) of M. scalaris larvae in burned liver diets were significantly lower than larval length (5.03 ± 0.15 mm) and weight (2.85 ± 0.21 mg) of control liver diets (p < 0.001) whilst mean pupal length (2.53 ± 0.06 mm) and weight (0.92 ± 0.06 mg) in burned liver diets were significantly lower than pupal length (3.52 ± 0.06 mm) and weight (2.84 ± 0.16 mg) in control liver diets (p < 0.001).
    [Show full text]
  • Development of a Forensically Important Fly, Megaselia Scalaris
    Jurnal Sains Kesihatan Malaysia 10 (2) 2012: 49-52 Komunikasi Pendek/Short Communication Development of a Forensically Important Fly, Megaselia scalaris (Loew) (Diptera: Phoridae) on Cow’s Liver and Various Agar-based Diets (Perkembangan Lalat Berkepentingan Forensik, Megaselia scalaris (Loew) (Diptera: Phoridae) Pada Hati Lembu dan Pelbagai Diet Berasaskan Agar) RAJA MUHAMMAD ZUHA, SUPRIYANI MUSTAMIN, BALKHIS BASHURI, NAZNI WASI AHMAD & BAHARUDIN OMAR ABSTRACT In forensic entomology practice, it is more common to use raw animal tissue to breed dipteran larvae and it often brings unpleasant odour in the laboratory. Few studies suggested the use of synthetic diets, mainly agar-based media, as alternatives to animal tissue but it is rarely being practiced in forensic entomology laboratory. The present study observed the growth of a forensically important fly, Megaselia scalaris (Loew) on raw cow’s liver, nutrient agar, casein agar and cow’s liver agar. A total of 100 M. scalaris eggs were transferred each into the different media and placed in an incubator at 30°C in a continuous dark condition. Data on length and developmental period were collected by randomly sampling three of the largest larvae from each rearing media, twice a day at 0900 and 1500 hours until pupariation. M. scalaris larvae reared on raw cow’s liver recorded the highest mean length (4.23 ± 1.96 mm) followed by cow’s liver agar (3.79 ± 1.62 mm), casein agar (3.14 ± 1.16 mm) and nutrient agar (3.09 ± 1.11 mm). Larval length in raw liver and liver agar were significantly different from those in nutrient and casein agar (p < 0.05).
    [Show full text]
  • Insect Timing and Succession on Buried Carrion in East Lansing, Michigan
    INSECT TIMING AND SUCCESSION ON BURIED CARRION IN EAST LANSING, MICHIGAN By Emily Christine Pastula A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTERS OF SCIENCE Entomology 2012 ABSTRACT INSECT TIMING AND SUCCESSION ON BURIED CARRION IN EAST LANSING, MICHIGAN By Emily Christine Pastula This study examined pig carcasses buried at two different depths, 30 and 60 cm, to determine if insects are able to colonize buried carcasses, when they arrive at each depth, and what fauna are present over seven sampling dates to establish an insect succession database on buried carrion in East Lansing, Michigan. Thirty-eight pigs were buried, 18 at 30 cm and 20 at 60 cm. Four control carcasses were placed on the soil surface. Three replicates at each depth were exhumed after 3 days, 7 days, 14 days, 21 days, 30 days, and 60 days. One pig was also exhumed from 60 cm after 90 days and another after 120 days. Sarcophaga bullata (Diptera: Sarcophagidae) and Hydrotaea sp. (Diptera: Muscidae) were found colonizing buried carrion 5 days after burial at 30 cm. Insect succession at 30 cm proceeded with flesh and muscid flies being the first to colonize, followed by blow flies. Insects were able to colonize carcasses at 60 cm and Hydrotaea sp. and Megaselia scalaris (Diptera: Phoridae), were collected 7 days after burial. Insect succession at 60 cm did not proceed similarly as predicted, instead muscid and coffin flies were the only larvae collected. Overall these results reveal post-burial interval (PBI) estimates for forensic investigations in mid-Michigan during the summer, depending on climatic and soil conditions.
    [Show full text]
  • The Macrofauna of Water-Filled Tree Holes on Barro Colorado Island
    BIOTROPICA 33(1): 110±120 2001 The Macrofauna of Water-®lled Tree Holes on Barro Colorado Island, Panama1 Stephen P. Yanoviak2 Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, U.S.A. ABSTRACT The fauna of water-®lled tree holes in Neotropical forests is not well documented. Cumulatively, 54 macroinvertebrate and 5 vertebrate taxa were found in arti®cial and natural tree holes censused over four wet seasons on Barro Colorado Island, Panama. Most of the species were in the insect order Diptera, occurred as aquatic larvae in tree holes, and were detritivore/omnivores. Half (49%) of the collected species are considered specialists in this and similar container habitats, and three invertebrate taxa were previously unknown from tree holes. Successional patterns were weak in tree holes, but some taxa predictably colonized holes shortly after they were ®lled. The mosquito Culex urichii was more common and abundant in arti®cial than in natural tree holes; occurrence frequencies and densities of most other taxa were similar between hole types. RESUMEN La macrofauna de reservorios de agua en los huecos de los aÂrboles de bosques neotropicales no ha sido bien docu- mentada. En total, 54 grupos de macroinvertebrados y 5 grupos de vertebrados fueron encontrados en huecos arti®- ciales y naturales examinados durante cuatro estaciones lluviosas en la Isla Barro Colorado, PanamaÂ. De las especies encontradas, la mayorõÂa pertenecen al orden Diptera. TambieÂn, la mayorõÂa ocurren como larvas acuaÂticas y son detrõÂvoros/omnõÂvoros. Cerca de la mitad (49%) de las especies son consideradas como especialistas en este tipo de haÂbitat y reservorios similares, y tres grupos de invertebrados no han sido reportados en los huecos de los aÂrboles.
    [Show full text]
  • Insecta, Diptera) 213 Doi: 10.3897/Zookeys.441.7197 CHECKLIST Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 441:Checklist 213–223 (2014) of the families Lonchopteridae and Phoridae of Finland (Insecta, Diptera) 213 doi: 10.3897/zookeys.441.7197 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the families Lonchopteridae and Phoridae of Finland (Insecta, Diptera) Jere Kahanpää1 1 Finnish Museum of Natural History, Zoology Unit, P.O. Box 17, FI-00014 University of Helsinki, Finland Corresponding author: Jere Kahanpää ([email protected]) Academic editor: J. Salmela | Received 5 February 2014 | Accepted 26 March 2014 | Published 19 September 2014 http://zoobank.org/0C0D4F58-4F6C-488B-B3F0-ECFDF449FEF1 Citation: Kahanpää J (2014) Checklist of the families Lonchopteridae and Phoridae of Finland (Insecta, Diptera). In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 213–223. doi: 10.3897/zookeys.441.7197 Abstract A checklist of the Lonchopteridae and Phoridae recorded from Finland is presented. Keywords Checklist, Finland, Diptera, Lonchopteridae, Phoridae Introduction The superfamily Phoroidea includes at least the fly families Phoridae, Lonchopteridae, and the small family Ironomyiidae known only from Australia. The flat-footed fly families Platypezidae and Opetiidae, treated in a separate paper in this volume, are placed either in their own basal superfamily Platypezoidea or included in Phoroidea (see Cumming et al. 1995, Woodley et al. 2009 and Wiegmann et al. 2011). Lonchoptera Meigen, 1803 is the only currently recognized genus in Lonchopteri- dae. Five Lonchoptera species have been added to the Finnish fauna after the checklist of Hackman (1980) (Andersson 1991, Kahanpää 2013). The scuttle flies (family Phoridae) may be the largest single family in Diptera.
    [Show full text]
  • Diptera: Phoridae) and Spilomyia Longicornis (Diptera: Syrphidae)
    The Great Lakes Entomologist Volume 22 Number 3 - Fall 1989 Number 3 - Fall 1989 Article 4 October 1989 The Insects of Treeholes of Northern Indiana With Special Reference to Megaselia Scalaris (Diptera: Phoridae) and Spilomyia Longicornis (Diptera: Syrphidae) Robert S. Copeland University of Notre Dame Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Copeland, Robert S. 1989. "The Insects of Treeholes of Northern Indiana With Special Reference to Megaselia Scalaris (Diptera: Phoridae) and Spilomyia Longicornis (Diptera: Syrphidae)," The Great Lakes Entomologist, vol 22 (3) Available at: https://scholar.valpo.edu/tgle/vol22/iss3/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Copeland: The Insects of Treeholes of Northern Indiana With Special Referen 1989 THE GREAT LAKES ENTOMOLOGIST 127 THE INSECTS OF TREEHOLES OF NORTHERN INDIANA WITH SPECIAL REli'ERENCE TO MEGASELIA SCALARIS (DiPTERA: PHORIDAE) AND SPILOMYIA LONGICORNIS (DiPTERA: SYRPHIDAE) Robert S. Copeland 1•2 ABSTRACT The aquatic insect community of treeholes in northern Indiana was surveyed from 1983-1986. Twenty-three species, representing three orders and nine families, were found. Megaselia sealaris (Diptera: Phoridae) was collected on several occasions from rotholes, the first member of this family from treeholes. Examination of puparia of Spilomyia longicarnis (Diptera: Syrphidae) indicated that the larva of this species has been previously described, but incorrectly associated with the genus Xylata.
    [Show full text]
  • Biology and Morphometry of Megaselia Halterata, an Important Insect Pest of Mushrooms
    Bulletin of Insectology 65 (1): 1-8, 2012 ISSN 1721-8861 Biology and morphometry of Megaselia halterata, an important insect pest of mushrooms 1 2 3 Mariusz LEWANDOWSKI , Marcin KOZAK , Agnieszka SZNYK-BASAŁYGA 1Department of Applied Entomology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland 2Department of Quantitative Methods in Economy, Faculty of Economics University of Information Technology and Management in Rzeszow, Rzeszow, Poland 3Department of Zoology, Chair of Biology of the Animal Enviroment, Warsaw University of Life Sciences - SGGW, Warsaw, Poland Abstract This paper aims to provide insights into knowledge on morphology, biology and development of Megaselia halterata (Wood), one of the most common insect pests of mushroom houses. We focus on such traits as body length and weight and width of pseu- docephalon, and show how these traits differ in subsequent development stages as well as across time. The development time of a generation, from egg to adult, lasted 16-19 days at 24 °C; for larval stage this time lasted 12-14 days. Mean weight of particular stages ranged from 0.003 mg for eggs up to 0.492 mg for pupae, while mean length from 0.35 mm for eggs to 2.73 mm for 3rd instar larvae. During larval development, mean body weight increased about 48 times and mean body length three times. Measurements of pseudocephalon of larvae showed that between the successive instars it increased approxi- mately 1.4 times. Using the statistical technique inverse prediction, we develop formulae for estimation of larvae development time based on mean body weight and length of larvae found in a sample taken from a mushroom house, on which basis one can decide whether the infection occurred in the mushroom house or during compost production.
    [Show full text]
  • Effects of Temperature and Tissue Type on the Development of Megaselia Scalaris (Diptera: Phoridae)
    Journal of Medical Entomology Advance Access published March 29, 2016 Journal of Medical Entomology, 2016, 1–7 doi: 10.1093/jme/tjw019 Development, Life History Research article Effects of Temperature and Tissue Type on the Development of Megaselia scalaris (Diptera: Phoridae) Joshua K. Thomas,1,2 Michelle R. Sanford,3 Michael Longnecker,4 and Jeffery K. Tomberlin1 1Department of Entomology, Texas A&M University, College Station, TX 77843 ([email protected]; [email protected]), 2Corresponding author, e-mail: [email protected], 3Harris County Institute for Forensic Science, Houston, TX 77030 ([email protected]) and 4Department of Statistics, 77843 Texas A&M University, College Station, TX ([email protected]) Received 5 January 2016; Accepted 18 February 2016 Downloaded from Abstract The scuttle fly, Megaselia scalaris (Loew) (Diptera: Phoridae), is of medical, veterinary, and forensic importance. In the case of the latter, M. scalaris is commonly associated with indoor death or neglect cases of humans or household animals, and its larvae are useful in determining time of colonization (TOC). This study is the first to examine the effects of different temperatures and tissues from two vertebrate species on the growth rate and http://jme.oxfordjournals.org/ larval length of M. scalaris. A preliminary validation of these data was also conducted. Immatures of M. scalaris were reared on either bovine or porcine biceps femoris at 24 C, 28 C, and 32 C. Temperature significantly im- pacted immature development time, including egg eclosion, eclosion to pupation, and pupation to adult emer- gence, to favor faster development at higher temperatures. From ovipostion to eclosion, development rate was 32.1% faster from 24 Cto28C, 13.9% faster from 28 Cto32C, and 45.5% faster from 24 Cto32C.
    [Show full text]
  • Observations on Antennal Morphology in Diptera, with Particular Reference to the Articular Surfaces Between Segments 2 and 3 in the Cyclorrhapha
    © The Author, 2011. Journal compilation © Australian Museum, Sydney, 2011 Records of the Australian Museum (2011) Vol. 63: 113–166. ISSN 0067-1975 doi:10.3853/j.0067-1975.63.2011.1585 Observations on Antennal Morphology in Diptera, with Particular Reference to the Articular Surfaces between Segments 2 and 3 in the Cyclorrhapha DaviD K. Mcalpine Australian Museum, 6 College Street, Sydney NSW 2010, Australia abstract. The main features of antennal segments 2 and 3 seen in the higher Diptera are described, including many that are not or inadequately covered in available publications. The following terms are introduced or clarified: for segment 2 or the pedicel—annular ridge, caestus, chin, collar, conus, distal articular surface, encircling furrow, foramen of articulation, foraminal cusp, foraminal ring, pedicellar button, pedicellar cup, rim; for segment 3 or the postpedicel—basal foramen, basal hollow, basal stem, postpedicellar pouch, sacculus, scabrous tongue, sub-basal caecum; for the stylus or arista—stylar goblet. Particular attention is given to the occurrence and position of the pedicellar button. The button is the cuticular component of a chordotonal organ, which perhaps has the role of a baroreceptor. It is present in the majority of families of Diptera, and possibly was present in the ancestral dipteran. Some generalizations about antennal structure are made, and a diagram showing the main trends in antennal evolution in the Eremoneura is provided. The general form of the antenna shows a transition from approximate radial symmetry (e.g., in Empis, Microphor, and Opetia) through to superficial bilateral symmetry (in many taxa of Eumuscomorpha), though there is usually much asymmetry in detail.
    [Show full text]
  • Fly Times Issue 41, October 2008
    FLY TIMES ISSUE 41, October, 2008 Stephen D. Gaimari, editor Plant Pest Diagnostics Branch California Department of Food & Agriculture 3294 Meadowview Road Sacramento, California 95832, USA Tel: (916) 262-1131 FAX: (916) 262-1190 Email: [email protected] Welcome to the latest issue of Fly Times! Let me first thank everyone for sending in such interesting articles – I hope you all enjoy reading it as much as I enjoyed putting it together! With that, please let me encourage all of you to consider contributing articles that may be of interest to the Diptera community. Fly Times offers a great forum to report on your research activities and to make requests for taxa being studied, as well as to report interesting observations about flies, to discuss new and improved methods, to advertise opportunities for dipterists, and to report on or announce meetings relevant to the community. This is also a great place to report on your interesting (and hopefully fruitful) collecting activities! The electronic version of the Fly Times continues to be hosted on the North American Dipterists Society website at http://www.nadsdiptera.org/News/FlyTimes/Flyhome.htm. The Diptera community would greatly appreciate your independent contributions to this newsletter. For this issue, I want to again thank all the contributors for sending me so many great articles! That said, we need even more reports on trips, collections, methods, updates, and anything else you can think of about flies, with all the associated digital images you wish to provide. Feel free to share your opinions or provide ideas on how to improve the newsletter (I am very happy to hear ways that I can enhance it!).
    [Show full text]
  • Diptera: Phoridae)
    EFFECTS OF TEMPERATURE AND TISSUE TYPE ON THE DEVELOPMENT OF MEGASELIA SCALARIS (LOEW) (DIPTERA: PHORIDAE) A Thesis by JOSHUA KELLOGG THOMAS Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Jeffery K. Tomberlin Committee Members, Michelle Sanford Pete Teel Michael Longnecker Head of Department, David Ragsdale December 2015 Major Subject: Entomology Copyright 2015 Joshua Kellogg Thomas ABSTRACT The scuttle fly, Megaselia scalaris (Loew), is a Dipteran from the Phoridae family of medical, veterinary, and forensic importance. In the case of the latter, M. scalaris is commonly associated with indoor death scenes and its larvae are useful in determining time of colonization (TOC). This is the first developmental study on the effects of different temperatures and tissues from two different vertebrate species on the growth rate and larval length of M. scalaris, and consequently, on estimated TOC. A validation study of these data was also conducted. Immature M. scalaris were reared on either bovine or porcine biceps femoris at 24°C, 28°C, and 32°C. Temperature significantly impacted immature development including egg hatch, development from hatch to pupa, and from pupa to adult. From egg to hatch, development had a growth rate difference of 32.1% from 24°C to 28°C, 13.9% from 28°C to 32°C, and 45.5% from 24°C to 32°C. Development of larva to pupation displayed similar results with differences of 30.3% between 24°C and 28°C, 15.4% between 28°C and 32°C, and 45.2% between 24°C and 32°C.
    [Show full text]
  • First Detection of Megaselia Scalaris (Loew) (Diptera: Phoridae) As a Facultative Endoparasitoid of Nezara Viridula (L.) (Hemipt
    El-Hawagry et al. Egyptian Journal of Biological Pest Control (2021) 31:26 Egyptian Journal of https://doi.org/10.1186/s41938-021-00377-7 Biological Pest Control RESEARCH Open Access First detection of Megaselia scalaris (Loew) (Diptera: Phoridae) as a facultative endoparasitoid of Nezara viridula (L.) (Hemiptera: Pentatomidae) Magdi Shaaban Ali El-Hawagry1* , Ayman Mohey Eldin Ebrahim2 and Maha Salah Eldin Nada3 Abstract Background: The phorid fly Megaselia scalaris (Loew) (Diptera: Phoridae) is an omnivorous species, capable of exploring a large variety of environments and ecological niches. It is known as an important detritivore species with maggots feeding on a variety of food of both animal and plant origin. Results: The present study reports M. scalaris as an endoparasitoid attacking colonies of the southern green stink bug Nezara viridula (L.) for the first time. This case of parasitism was observed inside rearing cages of N. viridula at the Plant Protection Research Institute, Dokki, Egypt in August 2020. We firstly identified adult individuals of M. scalaris which were found moving erratically within the cages using relevant identification keys. To verify that N. viridula individuals are parasitized by the same parasitoid and they are not infected with other parasitoids, some of the parasitized bugs were transferred to a separate cage at the same laboratory conditions and the developmental stages of the dipteran parasitoid were observed until the adult emergence. Conclusion: The present investigation revealed that M. scalaris could be included to the recorded parasitoid species of N. viridula, and further studies should be carried out to assess the efficacy of this fly as a biocontrol agent.
    [Show full text]