Section 7 V1.0 SYSTEMS DESCRIPTION
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Remote Pilot – Small Unmanned Aircraft Systems Study Guide
F FAA-G-8082-22 U.S. Department of Transportation Federal Aviation Administration Remote Pilot – Small Unmanned Aircraft Systems Study Guide August 2016 Flight Standards Service Washington, DC 20591 This page intentionally left blank. Preface The Federal Aviation Administration (FAA) has published the Remote Pilot – Small Unmanned Aircraft Systems (sUAS) Study Guide to communicate the knowledge areas you need to study to prepare to take the Remote Pilot Certificate with an sUAS rating airman knowledge test. This Remote Pilot – Small Unmanned Aircraft Systems Study Guide is available for download from faa.gov. Please send comments regarding this document to [email protected]. Remote Pilot – Small Unmanned Aircraft Systems Study Guide i This page intentionally left blank. Remote Pilot – Small Unmanned Aircraft Systems Study Guide ii Table of Contents Introduction ........................................................................................................................... 1 Obtaining Assistance from the Federal Aviation Administration (FAA) .............................................. 1 FAA Reference Material ...................................................................................................................... 1 Chapter 1: Applicable Regulations .......................................................................................... 3 Chapter 2: Airspace Classification, Operating Requirements, and Flight Restrictions .............. 5 Introduction ........................................................................................................................................ -
Easy Access Rules for Auxiliary Power Units (CS-APU)
APU - CS Easy Access Rules for Auxiliary Power Units (CS-APU) EASA eRules: aviation rules for the 21st century Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders. EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards. To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities. The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective. Published February 20181 1 The published date represents the date when the consolidated version of the document was generated. Powered by EASA eRules Page 2 of 37| Feb 2018 Easy Access Rules for Auxiliary Power Units Disclaimer (CS-APU) DISCLAIMER This version is issued by the European Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication. It has been prepared by putting together the certification specifications with the related acceptable means of compliance. However, this is not an official publication and EASA accepts no liability for damage of any kind resulting from the risks inherent in the use of this document. -
Integrating Air Systems in Aircraft Multidisciplinary Design Optimization Ali Tfaily Department of Mechanical Engineering Mcgil
Integrating Air Systems in Aircraft Multidisciplinary Design Optimization Ali Tfaily Department of Mechanical Engineering McGill University, Montreal August 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Engineering ACKNOWLEDGEMENTS I would like to thank my supervisor, Prof. Michael Kokkolaras, for his support and guidance throughout my time as his student. I am honored to have worked along a supervisor that always helped me in my work and even my personal life. I am grateful to members of Bombardier’s Advanced Product Development department for their insights on aircraft design and optimization. Special acknowledgment is given to the Thermodynamics department at Bombardier Product Development Engineering, namely Sebastien Beaulac, Hongzhi Wang, Jean-Francois Reis, and Emmanuel Germaine, who provided expertise that greatly assisted this research. I would also like to thank Jean Brousseau for sharing his knowledge on air systems design. I am very grateful to John Ferneley, Susan Liscouët-Hanke, Pat Piperni, and Fassi Kafyeke who were supportive of my career goals and provided me the means to pursue these goals. Finally, I am grateful to my friends and family for their constant support and encouragement throughout the ups and downs of my studies. ABSTRACT The strong interactions between aircraft and air systems necessitate the integration of the latter to multidisciplinary design optimization (MDO) considerations of the former. This research presents such a methodology considering environmental control and ice protection systems. These systems consume pressurized bleed air from the aircraft’s engines to perform their respective functions. We first describe the models used to predict the behavior of these systems and then propose different approaches to their integration into an existing aircraft MDO environment. -
Systems Engineering Approach in Aircraft Design Education; Techniques and Challenges
Paper ID #11232 Systems Engineering Approach in Aircraft Design Education; Techniques and Challenges Prof. Mohammad Sadraey, Daniel Webster College Mohammad H. Sadraey is an Associate Professor in the Engineering School at the Daniel Webster Col- lege, Nashua, New Hampshire, USA. Dr. Sadraey’s main research interests are in aircraft design tech- niques, and design and automatic control of unmanned aircraft. He received his MSc. in Aerospace Engineering in 1995 from RMIT, Melbourne, Australia, and his Ph.D. in Aerospace Engineering from the University of Kansas, Kansas, USA. Dr. Sadraey is a senior member of the American Institute of Aeronautics and Astronautics (AIAA), and a member of American Society for Engineering Education (ASEE). Prof. Nicholas Bertozzi, Daniel Webster College Nick Bertozzi is a Professor of Engineering at Daniel Webster College (DWC) and Dean of the School of Engineering and Computer Science (SECS). His major interest over the past 18 years has been the concurrent engineering design process, an interest that was fanned into flame by attending an NSF faculty development workshop in 1996 led by Ron Barr and Davor Juricic. Nick has a particular interest in help- ing engineering students develop good communications skills and has made this a SECS priority. Over the past ten years he and other engineering and humanities faculty colleagues have mentored a number of undergraduate student teams who have co-authored and presented papers and posters at Engineering Design Graphics Division (EDGD) and other ASEE, CDIO (www.cdio.org), and American Institute of Aeronautics and Astronautics (AIAA) meetings as well. Nick was delighted to serve as the EDGD pro- gram chair for the 2008 ASEE Summer Conference and as program co-chair with Kathy Holliday-Darr for the 68th EDGD Midyear meeting at WPI in October 2013. -
Lockheed Martin F-35 Lightning II Incorporates Many Significant Technological Enhancements Derived from Predecessor Development Programs
AIAA AVIATION Forum 10.2514/6.2018-3368 June 25-29, 2018, Atlanta, Georgia 2018 Aviation Technology, Integration, and Operations Conference F-35 Air Vehicle Technology Overview Chris Wiegand,1 Bruce A. Bullick,2 Jeffrey A. Catt,3 Jeffrey W. Hamstra,4 Greg P. Walker,5 and Steve Wurth6 Lockheed Martin Aeronautics Company, Fort Worth, TX, 76109, United States of America The Lockheed Martin F-35 Lightning II incorporates many significant technological enhancements derived from predecessor development programs. The X-35 concept demonstrator program incorporated some that were deemed critical to establish the technical credibility and readiness to enter the System Development and Demonstration (SDD) program. Key among them were the elements of the F-35B short takeoff and vertical landing propulsion system using the revolutionary shaft-driven LiftFan® system. However, due to X- 35 schedule constraints and technical risks, the incorporation of some technologies was deferred to the SDD program. This paper provides insight into several of the key air vehicle and propulsion systems technologies selected for incorporation into the F-35. It describes the transition from several highly successful technology development projects to their incorporation into the production aircraft. I. Introduction HE F-35 Lightning II is a true 5th Generation trivariant, multiservice air system. It provides outstanding fighter T class aerodynamic performance, supersonic speed, all-aspect stealth with weapons, and highly integrated and networked avionics. The F-35 aircraft -
Ac 120-67 3/18/97
Advisory u.s. Department ofTransportation Federal Aviation Circular Ad.nnlstratlon Subject: CRITERIA FOR OPERATIONAL Date: 3/18/97 AC No: 120-67 APPROVAL OF AUTO FLIGHT Initiated By: AFS-400 Change: GUIDANCE SYSTEMS 1. PURPOSE. This advisory circular (AC) states an acceptable means, but not the only means, for obtaining operational approval of the initial engagement or use of an Auto Flight Guidance System (AFGS) under Title 14 of the Code of Federal Regulations (14 CFR) part 121, section 121.579(d); part 125, section 125.329(e); and part 135, section 135.93(e) for the takeoff and initial climb phase of flight. 2. APPLICABILITY. The criteria contained in this AC are applicable to operators using commercial turbojet and turboprop aircraft holding Federal Aviation Administration (FAA) operating authority issued under SPAR 38-2 and 14 CFR parts 119, 121, 125, and 135. The FAA may approve the AFGS operation for the operators under these parts, where necessary, by amending the applicant's operations specifications (OPSPECS). 3. BACKGROUND. The purpose of this AC is to take advantage of technological improvements in the operational capabilities of autopilot systems, particularly at lower altitudes. This AC complements a rule change that would allow the use of an autopilot, certificated and operationally approved by the FAA, at altitudes less than 500 feet above ground level in the vertical plane and in accordance with sections 121.189 and 135.367, in the lateral plane. 4. DEFINITIONS. a. Airplane Flight Manual (AFM). A document (under 14 CFR part 25, section 25.1581) which is used to obtain an FAA type certificate. -
FROM the GROUNDUP September 2004 CAPABILITIES BROCHURE
Vought Aircraft Industries, Inc. www.voughtaircraft.com INTEGRATED AEROSTRUCTURES FROM THE GROUNDUP September 2004 CAPABILITIES BROCHURE Airbus A330/A340 In 1988, we became the Boeing 747 We’ve built panels for the main first major U.S. structural assemblies supplier to fuselage, doors and the empennage section for more Airbus with the award of wing components for than 1,350 Boeing 747 aircraft since the program the A330/A340 long-range aircraft. Deliveries began in 1968. began in 1990, exceeding the 500 shipset mark in 2002. 2 PROVEN Lockheed Martin C-130J Hercules Northrop Grumman B-2 Spirit Our company has delivered more than 2,200 We were one of three team members on the empennage sections to Lockheed Martin B-2 program, with responsibility for more since becoming a supplier on the C-130 structure than any other team member. program in the 1950s. Through our heritage companies, we have been a premier supplier to the aerospace industry for nearly nine decades. Vought is a proven leader in providing aerostructures of superior quality to our customers. We’ve helped shape many major aircraft programs over the years – from small business jets to jumbo airplanes, and tactical fighters to cargo aircraft. From the ground up, Vought creates quality structures that help our customers take flight. 3 Boeing C-17 Globemaster III Robotic Tack Cell Machine We have consistently driven down the price of the Our new robotic tack cell transforms a six-step C-17 components we build through continuous process into a single operation. The six-axis producibility improvements. -
Hero Or the Zero1
“Hero or the Zero” Chapter 1 A True Story By COL GREGORY MARSTON (ret) Aviation is an exciting profession that has short, intense, high-energy periods that are often followed by fairly routine and even boring phases of flight. Yet, it is important to remember always that you’re flying a machine at relatively high speeds and/or high altitudes versus other man-made equipment like a car. Your happy little pilot bubble can be interrupted in a Nano- second by the rare, heart-stopping, bowel-loosening, emergency that must be dealt with correctly, quickly and coolly or you may die. Sometimes you die, even if you do everything right! This story is about one such moment. I was leading a routine flight of two A-37B “Dragonfly” aircraft on a cool, clear and very dark, early morning at Davis-Monthan Air Force Base (DMAFB) in Tucson, Arizona on January 3rd, 1985. The A-37 was a relic from the Vietnam War, a small, green/grey camouflage, two-seat, two-engine, jet aircraft that was used for Attack (dropping bombs) or Forward Air Control (FAC – shooting rockets). As the solo Instructor Pilot (flying in the left seat) the plan was for me to takeoff first, followed 10 seconds later by my wingman (a student in the left seat and his Instructor Pilot in the right side). After takeoff, my wingman he would rejoin on me for a Close Air Support (CAS) training flight. I would lead the two-aircraft flight out to one of the massive bombing ranges located in southern Arizona. -
AIRCRAFT SYSTEMS COURSE FILE III B. Tech II Semester
ERONAUTICAL ENGINEERING MRCET (UGC Autonomous) – – AIRCRAFT SYSTEMS COURSE FILE III B. Tech II Semester (2017-2018) Prepared By Ms. L Sushma, Assoc. Prof Department of Aeronautical Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – A Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India. III– II B. Tech Aircraft Systems By L SUSHMA I AERONAUTICAL ENGINEERING MRCET (UGC Autonomous) – – MRCET VISION To become a model institution in the fields of Engineering, Technology and Management. To have a perfect synchronization of the ideologies of MRCET with challenging demands of International Pioneering Organizations. MRCET MISSION To establish a pedestal for the integral innovation, team spirit, originality and competence in the students, expose them to face the global challenges and become pioneers of Indian vision of modern society. MRCET QUALITY POLICY. To pursue continual improvement of teaching learning process of Undergraduate and Post Graduate programs in Engineering & Management vigorously. To provide state of art infrastructure and expertise to impart the quality education. III– II B. Tech Aircraft Systems By L SUSHMA II AERONAUTICAL ENGINEERING MRCET (UGC Autonomous) – – PROGRAM OUTCOMES (PO’s) Engineering Graduates will be able to: 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, -
Bicycle Landing Gear Is Useful for High-Wing Airplanes with Long Span
Aeronautical Engineering Design I Landing Gear Sizing and Placement Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 Landing gear configurations 2 Tricycle landing gear 3 Tricycle landing gear • Advantages of tricycle landing gear: ⁻ Cabin floor is horizontal when the airplane is on the ground. ⁻ Forward visibility is improved for the pilot when the airplane is on the gound. ⁻ The CG is ahead of the main wheels and this enhances stability during the ground roll. 4 Tricycle landing gear 5 Tricycle landing gear • The length of the landing gear must be set so that the tail doesn’t hit the ground during landing. • This is measured from the wheel in the static position assuming an angle of attack for landing that gives 90% of maximum lift, usually 10o-15o. • The tipback angle is the maximum aircraft nose-up attitude when the tail is touching the ground and the landing gear strut is fully extended. • To prevent the aircraft from tipping back on its tail, the angle of the vertical from the main wheel position to the cg should be greater than the tipback angle or 15o, whichever is greater. 6 Tricycle landing gear • Tipback angle should not be greater than 25o, otherwise porpoising will occur and a high elevator deflection will be required for rotation during takeoff. • This means that more than 20% of aircraft weight is carried by the nose wheel. • The optimum range for the percentage of aircraft weight that is carried by the nose wheel is 8-15% for the most aft and most forward CG positions. -
Inlet and Nozzle Technology for 21St Century Fighter Aircraft
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E 47th SL, New York, N.Y. 10017 96-GT-244 The Society shall not be responsible for statements or opinions advanced in papers or discussion at meetings of the Society or of its Divisions or Sections, or printed in its publications. Ditetcion Is printed only if the paper is published in an ASME Journal. Authorization to photocopy • material for internal or personal use under circumstance not falling within the fair use provisions of the Copyright Act is granted by ASME to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Rearming Service provided that the base fee of $0.30 per page is paid directly to the CCC, 27 Congress Street, Salem MA 01970. Requests for special pennistion or bulk mproduzlion shoukt be ad- dressed to the ASME Technical Publishing Department. Copyright 0 1996 by ASME All Rights Reserved Printed In U.S.A. Downloaded from http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1996/78736/V002T02A006/2406937/v002t02a006-96-gt-244.pdf by guest on 30 September 2021 INLET AND NOZZLE TECHNOLOGY FOR 21ST CENTURY FIGHTER AIRCRAFT Marvin C. Gridley 111111111111,111111 111111 Steven H. Walker Wright Laboratory IMJFIMA Bldg 450 2645 Fifth Street Suite 7 Wright-Patterson AFB, OH 45433-7913 USA ABSTRACT more flexible, to perform a variety of missions to counter changing The focus of propulsion integration technology in the 21st threats. century will be economy. USAF inlet and nozzle technology goals Specifically, two propulsion integration technologies that offer translate into 50% weight reduction and 25% acquisition cost the potential for lower cost and more survivable aircraft systems while reduction metrics for new aircraft system. -
Landing Gear.Pdf
Study of Evolution and Details of Landing Gear INDEX CHAPTER 1 1.1.1 INTRODUCTION 3 1.1.2 EVOLUTION 3 CHAPTER 2 2.1 DIFFERENT TYPES OF LANDING GEARS 6 2.1.1 TRICYCLE LANDING GEAR 7 2.1.2 CONVENTIONAL LANDING GEAR 7 2.1.3 UNCONVENTIONAL LANDING GEAR 8 2.2 DIFFERENCE BETWEEN MAIN AND NOSE LANDING GEAR 9 2.3 SHOCK STRUTS 10 2.3.1 TYPES OF SHOCK STRUTS 1. METERING PIN TYPE 10 2. METERING TUBE TYPE 11 3. NOSE GEAR STRUTS 12 4. DOUBLE-ACTING SHOCK ABSORBER 12 2.4 OPERATION OF SHOCK STRUTS 13 CHAPTER 3 3.1 HYDRAULIC SYSTEM FOR AIRCRAFT LANDING GEAR 15 3.2 LANDING GEAR EXTENSION AND RETRACTION 15 3.2.1 LANDING GEAR EXTENSION AND RETRACTING MECHANISMS 15 3.3 EMERGENCY SYSTEMS 16 NIMRA INSTITUTE OF SCIENCE & TECHNOLOGY, A.E - 1 - Study of Evolution and Details of Landing Gear CHAPTER 4 4.1 BRAKING SYSTEM IN LANDING GEAR 18 4.2 DIFFERENT TYPES OF BRAKES AND THEIR EVOLUTION 4.2.1 CARBON AND BERYLLIUM BRAKES 18 4.2.2 AUTO-BRAKE AND BRAKE-BY-WIRE SYSTEM 19 4.3 DESCRIPTION OF A HYDRAULIC BRAKING SYSTEM 20 4.4 ADVANCED BRAKE CONTROL SYSTEM (ABCS) 21 4.5 PNEUMATIC BRAKING 21 4.6 DIFFERENTIAL BRAKING 22 CHAPTER 5 LUBRICANTS USED IN LANDING GEAR 23 CONCLUSION 24 REFERENCES 25 FIGURES FIG. 1 LANDING GEARS IN THE INITIAL STAGES 26 FIG. 2 BASIC TYPES OF LANDING GEARS 26 FIG. 3 TU-144 MAIN LANDING GEAR 27 FIG. 4 TRACK-TYPE GEAR 27 FIG.