Curriculum Vitae and Publications 297
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes. -
Molecular Phylogenetics and Evolution 123 (2018) 59–72
Molecular Phylogenetics and Evolution 123 (2018) 59–72 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic relationships and cryptic species diversity in the Brazilian egg- T brooding tree frog, genus Fritziana Mello-Leitão 1937 (Anura: Hemiphractidae) ⁎ Marina Walker1, , Mariana L. Lyra1, Célio F.B. Haddad Universidade Estadual Paulista, Instituto de Biociências, Departamento de Zoologia and Centro de Aquicultura (CAUNESP), Campus Rio Claro, Av. 24A,No 1515, Bela Vista, CEP 13506-900 Rio Claro, São Paulo, Brazil ARTICLE INFO ABSTRACT Keywords: The genus Fritziana (Anura: Hemiphractidae) comprises six described species (F. goeldii, F. ohausi, F. fissilis, F. Egg-brooding frogs ulei, F. tonimi, and F. izecksohni) that are endemic to the Brazilian Atlantic Forest. Although the genus has been Molecular phylogeny the subject of studies dealing with its taxonomy, phylogeny, and systematics, there is considerable evidence for Brazilian Atlantic Forest cryptic diversity hidden among the species. The present study aims to understand the genetic diversity and Species diversity phylogenetic relationships among the species of Fritziana, as well as the relationships among populations within New candidate species species. We analyzed 107 individuals throughout the distribution of the genus using three mitochondrial gene Mitochondrial gene rearrangements fragments (12S, 16S, and COI) and two nuclear genes (RAG1 and SLC8A3). Our data indicated that the species diversity in the genus Fritziana is underestimated by the existence of at least three candidate species hidden amongst the group of species with a closed dorsal pouch (i.e. F. fissilis and F. ulei). We also found four species presenting geographical population structures and high genetic diversity, and thus require further investigations. -
Check List 8(2): 207-210, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
Check List 8(2): 207-210, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Amphibians and Reptiles from Paramakatoi and Kato, PECIES S Guyana OF ISTS 1* 2 L Ross D. MacCulloch and Robert P. Reynolds 1 Royal Ontario Museum, Department of Natural History. 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada. 2 National Museum of Natural History, USGS Patuxent Wildlife Research Center, MRC 111, P.O. Box 37012, Washington, D.C. 20013-7012, USA. * Corresponding author. E-mail: [email protected] Abstract: We report the herpetofauna of two neighboring upland locations in west-central Guyana. Twenty amphibian and 24 reptile species were collected. Only 40% of amphibians and 12.5% of reptiles were collected in both locations. This is one of the few collections made at upland (750–800 m) locations in the Guiana Shield. Introduction palm stands (Maurita flexuosa) (Hollowell et al. 2003). The Guiana Shield region of northeastern South America Immediately west of Kato is the nearby Chiung River, is one of the world’s areas of greatest biodiversity. The a rocky-bottomed watercourse about 50 m wide with herpetofauna of the region remains poorly documented, numerous small falls and a distinct riparian zone. Many although there have been several general publications small agricultural clearings, in typical rotating “slash and on the subject (Starace 1998; Gorzula and Señaris 1999; burn” fashion, are common around Kato in the areas where Lescure and Marty 2000; Reynolds et al. 2001; Avila- savanna transitions to forest. -
Download (Pdf, 101
Natural History Notes REFERENCES TRITURUS CRISTATUS (Great crested newt): PREDATION BY BIRDS. I am fortunate enough Duellman, W. E. & Hoogmoed, M. S. (1984). The to have a pond with a large colony of Great crested taxonomy and phylogenetic relationships of the newts on my land and, over a number of years, have hylid frog genus Stefania . Misc. Publ. Mus. Nat. been able to observe the extensive predation that the Hist. Univ. Kansas 75, 1–39. colony suffers from birds (the pond is in the High Frost, D.R., Grant, T., Faivovich, J., Bain, R., Weald of Kent and lies about half a mile from the Haas, A., Haddad, C.F.B., de Sa´, R.O., River Teise). Donnellan, S.C., Raxworthy, C.J., Wilkinson, I have only been able to find very limited M., Channing, A., Campbell, J.A., Blotto, B.L., references to the fact that this predation occurs and have to assume that it has not been adequately Moler, P., Drewes, R.C., Nussbaum, R.A., recorded or documented in the past. My Lynch, J.D., Green, D. & Wheeler, W.C. (2006). observations and identification of the prey are made The amphibian tree of life. Bull. Am. Mus. Nat. easier by the fact that there are no fish in the pond Hist. 297, 1–370. other than a few large grass-eating carp and no other Jungfer, K-H. & Boehme, W. (1991). The newts are resident. It is also clear that adult newts backpack strategy of parental care in frogs, with are not a problem for some birds despite the belief notes on froglet-carrying in Stefania evansi that toxicity affords some protection. -
Or Exotrophic): a Larva That Feeds on Various Materials Not Parentally Derived, Or Trophic Eggs Provided by the Mother
Exotroph (or exotrophic): a larva that feeds on various materials not parentally derived, or trophic eggs provided by the mother. Explosive breeder: a species that breeds in a very short period (see explosive breeding). Explosive breeding: when all animals of a population congregate and breed in a very short period. Family: a taxonomic category of related organisms ranking below an order and above a genus. Fibulare: the bone or cartilage of the tarsus that articulates with the fibula, which is the outer of the two bones of the hindlimb. Filament: a slender tip of the tail in some tadpoles. Firmisternal pectoral girdle: an anuran pectoral girdle in which the epicoracoid cartilages are fused along the midline. Fossorial: adapted to live underground. Also an ecomorphological guild that includes lotic, fusiform tadpoles that inhabit leaf mats in slow water areas. Frontal bones: cranial bones lying between the orbits and the parietal bones. Usually paired, but may fuse to form a single frontal bone, or fuse with the parietal bones to form a single frontoparietal bone. Frontoparietal bones: cranial bones consisting of the fused frontal and parietal bones. May be paired or fused in a single frontoparietal bone. Ganglion (pl. ganglia): an encapsulated neural structure consisting of a collection of cell bodies or neurons. Gastromyzophorous: an ecomorphological guild that includes lotic tadpoles that have the belly modified in a ventral sucker. Genus (pl. genera): a taxonomic category of related organisms ranking below a family and above a species. Gill: respiratory organ of aquatic organisms that breathe oxygen dissolved in water. Gill slit: one of a series of slitlike openings by which the water from the gill is discharged. -
2008 Board of Governors Report
American Society of Ichthyologists and Herpetologists Board of Governors Meeting Le Centre Sheraton Montréal Hotel Montréal, Quebec, Canada 23 July 2008 Maureen A. Donnelly Secretary Florida International University Biological Sciences 11200 SW 8th St. - OE 167 Miami, FL 33199 [email protected] 305.348.1235 31 May 2008 The ASIH Board of Governor's is scheduled to meet on Wednesday, 23 July 2008 from 1700- 1900 h in Salon A&B in the Le Centre Sheraton, Montréal Hotel. President Mushinsky plans to move blanket acceptance of all reports included in this book. Items that a governor wishes to discuss will be exempted from the motion for blanket acceptance and will be acted upon individually. We will cover the proposed consititutional changes following discussion of reports. Please remember to bring this booklet with you to the meeting. I will bring a few extra copies to Montreal. Please contact me directly (email is best - [email protected]) with any questions you may have. Please notify me if you will not be able to attend the meeting so I can share your regrets with the Governors. I will leave for Montréal on 20 July 2008 so try to contact me before that date if possible. I will arrive late on the afternoon of 22 July 2008. The Annual Business Meeting will be held on Sunday 27 July 2005 from 1800-2000 h in Salon A&C. Please plan to attend the BOG meeting and Annual Business Meeting. I look forward to seeing you in Montréal. Sincerely, Maureen A. Donnelly ASIH Secretary 1 ASIH BOARD OF GOVERNORS 2008 Past Presidents Executive Elected Officers Committee (not on EXEC) Atz, J.W. -
Anura | Eleutherodactylidae | Adelophryne Hoogmoed & Lescure, 1984 Fig. 101. Adelophryne Gutturosa Hoogmoed & Lescure, 1
Anura | Eleutherodactylidae | Adelophryne Hoogmoed & Lescure, 1984 Fig. 101. Adelophryne gutturosa Hoogmoed & Lescure, 1984. A. Dorsolateral view of male. B. Ventral surface of a male in life. C. Palm (preserved male specimen). D. Sole (preserved male specimen). E. Call, oscillogram. F. Call, spectrogram. (Photos by P. J. R. Kok). 151 11880-08_ABC-taxa5_01.indd880-08_ABC-taxa5_01.indd 115151 222-01-20092-01-2009 111:13:091:13:09 Anura | Hemiphractidae | Stefania Rivero, 1968 Stefania Rivero, 1968 “STEFANIAS” Fig. 102. Stefania roraimae, a species that does not occur in Kaieteur National Park; here from Mt Maringma. (Photo by P. J. R. Kok). Medium to large size Maxillary teeth present Pupil horizontally elliptical (Fig. 42A) Skin on dorsum smooth, shagreened, granular or tuberculate (Fig. 44A-D) Vocal sac absent (no vocal slits, Fig. 53) Fingers unwebbed Finger discs expanded (Fig. 51B) Finger I > II when fingers adpressed Toe V > III when toes adpressed Tympanum present, distinct (Fig. 43A) Frontoparietal and supratympanic crests absent or present (Fig. 41) 152 11880-08_ABC-taxa5_01.indd880-08_ABC-taxa5_01.indd 115252 222-01-20092-01-2009 111:13:121:13:12 Anura | Hemiphractidae | Stefania Rivero, 1968 The genus currently contains 18 species assigned to two different species groups: the Stefania evansi group (“narrow-headed”) and the S. goini group (“broad-headed”). Stefanias are nocturnal, terrestrial or arboreal. They inhabit tropical rainforest, high-tepui forest and tepui bog. Sexual dimorphism Males are distinctly smaller than females; there is no other evident sexual dimorphism or dichromatism. Eggs Eggs and neonates are carried on the back of the female, adhering to a mucus layer. -
Download Download
Phyllomedusa 7(2):143-148, 2008 © 2008 Departamento de Ciências Biológicas - ESALQ - USP ISSN 1519-1397 Ovipositing behavior in the egg-brooding frog Stefania ayangannae (Anura, Hemiphractidae) D. Bruce Means1, William E. Duellman2 and Valerie C. Clark3 1 Coastal Plains Institute and Land Conservancy, 1313 Milton Street, Tallahassee, FL 32303, USA. E-mail: [email protected]. 2 Natural History Museum and Biodiversity Research Center, University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045, USA. E-mail: [email protected]. 3 School of Pharmacy, Queen’s University in Belfast, Belfast BT9 7BL, Northern Ireland, UK. E-mail: [email protected]. Keywords: Anura, Hemiphractidae, Stefania ayangannae, ovipositing behavior, Wokomung Massif, Guyana. Palabras clave: Anura, Hemiphractidae, Stefania ayangannae, comportamiento de la postura, Wokomung Massif, Guyana. Frogs of the family Hemiphractidae, as for at least 6 of the 18 described species (Rivero recognized by Wiens et al. (2007), are unique 1968, Duellman and Hoogmoed 1984, Señaris among anurans in that the eggs develop on the et al. 1997, MacCulloch and Lathrop back or in dorsal pouches in the female 2006a,b,c). Oviposition, male behavior during (Duellman and Maness 1980). Females of fertilization, and placement of eggs on the species of Cryptobatrachus, Hemiphractus, and female’s dorsum have been described in one Stefania carry their eggs and young on their captive pair of Stefania (species not identified backs; the eggs are attached to the body by a but probably S. riveroi) from Yuruani tepui in glutinous material (Jungfer and Boehme 1991). Venezeula (Magdefrau 1991). Herein we In other hemiphractids, the eggs develop in a describe these behaviors in a wild pair of S. -
271 TSCHUDI J.J., VON. 1838. Classification Der Batrachier, Mit
TSCHUDI J.J., VON. 1838. Classification der Batrachier, mit Berücksichtigung der fossilen Thiere dieser Abtheilung der Reptilien. Neuchatel: 99 pp. UNESCO. 2008. Operational Guidelines for the Implementation of the World Heritage Convention. UNESCO World Heritage Centre, Paris: 163 pp. WAGLER, J.G. 1830. Natürliches System der Amphibien: mit vorangehender Classification der Saügerthiere und Vögel. Ein Betrag zur vergleichenden Zoologie. J.G. Cotta Buchhandlung, München: 354 pp. WAKE, M.H. 2006. A Brief History of Research on Gymnophionan Reproductive Biology and Development. In: EXBRAYAT, J.-M. (ed.). Reproductive Biology and Phylogeny of Gymnophiona (Caecilians). Reproductive Biology and Phylogeny Series 5: 1-37. WAKE, M.H. & CAMPBELL, J.A. 1983. A new genus and species of caecilian from the Sierra de Las Minas of Guatemala. Copeia 1983 (4): 857-863. WERNER, F. 1903. Neue Reptilien und Batrachier aus dem naturhistorischen Museum in Brüssel: Nebst Bemerkungen über einige andere Arten. Zoologischer Anzeiger 26: 246-253. WILKINSON, M. & NUSSBAUM, R.A. 2006. Caecilian Phylogeny and Classification. In: EXBRAYAT, J.-M. (ed.). Reproductive Biology and Phylogeny of Gymnophiona (Caecilians), Reproductive Biology and Phylogeny Series 5: 39-78. WILKINSON, M., KUPFER, A., MARQUES-PORTO, R. JEFFKINS, H., ANTONIAZZI, M. M. & JARED, C. 2008. One hundred million years of skin feeding? Extended parental care in a Neotropical caecilian (Amphibia: Gymnophiona). Biology Letters 4: 358- 361. ZIMMERMAN, B.L. 1983. A comparison of structural features of calls of open and forest habitat frog species in the Central Amazon. Herpetologica 39 (3): 235-246. ZIMMERMAN, B.L. & BOGART, J.P. 1984. Vocalizations of primary forest frog species in the Central Amazon. -
Systematic Review of the Frog Family Hylidae, with Special Reference to Hylinae: Phylogenetic Analysis and Taxonomic Revision
SYSTEMATIC REVIEW OF THE FROG FAMILY HYLIDAE, WITH SPECIAL REFERENCE TO HYLINAE: PHYLOGENETIC ANALYSIS AND TAXONOMIC REVISION JULIAÂ N FAIVOVICH Division of Vertebrate Zoology (Herpetology), American Museum of Natural History Department of Ecology, Evolution, and Environmental Biology (E3B) Columbia University, New York, NY ([email protected]) CEÂ LIO F.B. HADDAD Departamento de Zoologia, Instituto de BiocieÃncias, Unversidade Estadual Paulista, C.P. 199 13506-900 Rio Claro, SaÄo Paulo, Brazil ([email protected]) PAULO C.A. GARCIA Universidade de Mogi das Cruzes, AÂ rea de CieÃncias da SauÂde Curso de Biologia, Rua CaÃndido Xavier de Almeida e Souza 200 08780-911 Mogi das Cruzes, SaÄo Paulo, Brazil and Museu de Zoologia, Universidade de SaÄo Paulo, SaÄo Paulo, Brazil ([email protected]) DARREL R. FROST Division of Vertebrate Zoology (Herpetology), American Museum of Natural History ([email protected]) JONATHAN A. CAMPBELL Department of Biology, The University of Texas at Arlington Arlington, Texas 76019 ([email protected]) WARD C. WHEELER Division of Invertebrate Zoology, American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 294, 240 pp., 16 ®gures, 2 tables, 5 appendices Issued June 24, 2005 Copyright q American Museum of Natural History 2005 ISSN 0003-0090 CONTENTS Abstract ....................................................................... 6 Resumo ....................................................................... -
SHIS 089.Pdf
L HO CHECKLIST AND BIBLIOGRAPHY (1960-85) OF THE VENEZUELAN HERPETOFAUNA JAIME E. PEFAUR Ecologia Animal Facultad de Ciencias Universidad de Los Andes SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 89 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are. distributed free to interested individuals. Libraries, herpetological associations, and research- laboratories are invited to exchange their publications with the Division of Amphibians and*Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The Venezuelan herpetofauna is fairly large compared to any other belonging to a tropical country of similar area. The diversity is due to both a complex physiography and an active speciation process. The present checklist includes, to the best of my knowledge, all species recorded for Venezuela and described through December 1990. Of the 490 recorded taxa, 15% have been described in the last two decades. The process of description could be stronger if a checklist were available; however, there is no such list. Because many additional species are known but not described and many additional ones awaiting discovery, I offer this checklist as a base line reference tool, realizing that it will require continuing modifications to keep it current with new research discoveries and systematic rearrangements. -
Chapter 11 – General Conclusion: the “Lost World” Conundrum, Insights from Pantepui Amphibians and Reptiles 271 Develop with Or Without Gene Flow
Cover Page The handle http://hdl.handle.net/1887/20908 holds various files of this Leiden University dissertation. Author: Kok, Philippe Jacques Robert Title: Islands in the sky : species diversity, evolutionary history, and patterns of endemism of the Pantepui Herpetofauna Issue Date: 2013-05-28 11 GENERAL CONCLUSION: THE “LOST WORLD” CONUNDRUM, INSIGHTS FROM PANTEPUI AMPHIBIANS AND REPTILES “Imagination is more important than knowledge” A. Einstein “Se non è vero, è ben trovato” Italian proverb Neotropical diversification, timing and evolutionary causes Timing of the origin and evolutionary causes of the high species diversity of many taxonomic groups in the Amazon Basin and adjacent Guiana Shield lowlands remain highly controversial (e.g. Hoorn et al. 2010, Rull 2011, Hoorn et al. 2011). Most explanations of diversification mechanisms have focused on the role of geographic isolation through vicariance to produce phenotypic divergence (allopatric speciation). The causes of isolation of populations have been explained by several hypotheses (briefly reviewed in Antonelli et al. 2010), the major ones being the Riverine Barrier hypothesis (Ayres & Clutton-Brock 1992), the Marine Transgression hypothesis (Frailey et al. 1988), the Disturbance- Vicariance hypothesis (Colinvaux 1993, expanded by Bush 1994), the Vanishing Refuge hypothesis (Vanzolini & Williams 1981), the Taxon Pulses hypothesis (Erwin 1979), and the Refuge hypothesis (i.a. Haffer 1969, Mayr & O’Hara 1986, Haffer & Prance 2001). The latter, for a long time treated as the definitive driver of the rich Amazonian biodiversity, has recently been strongly criticized on the basis of recent paleoecological and paleobotanical data (i.a. Bush 1994, Rull 2004a, b, Bush & de Oliveira 2006, Hoorn et al.