<<

SYSTEMATIC REVIEW OF THE FAMILY , WITH SPECIAL REFERENCE TO : PHYLOGENETIC ANALYSIS AND TAXONOMIC REVISION

JULIAÂ N FAIVOVICH Division of Vertebrate (), American Museum of Natural History Department of Ecology, Evolution, and Environmental Biology (E3B) Columbia University, New York, NY ([email protected])

CEÂ LIO F.B. HADDAD Departamento de Zoologia, Instituto de BiocieÃncias, Unversidade Estadual Paulista, C.P. 199 13506-900 Rio Claro, SaÄo Paulo, ([email protected])

PAULO C.A. GARCIA Universidade de Mogi das Cruzes, AÂ rea de CieÃncias da SauÂde Curso de Biologia, Rua CaÃndido Xavier de Almeida e Souza 200 08780-911 Mogi das Cruzes, SaÄo Paulo, Brazil and Museu de Zoologia, Universidade de SaÄo Paulo, SaÄo Paulo, Brazil ([email protected])

DARREL R. FROST Division of Vertebrate Zoology (Herpetology), American Museum of Natural History ([email protected])

JONATHAN A. CAMPBELL Department of Biology, The University of Texas at Arlington Arlington, Texas 76019 ([email protected])

WARD C. WHEELER Division of Invertebrate Zoology, American Museum of Natural History ([email protected])

BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 294, 240 pp., 16 ®gures, 2 tables, 5 appendices Issued June 24, 2005 Copyright ᭧ American Museum of Natural History 2005 ISSN 0003-0090 CONTENTS Abstract ...... 6 Resumo ...... 7 Resumen ...... 8 Introduction ...... 9 Materials and Methods ...... 9 Taxon Sampling ...... 9 Outgroup Selection ...... 13 Basal Neobatrachians ...... 13 ...... 13 ...... 13 The Ingroup: Hylidae ...... 14 Hemiphractinae ...... 15 ...... 17 Phyllomedusinae ...... 19 Hylinae ...... 20 Gladiator ...... 21 Andean Stream-Breeding ...... 26 The 30-Chromosome Hyla ...... 27 Middle American/Holarctic Clade ...... 32 Casque-Headed Frogs and Related Genera ...... 38 and Species Groups of Hyla Not Associated with Other Clades ..... 40 Other Genera ...... 41 Character Sampling ...... 43 Gene Selection ...... 43 DNA Isolation and Sequencing ...... 43 Morphology ...... 44 Da Silva's (1998) Dissertation ...... 45 Phylogenetic Analysis ...... 45 Results ...... 48 Discussion ...... 49 Major Patterns of Relationships of Hylidae and Outgroups ...... 49 Pelodryadinae and Phyllomedusinae ...... 50 Pelodryadinae ...... 53 Phyllomedusinae ...... 54 Major Patterns of Relationships Within Hylinae ...... 54 South American I Clade ...... 54 Andean Stream-Breeding Hyla and the Tepuian Clade ...... 57 Gladiator Frogs ...... 59 Atlantic/Cerrado Clade ...... 59 Green Clade ...... 60 True Gladiator Frog Clade ...... 60 South American II Clade ...... 61 Relationships of ...... 61 , , and ...... 62 , , and the 30-Chromosome Hyla ...... 63 Middle American/Holarctic Clade ...... 66 Lower Central American Lineage ...... 70 Real Hyla ...... 72 South American/West Indian Casque-Headed Frogs ...... 72 Taxonomic Conclusions: A New of Hylinae and Phyllomedusinae ...... 74 Hylinae Ra®nesque, 1815 ...... 75 2 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 3

Cophomantini Hoffmann, 1878 ...... 75 Aplastodiscus A. Lutz in B. Lutz, 1950 ...... 76 Aplastodiscus albofrenatus Group ...... 82 Aplastodiscus albosignatus Group ...... 82 Group ...... 82 , new ...... 82 Bokermannohyla circumdata Group ...... 82 Bokermannohyla claresignata Group ...... 83 Bokermannohyla martinsi Group ...... 83 Bokermannohyla pseudopseudis Group ...... 83 Peters, 1882 ...... 84 Hyloscirtus armatus Group ...... 84 Hyloscirtus bogotensis Group ...... 84 Hyloscirtus larinopygion Group ...... 85 Hypsiboas Wagler, 1830 ...... 85 Hypsiboas albopunctatus Group ...... 86 Hypsiboas benitezi Group ...... 86 Hypsiboas faber Group ...... 87 Hypsiboas pellucens Group ...... 87 Hypsiboas pulchellus Group ...... 87 Hypsiboas punctatus Group ...... 88 Hypsiboas semilineatus Group ...... 88 Species of Hypsiboas Unassigned to Group ...... 89 , new genus ...... 89 Dendropsophini Fitzinger, 1843 ...... 90 Fitzinger, 1843 ...... 90 Dendropsophus columbianus Group ...... 90 Dendropsophus garagoensis Group ...... 90 Dendropsophus labialis Group ...... 91 Dendropsophus leucophyllatus Group ...... 91 Group ...... 91 Dendropsophus microcephalus Group ...... 91 Dendropsophus minimus Group ...... 92 Group ...... 92 Group ...... 93 Species of Dendropsophus Unassigned to Group ...... 93 Lysapsus Cope, 1862 ...... 93 Pseudis Wagler, 1830 ...... 93 Scarthyla Duellman and de SaÂ, 1988 ...... 94 Scinax Wagler, 1830 ...... 94 Scinax catharinae Clade ...... 95 Clade ...... 96 Sphaenorhynchus Tschudi, 1838 ...... 97 Xenohyla Izecksohn, 1996 ...... 98 Hylini Ra®nesque, 1815 ...... 98 Acris DumeÂril and Bibron, 1841 ...... 99 Anotheca Smith, 1939 ...... 99 new genus ...... 99 , new genus ...... 99 Campbell and Smith, 1992 ...... 100 , new genus ...... 100 Brocchi, 1879 ...... 100 Exerodonta sumichrasti Group ...... 101 4 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Species of Exerodonta Unassigned to Group ...... 101 Hyla Laurenti, 1768 ...... 101 Hyla arborea Group ...... 101 Hyla cinerea Group ...... 102 Hyla eximia Group ...... 102 Hyla versicolor Group ...... 102 Species of Hyla Unassigned to Group ...... 102 , new genus ...... 102 Isthmohyla pictipes Group ...... 103 Isthmohyla pseudopuma Group ...... 103 , new genus ...... 103 Plectrohyla Brocchi, 1877 ...... 104 Plectrohyla bistincta Group ...... 104 Plectrohyla guatemalensis Group ...... 105 Pseudacris Fitzinger, 1843 ...... 105 Pseudacris crucifer Clade ...... 105 Pseudacris ornata Clade ...... 106 Pseudacris nigrita Clade ...... 106 Pseudacris regilla Clade ...... 106 Taylor, 1944 ...... 106 Smilisca Cope, 1865 ...... 106 , new genus ...... 107 Cope, 1866 ...... 107 Lophiohylini Miranda-Ribeiro, 1926 ...... 107 Miranda-Ribeiro, 1920 ...... 108 Trueb, 1970 ...... 108 Boulenger, 1896 ...... 108 , new genus ...... 109 Boulenger, 1882 ...... 109 Osteocephalus Steindachner, 1862 ...... 109 Fitzinger, 1843 ...... 109 Wagler, 1830 ...... 109 Phyllodytes auratus Group ...... 110 Phyllodytes luteolus Group ...... 110 Phyllodytes tuberculosus Group ...... 110 Species of Phyllodytes Unassigned to Group ...... 110 AyarzaguÈena and SenÄaris, ``1992'' [1993] ...... 110 Tschudi, 1838 ...... 111 Incertae Sedis and Nomina Dubia ...... 111 Phyllomedusinae GuÈnther, 1858 ...... 111 Cope, 1864 ...... 113 , new genus ...... 113 Peters, ``1872'' [1873] ...... 114 Hylomantis aspera Group ...... 115 Hylomantis buckleyi Group ...... 115 Pachymedusa Duellman, 1968 ...... 115 Cruz, 1990 ...... 115 Miranda-Ribeiro, 1923 ...... 116 Wagler, 1830 ...... 116 Phyllomedusa burmeisteri Group ...... 117 Phyllomedusa hypochondrialis Group ...... 117 Phyllomedusa perinesos Group ...... 117 Phyllomedusa tarsius Group ...... 117 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 5

Species of Phyllomedusa Unassigned to Group ...... 118 Biogeographic Commentary ...... 118 Relationships Between Australia and South America ...... 118 Relationships Between South and Middle America ...... 118 South America ...... 119 Guayana Highlands±Andes±Atlantic ...... 119 Guayana Highlands ...... 119 Impact of the Andes in Hyline Evolution ...... 119 Atlantic Forest ...... 123 Origin of West Indian Hylids ...... 123 Middle America and the Holarctic ...... 124 A Rough Temporal Framework: Clues from the Hylid Fossil Record ...... 125 Future Directions ...... 128 Acknowledgments ...... 128 References ...... 130 Appendix 1: Summary of Taxonomic Changes ...... 152 Appendix 2: Locality Data and GenBank Accessions ...... 174 Appendix 3: Morphological Characters ...... 200 Appendix 4: Additional Comments on Some Species ...... 202 Appendix 5: List of Molecular Synapomorphies ...... 205 Note added in proof ...... 228 Index ...... 229 ABSTRACT

Hylidae is a large family of American, Australopapuan, and temperate Eurasian treefrogs of approximately 870 known species, divided among four subfamilies. Although some groups of Hylidae have been addressed phylogenetically, a comprehensive phylogenetic analysis has never been presented. The ®rst goal of this paper is to review the current state of hylid systematics. We focus on the very large subfamily Hylinae (590 species), evaluate the monophyly of named taxa, and examine the evidential basis of the existing taxonomy. The second objective is to perform a phylogenetic analysis using mostly DNA sequence data in order to (1) test the monophyly of the Hylidae; (2) determine its constituent taxa, with special attention to the genera and species groups which form the subfamily Hylinae, and c) propose a new, monophyletic taxonomy consistent with the hypothesized relationships. We present a phylogenetic analysis of hylid frogs based on 276 terminals, including 228 hylids and 48 outgroup taxa. Included are exemplars of all but 1 of the 41 genera of Hylidae (of all four nominal subfamilies) and 39 of the 41 currently recognized species groups of the species-rich genus Hyla. The included taxa allowed us to test the monophyly of 24 of the 35 nonmonotypic genera and 25 species groups of Hyla. The phylogenetic analysis includes approximately 5100 base pairs from four mitochondrial (12S, tRNA valine, 16S, and cyto- chrome b) and ®ve nuclear genes (rhodopsin, tyrosinase, RAG-1, seventh in absentia, and 28S), and a small data set from foot musculature. Concurring with previous studies, the present analysis indicates that Hemiphractinae are not related to the other three hylid subfamilies. It is therefore removed from the family and ten- tatively considered a subfamily of the paraphyletic . Hylidae is now restricted to Hylinae, Pelodryadinae, and Phyllomedusinae. Our results support a sister-group relation- ship between Pelodryadinae and Phyllomedusinae, which together form the sister taxon of Hylinae. Agalychnis, Phyllomedusa, Litoria, Hyla, Osteocephalus, Phrynohyas, Ptychohyla, Scinax, Smilisca, and Trachycephalus are not monophyletic. Within Hyla, the H. albomargin- ata, H. albopunctata, H. arborea, H. boans, H. cinerea, H. eximia, H. geographica, H. gra- nosa, H. microcephala, H. miotympanum, H. tuberculosa, and H. versicolor groups are also demonstrably nonmonophyletic. Hylinae is composed of four major clades. The ®rst of these includes the Andean stream-breeding Hyla, Aplastodiscus, all Gladiator Frogs, and a Tepuian clade. The second clade is composed of the 30-chromosome Hyla, Lysapsus, Pseudis, Scar- thyla, Scinax (including the H. uruguaya group), Sphaenorhynchus, and Xenohyla. The third major clade is composed of Nyctimantis, Phrynohyas, Phyllodytes, and all South American/ West Indian casque-headed frogs: Aparasphenodon, Argenteohyla, Corythomantis, Osteoce- phalus, Osteopilus, Tepuihyla, and Trachycephalus. The fourth major clade is composed of most of the Middle American/Holarctic species groups of Hyla and the genera Acris, Anotheca, Duellmanohyla, Plectrohyla, Pseudacris, Ptychohyla, Pternohyla, Smilisca, and Triprion.A new monophyletic taxonomy mirroring these results is presented where Hylinae is divided into four tribes. Of the species currently in ``Hyla'', 297 of the 353 species are placed in 15 genera; of these, 4 are currently recognized, 4 are resurrected names, and 7 are new. Hyla is restricted to H. femoralis and the H. arborea, H. cinerea, H. eximia, and H. versicolor groups, whose contents are rede®ned. Phrynohyas is placed in the synonymy of Trachycephalus, and Pternohyla is placed in the synonymy of Smilisca. The genus Dendropsophus is resurrected to include all former species of Hyla known or suspected to have 30 chromosomes. Exerodonta is resurrected to include the former Hyla sumichrasti group and some members of the former H. miotympanum group. Hyloscirtus is resurrected for the former Hyla armata, H. bogotensis, and H. larinopygion groups. Hypsiboas is resurrected to include several species groupsÐmany of them rede®ned hereÐof Gladiator Frogs. The former Hyla albofrenata and H. albosignata complexes of the H. albomarginata group are included in Aplastodiscus. New generic names are erected for (1) Agalychnis calcarifer and A. craspedopus; (2) Os- teocephalus langsdorf®i; the (3) Hyla aromatica, (4) H. bromeliacia, (5) H. godmani, (6) H. mixomaculata, (7) H. taeniopus, (8) and H. tuberculosa groups; (9) the clade composed of the H. pictipes and H. pseudopuma groups; and (10) a clade composed of the H. circumdata, H. claresignata, H. martinsi, and H. pseudopseudis groups. 6 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 7

RESUMO

A famõÂlia Hylidae e constituõÂda por aproximadamente 870 espeÂcies, agrupadas em quatro subfamõÂlias e com distribuicËaÄo nas AmeÂricas, AustraÂlia/Papua-Nova Guine e EuraÂsia. Apesar de alguns grupos de Hylidae terem sido estudados separadamente, uma hipoÂtese ®logeneÂtica compreensiva para a famõÂlia nunca foi proposta. O objetivo inicial desse estudo e rever o atual estado sistemaÂtico da famõÂlia Hylidae. AtencËaÄo especial e dada aÁ subfamõÂlia Hylinae (590 especies), para a qual noÂs avaliamos o mono®letismo dos taxa atualmente reconhecidos e examinamos as bases do arranjo taxonoÃmico aceito no presente. O segundo objetivo e realizar uma anaÂlise ®logeneÂtica usando caracteres obtidos, em sua maioria, a partir de sequÈeÃncias de ADN, a ®m de (1) testar o mono®letismo da famõÂlia Hylidae;(2) determinar sua constituicËaÄo taxonoÃmica, dando eÃnfase aos geÃneros e grupos de espeÂcies incluõÂdos na subfamõÂlia Hylinae; e (3) propor uma nova taxonomia baseada em grupos mono®leÂticos e consistente com a hipoÂtese ®logeneÂtica aqui apresentada. Neste trabalho apresentamos, juntamente com uma revisaÄo sistemaÂtica dos hilõÂdeos, uma anaÂlise ®logeneÂtica baseada em 275 terminais, sendo 227 de hilõÂdeos, mais 48 taxas represen- tando grupos externos. Na anaÂlise ®logeneÂtica estaÄo representados 40 dos 41 geÃneros de Hy- lidae das quatro subfamõÂlias reconhecidas e 39 dos 41 grupos atualmente reconhecidos para o grande geÃnero Hyla.OstaÂxons incluõÂdos permitem testar a mono®lia de 24 dos geÃneros naÄo monotõÂpicos e 25 grupos de espeÂcies de Hyla. A anaÂlise ®logeneÂtica inclui aproximadamente 5100 pares de bases de quatro genes mitocondriais (12S, tval, 16S, citocromo b) e cinco genes nucleares (rodopsina, tirosinase, RAG-1, seventh in absentia e 28s), aleÂm de um pequeno conjunto de dados sobre a musculatura do peÂ. De forma similar ao que tem sido observado em outros estudos, a presente anaÂlise indica que os Hemiphractinae naÄo saÄo relacionados aÁs outras treÃs subfamõÂlias de hilõÂdeos, portanto, sendo removidos desta famõÂlia e tentativamente considerados como uma subfamõÂlia dos par- a®leÂticos Leptodactylidae. Hylidae e agora restrita a Hylinae, Pelodryadinae e Phyllomedusi- nae. Nossos resultados corroboram uma relacËaÄo de grupos irmaÄos entre estas duas uÂltimas subfamõÂlias, que juntas correspondem ao taÂxon irmaÄo de Hylinae. Phyllomedusa, Agalychnis, Litoria, Hyla, Osteocephalus, Phrynohyas, Pseudis, Ptychohyla, Scinax, Smilisca e Trachy- cephalus naÄo saÄo mono®leÂticos. Dentro do geÃnero Hyla, os grupos de H. albomarginata, H. albopunctata, H. arborea, H. boans, H. cinerea, H. eximia, H. geographica, H. granosa, H. microcephala, H. miotympanum, H. tuberculosa e H. versicolor naÄo saÄo mono®leÂticos. Em nossa anaÂlise, Hylinae aparece composta por quatro grandes clados. O primeiro deles incluindo todas as raÄs-gladiadoras, as espeÂcies andinas de Hyla que se reproduzem em ria- chos e um clado dos Tepuis. O segundo grande clado e composto por Scinax, Sphaenorhyn- chus, ``pseudõÂdeos'', Scarthyla e as espeÂcies de Hyla com 30 cromossomos. O terceiro gran- de clado e composto por Phyllodytes, Phrynohyas, Nyctimantis e todas as seguintes perer- ecas-de-capacete da AmeÂrica do Sul e IÂndias Ocidentais: Argenteohyla, Aparasphenodon, Corythomantis, Osteocephalus, Osteopilus, Tepuihyla e Trachycephalus. O quarto e uÂltimo grande clado e composto pela maioria dos grupos de espeÂcies de Hyla centro-americanos/ holaÂrticos e pelos geÃneros Acris, Anotheca, Duellmanohyla, Plectrohyla, Pseudacris, Pty- chohyla, Pternohyla, Smilisca e Triprion.E apresentada uma nova taxonomia mono®leÂtica, espelhando estes resultados, onde Hylinae e dividida em quatro tribos. Das espeÂcies corren- temente incluõÂdas em Hyla, 297 de 353 saÄo alocadas em 15 geÃneros, dos quais quatro saÄo correntemente reconhecidos, quatro saÄo nomes revalidados e seis saÄo novas descricËoÄes. O geÃnero Hyla ®ca restrito aos grupos de H. arborea, H. cinerea, H. eximia, H. femoralis e H. versicolor, sendo o conteuÂdo de alguns destes grupos rede®nido. Phrynohyas e sinon- imizada a Trachycephalus, Pternohyla e sinonimizada a Smilisca e Duellmanohyla e sinon- imizada a Ptychohyla.OgeÃnero Dendropsophus e revalidado para as espeÂcies de Hyla com, ou presumivelmente tendo, 30 cromossomos. Exerodonta e revalidado, passando a incluir os grupos de Hyla sumichrasti e H. pinorum. Hyloscirtus e revalidado para acomodar os grupos de Hyla armata, H. bogotensis e H. larinopygion. Hypsiboas e revalidada para acom- odar diversos grupos de espeÂciesÐmuitos deles aqui rede®nidosÐde raÄs-gladiadoras. Os complexos de Hyla albofrenata e H. albosignata, do grupo de H. albomarginata,saÄo in- cluõÂdos no geÃnero Aplastodiscus. Nomes geneÂricos novos saÄo apresentados para (1) Agalychnis calcarifer e A. craspedopus, (2) Osteocephalus langsdorf®i e para os grupos de espeÂcies de (3) Hyla aromatica, (4) H. 8 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

bromeliacia, (5) H. godmani, (6) H. mixomaculata, (7) H. taeniopus, (8) H. tuberculosa,e para o clado compostos pelos grupos de espeÂcies de (9) H. pictipes e H. pseudopuma e para o clado composto pelos grupos de espeÂcies de (10) H. circumdata, H. claresignata, H. martinsi e H. pseudopseudis.

RESUMEN Hylidae es una familia muy grande (aproximadamente 870 especies conocidas) de ranas arboricolas de America, Australia y Papua, y Eurasia, y esta dividida en cuatro subfamilias. Aunque existen algunos estudios que analizan las relaciones ®logeneticas de algunos grupos aislados de Hylidae, no existe ningun analisis ®logenetico de toda la familia. Los objetivos de este trabajo son, primero, revisar el estado actual de la sistematica de la familia, haciendo enfasis en la subfamilia Hylinae, que es la mas grande (590 especies), y evaluando la evidencia existente para la mono®lia de los distintos agrupamientos taxonomicos. El segundo objetivo es realizar un analisis ®logenetico basado principalmente en secuencias de ADN, con el proposito de a) testear la mono®lia de la familia Hylidae, b) determinar que taxa la constituyen, con especial atencion en los generos y grupos de especies de la subfamilia Hylinae, c) proponer una nueva taxonomia mono®letica, consistente con nuestra hipotesis ®logenetica. Se presenta una revision completa del estado de conocimiento de la sistematica de la familia Hylidae, junto con un analisis ®logenetico de 276 terminales, incluyendo 228 Hylidae y 48 grupos externos. Se incluyen representantes de 40 de los 41 generos de de las cuatro subfam- ilias de Hylidae, y de 39 de los 41 grupos de especies del genero Hyla. Asimismo, los taxa incluidos permitieron testear la mono®lia de 24 de los 35 generos no monotipicos, y 25 grupos de especies de Hyla. El analisis ®logenetico incluye aproximadamente 5100 pares de bases de cuatro genes mitocondriales (12S, tRNA valina, 16S, cytocromo b) y cinco genes nucleares (rhodopsina, RAG-1, seventh in absentia, tyrosinasa y 28S), y una matriz de 38 characteres de musculatura del pie. En coincidencia con estudios anteriores, los resultados del analisis indican que los Hemi- phractinae no pertenecen a Hylidae, y por lo tanto se los excluye de la familia, que hora es restringida a Hylinae, Pelodryadinae, y Phyllomedusinae. Nuestros resultados soportan la mo- no®lia de estas dos ultimas subfamilias, que a su vez son el taxon hermano de Hylinae. Phyllomedusa, Agalychnis, Litoria, Hyla, Osteocephalus, Phrynohyas, Trachycephalus, Smi- lisca, Ptychohyla,yScinax no son mono¯eticos. Ademas, dentro de Hyla, los grupos de H. albomarginata, H. albopunctata, H. arborea, H. boans, H. cinerea, H. eximia, H. geographica, H. granosa, H. microcephala, H. miotympanum, H. tuberculosa,yH. versicolor tampoco son mono®leticos. Hylinae resulta estar compuesto por cuatro clados principales. El primero de estos incluye a Aplastodiscus y todos los grupos de especies de Hyla incluidos en las ranas gladiadoras, las Hyla que se reproducen en arroyos de los Andes, y un clado de los Tepuies Guayaneses. El segundo clado principal esta compuesto por Scarthyla, Scinax, Sphaenorhyn- chus, ``pseudidos'', y las Hyla de 30 cromosomas. El tercer clado principal esta compuesto por Nyctimantis, Phyllodytes, Phrynohyas, y todas las ranas ``cabeza de casco'' sudamericanas y de las Indias Occidentales: Argenteohyla, Aparasphenodon, Corythomantis, Osteopilus, Os- teocephalus, Trachycephalus,yTepuihyla. El cuarto clado principal esta compuesto por la mayoria de los grupos de especies de Hyla Centro Americanos y holarticos y los generos Acris, Anotheca, Duellmanohyla, Plectrohyla, Pseudacris, Ptychohyla, Pternohyla, Smilisca, y Triprion. Con base en estos resultados, se presenta una nueva taxonomia mono®letica, adonde Hylinae es dividida en cuatro tribus. Ademas, 297 de las 353 especies hasta ahora incluidas en Hyla son divididas en 15 generos, cuatro de los cuales son generos que ya estaban en uso, cuatro son nombres resucitados de la sinonimia de Hyla, y siete son nuevos. Hyla es restringido a H. femoralis y los grupos de H. arborea, H. cinera, H. eximia,eH. versicolor, cuyos conten- idos son en algunos casos rede®nidos. Asi mismo, Phrynohyas es incluido en la sinonimia de Trachycephalus,yPternohyla en la sinonimia de Smilisca. Dendropsophus es revalidado para incluir todas las especies previamente incluidas en los grupos de especies de 30 cromosomas, o sospechadas de tener 30 cromosomas. Exerodonta es revalidado para incluir el grupo de Hyla sumichrasti, y un fragmento de especies incluidas en el grupo de H. miotympanum. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 9

Hyloscirtus es revalidado para incluir los grupos de H. armata, H. bogotensis,eH. larino- pygion. Hypsiboas es revalidado para incluir muchos grupos de especiesÐvarios de ellos aqui rede®nidosÐde ranas gladiadoras. Los complejos de Hyla albofrenata e H. albosignata del grupo de H. albomarginata son incluidos en Aplastodiscus. Nuevos nombres genericos son propuestos para (1) Agalychnis calcarifer y A. craspedopus, (2) Osteocephalus langsdorf®i, los grupos de (3) Hyla aromatica, (4) H. bromeliacia, (5) H. godmani, (6) H. mixomaculata,(7) H. taeniopus, (8) H. tuberculosa, y para los clados com- puestos por los grupos de (9) H. pictipes y H. pseudopuma, y por los grupos de (10) H. circumdata, H. claresignata, H. martinsi,eH. pseudopseudis.

INTRODUCTION sociated with the selection of the terminal Hylidae is a large family of American, taxa. In an ideal phylogenetic study, all ter- Australopapuan, and temperate Eurasian minal descendants of a given hypothetical treefrogs of approximately 870 known spe- ancestor should to be included in order to cies, composed of four subfamilies (Duell- avoid ``problems'' due to taxon sampling. man, 2001; Darst and Cannatella, 2004; This ideal condition is unattainable, and all Frost, 2004). Although some groups of Hy- notions of relationships among organisms are lidae have been addressed phylogenetically affected to an unknown degree by incom- (e.g., Campbell and Smith, 1992; Duellman plete taxon sampling. Because there is no and Campbell, 1992; Mendelson et al., 2000; way of ever knowing all the hylid species Faivovich, 2002; Haas, 2003; Moriarty and that have become extinct, we concentrate on Cannatella, 2004; Faivovich et al., 2004), a the diversity that we do know. Furthermore, comprehensive phylogenetic analysis has due to the unavailability of samples we can- never been presented. not include sequences of all of the nearly 860 The ®rst goal of this paper is to review the currently described species of Hylidae. What, state of hylid systematics. We focus on the therefore, is the best taxon sampling for this very large subfamily Hylinae, evaluate the study? Because our primary goal is to test monophyly of named taxa, and examine the the monophyly of all available genera and evidential basis of the existing taxonomy. species groups of Hylidae, the most appro- The second objective is to perform a phylo- priate terminals to include are those that pro- genetic analysis using four mitochondrial and vide the strongest test of previously hypoth- ®ve nuclear genes in order to (1) test the esized relations. By considering morpholog- monophyly of the family Hylidae; (2) deter- ical divergence as a rough guide to DNA se- mine its constituent taxa, with special atten- quence diversity, maximally diverse taxa tion to the genera and species groups which within a given group are likely to pose a form the subfamily Hylinae; and (3) propose stronger test of its monophyly than do mor- a new, monophyletic taxonomy consistent with the hypothesized relationships. phologically similar taxa (Prendini, 2001). Groups for which no apparent synapomor- MATERIALS AND METHODS phies are known are a priori more likely to In most revisionary studies involving ma- be nonmonophyletic, and therefore good rep- jor taxonomic rearrangements and phyloge- resentations of the morphological diversity of netic analyses it is normal to have a section these groups are especially appropriate. Our on the history of taxonomic changes. The success varied in securing multiple represen- scale of this particular study makes that goal tatives of these groups. impractical. A discussion of the state of the The following discussion deals in part taxonomy of hylid frogs is dealt with simul- with the state of knowledge of frog phylo- taneously with discussions of the taxa chosen genetics. Included within the discussion is a for the purpose of phylogenetic analysis. list of terminals used in this analysis along with a justi®cation and explanation for our TAXON SAMPLING choices. A summary of the species included Any phylogenetic analysis has an impor- is presented in table 1. To conserve space, tant component of experimental design as- species authorships are not mentioned in the 10 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

TABLE 1 Species Included in this Analysis and Species Groups or Genera They Represent 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 11

TABLE 1 (Continued) 12 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

TABLE 1 (Continued) 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 13 text but are given in the section ``Taxonomic Ranoidea Conclusions: A New Taxonomy of Hylinae Recent papers dealing with ranoid groups and Phyllomedusinae'' and in appendix 1. (Emerson et al., 2000; Vences et al., 2003a) For museum abbreviations used throughout or at least ranoid exemplars (Biju and Bos- this paper see appendix 2. suyt, 2003; Darst and Cannatella, 2004) have suggested the existence of three major OUTGROUP SELECTION clades, although this remains to be elucidat- ed. The three major clades are composed of Recent studies (Haas, 2003; Darst and (1) , Astylosternidae, Hemi- Cannatella, 2004) have suggested that the sotidae, and ; (2) ; Hylidae as traditionally understood is not and (3) the remaining ranoids (including Pe- monophyletic, with the Hemiphractinae dis- tropedetidae, , , placed phylogenetically from the Hylinae, and the paraphyletic Ranidae). We include Phyllomedusinae, and Pelodryadinae. The exemplars of Astylosternidae, Hyperoliidae, aforementioned studies did not provide ex- Hemisotidae, Microhylidae, Ranidae, Man- tensive outgroup comparisons. In order to tellidae, and Rhacophoridae. avail ourselves of a strong test of hylid monophyly, we included 48 nonhylid out- Hyloidea group taxa representing 14 neobatrachian families. The Hylidae has long been considered to be embedded within a poorly de®ned major group of neobatrachians (Nicholls, 1916; No- Basal Neobatrachians ble, 1922; Lynch, 1971, 1973; Ford and Can- Heleophrynidae, , Limnodyn- natella, 1993) for which no morphological astinae and Myobatrachinae1 have been re- evidence of monophyly exists, although mo- lated to each other by several authors (Lynch, lecular evidence (Hay et al., 1995; Ruvinsky 1973; Duellman and Trueb, 1986; Ford and and Maxson, 1996; Darst and Cannatella, 2004) does support its monophyly. As rede- Cannatella, 1993; Hay et al., 1995; Ruvinsky ®ned by Darst and Cannatella (2004) Hylo- and Maxson, 1996; Biju and Bossuyt, 2003; idea includes the nonmonophyletic Lepto- Darst and Cannatella, 2004). While in the dactylidae (Ford and Cannatella, 1993; Haas, past they were considered part of Hyloidea, 2003), Dendrobatidae, Hylidae, Bufonidae, they were recently excluded by Darst and , Centrolenidae, Rhinoder- Cannatella (2004). The evidence indicates matidae, and the monotypic Allophrynidae. that they are basal neobatrachians distantly In order to have a strong test of the mono- related to the apparently monophyletic Hy- phyly of hylids, we include representatives loidea; however, their exact positions and in- of most of the nonhylid hyloid families. terrelationships are still unclear (Darst and The monophyly of Dendrobatidae is not Cannatella, 2004; Haas, 2003). We include controversial (see Grant et al., 1997), al- one heleophrynid (Heleophryne purcelli), though recent phylogenetic analyses using ri- one myobatrachine (Pseudophryne bibroni), bosomal mitochondrial sequences (Vences et and two limnodynastines (Limnodynastes al., 2000; Santos et al., 2003; Vences et al., salmini and Neobatrachus sudelli) in our 2003b) show that there is a serious need to study. Furthermore, because some members rede®ne most of the currently recognized of the Australopapuan hylids have been pos- genera. According to the results of Vences et ited to be related to the al. (2003b), there are two major clades of (Lynch, 1971; Savage, 1973), their inclusion dendrobatids: (1) one composed of Dendro- provides a strong test of hylid monophyly. bates, Phyllobates, Cryptophyllobates, Epi- pedobates (paraphyletic), Minyobates, and several groups of the rampantly polyphyletic 1 We are referring to these two myobatrachid subfam- ilies separately; we are not aware of any putative syna- Colostethus; and (2) another clade composed pomorphy supporting the monophyly of Myobatrachi- of Mannophryne, Nephelobates, , dae. and two separate clades of Colostethus (none 14 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 of the aforementioned analyses included the large, few in number; Lynch, 19712) and apparently primitive genus Aromobates; see Leptodactylinae (presence of a bony element Myers et al. 1991). We include as exemplars in the sternum; Lynch, 1971). The analysis of the ®rst major clade Dendrobates auratus of Darst and Cannatella (2004) corroborated and Phyllobates bicolor, and as exemplar of the monophyly of these two groups, albeit the second clade, Colostethus talamancae. with limited taxon sampling. In the analysis Bufonidae is a monophyletic group (for a by Haas (2003), the exemplars of Leptodac- list of morphological synapomorphies, see tylinae were not monophyletic. No demon- Ford and Cannatella, 1993; Haas, 2003) for strable synapomorphies are known for Cer- which no study addressing comprehensively atophryinae, Cycloramphinae or Telmatobi- its internal relationships has been published. inae. Considering this situation, we include Partial studies (Graybeal, 1997; Darst and several leptodactylid exemplars (see table 1); Cannatella, 2004; Haas, 2003) support the our poorest sampling is within Cycloramphi- idea that Melanophryniscus is one of its most nae, where we only have representation for basal clades in the family. As a rough sample one genus, Crossodactylus. of bufonid diversity we include representa- The single representative of Brachyce- tives of Melanophryniscus, Dendropryniscus, phalidae included by Darst and Cannatella , Didynamipus, Schismaderma, (2004) in their analysis was nested within the Bufo, Pedostibes, and Osornophryne. exemplars of the leptodactylid subfamily The notion that the presumably monophy- Eleutherodactylinae, as suggested earlier by letic Centrolenidae (Ruiz-Carranza and Izecksohn (1988). We include Brachycephal- Lynch, 1991) is closely related to hylids us ephippium in our analysis. (Lynch, 1973; Duellman and Trueb, 1986; Of the hyloid families, only - Ford and Cannatella, 1993) was recently tidae is not represented in our analysis. This challenged by the phylogenetic analyses of group was suggested to be nested in the sub- Haas (2003), who used larval morphology, family Telmatobiinae by Barrio and Rinaldi and Darst and Cannatella (2004), who used de Chieri (1971) based on a similar karyo- mitochondrial ribosomal genes. Austin et al. type and by Manzano and Lavilla (1995a) (2002) recently provided molecular evidence based on the presence of the m. pelvocuta- supporting a relationship between Centrolen- neus in Rhinoderma and Eupsophus. In the idae and the monotypic Allophrynidae. The DNA sequences analyses by Ruvinsky and internal relationships of Centrolenidae re- Maxson (1996) and Biju and Bossuyt (2003) main virtually unstudied. As a rough repre- Rhinoderma appears in different positions sentation of centrolenid diversity, in this within Hyloidea. study we include Centrolene prosoblepon, Cochranella bejaranoi, and Hyalinobatrach- THE INGROUP:HYLIDAE ium eurygnathum. We also include Allophry- Inasmuch as the hylids are the primary fo- ne ruthveni. cus of this study, our sampling is most dense Leptodactylid nonmonophyly has been ac- for this taxon and requires substantially more cepted for some time (Lynch, 1971) and was detailed discussion than does our outgroup con®rmed in an explicit cladistic framework selection. by analyses using morphology (Haas, 2003) Duellman (1970) arranged the family in and DNA sequences (Ruvinsky and Maxson, four subfamilies: Amphignathodontinae, 1996; Darst and Cannatella, 2004; Vences et Hemiphractinae, Hylinae (including both the al., 2003b). In the analysis by Darst and Can- Australian and American groups), and Phyl- natella (2004), Leptodactylidae is rampantly lomedusinae. Trueb (1974) subsequently syn- paraphyletic because all the other hyloid ex- onymized the Amphignathodontinae and emplars are nested within it. Hemiphractinae. On the basis of evidence From the ®ve currently recognized sub- families of leptodactylids (Laurent, 1986) 2 Note that Lynch (1971) presented an extensive def- there is more or less convincing evidence of inition of the group; it is unclear if any of the other monophyly for two of them: Eleutherodac- character states he mentioned could be considered syn- tylinae (direct development, relatively apomorphic. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 15 presented by Tyler (1971), Duellman (1977) Hemiphractinae placed the Australian hylids in their own sub- Mendelson et al. (2000) and Duellman family, Pelodryadinae, although Savage (2001) presented brief taxonomic histories of (1973) had previously regarded it as a dif- this taxon. The monophyly of Hemiphracti- ferent family and suggested that it was de- nae is supported by the presence of bell- rived from Myobatrachidae. shaped gills in larvae and by female transport Duellman (2001), based mostly on da Sil- of eggs in a specialized depression or sac in va's results (1998), presented a phylogenetic the dorsum (Noble, 1927). Burton (2004) analysis where hylids, including the subfam- added the broad m. abductor brevis plantae ily Pseudinae, were considered to be mono- hallucis. In Duellman's (2001) cladogram, phyletic. Synapomorphies suggested by Hemiphractinae is considered to be the sister Duellman (2001) as being common to his group of Phyllomedusinae, with the evidence three most parsimonious trees are the pos- of this relationship being the proximal head session of claw-shaped terminal phalanges of metacarpal II not between prepollex and and the three articular surfaces on metacarpal distal prepollex, and the larval spiracle sinis- III. The possibility of hylid polyphyly has tral and ventrolateral. not been seriously considered by most frog Haas's (2003) exemplar4 of the Hemi- systematists, even after Ruvinsky and Max- phractinae was Gastrotheca riobambae. His son's (1996) results (which showed their sin- results suggested that Hemiphractinae are un- gle Hemiphractinae exemplar not closely re- related to other hylids, although the position lated with the other hylid exemplars), until of Hemiphractinae within is the idea was suggested on morphological still unresolved. A similar result regarding grounds by Haas (2003), followed by Darst Hemiphractinae as being unrelated to hylids and Cannatella (2004) on the basis of molec- was advanced by Ruvinsky and Maxson ular evidence. These authors found no evi- (1996) and corroborated by Darst and Can- dence of a relationship between Hemiphrac- natella (2004). These authors also did not re- tinae and the other hylid subfamilies, which cover the exemplars of Hemiphractinae that were thought to form a monophyletic group. they used (Gastrotheca pseustes and Cryp- Beyond this result, Haas (2003) presented tobatrachus sp.) as forming a monophyletic evidence from larval morphology that sug- group.5 gested that Pelodryadinae is paraphyletic Hemiphractinae includes ®ve genera: with respect to Hylinae (Hylinae not being , Flectonotus, Gastrotheca, demonstrably monophyletic), with Pseudinae , and . Mendelson et and Phyllomedusinae possibly being imbed- 3 al. (2000) studied the relationships among ded within it. these genera, performing a phylogenetic analysis using morphological and life-history 3 Burton (2004) presented a study of hylid foot my- characters, arriving at the topology (Crypto- ology, a valuable collection of observations on many batrachus Flectonotus (Stefania (``Gastro- species, including the de®nition of numerous characters, theca'' ϩ Hemiphractus))). This analysis in- and a phylogenetic analysis of the hylid subfamilies combining his characters with those employed by Duell- cluded ®ve outgroups, all of which were rep- man (2001). The list of synapomorphies provided resentatives of the other hylid subfamilies. (Burton 2004: 228) is the result of optimizing the data The results suggested that Cryptobatrachus set on his strict consensus tree. When only unambiguous and Flectonotus are each monophyletic, and synapomorphies common to all the most parsimonious that Gastrotheca is paraphyletic with Hemi- trees are considered, the list is reduced considerably, and there are no unambiguous transformations from foot phractus nested within it. As Hass (2003) musculature that support relationships among the sub- families (these are supported solely by the characters 4 Haas (2003) noted that the larval morphology of from Duellman, 2001). Instead, some foot muscle char- several species of Gastrotheca is quite similar, so pre- acter states are autapomorphic for Allophrynidae, Hem- sumably his selection of G. riobambae as an exemplar iphractinae, Phyllomedusinae, and Pseudinae (Burton's would have little effect on the analysis. paper was submitted before Darst and Cannatella's paper 5 However, a reanalysis of their data using parsimony was published). Throughout the present paper, all the and considering insertions/deletions as a ®fth state did synapomorphies reported from Burton's (2004) study are recover a monophyletic Hemiphractinae (Faivovich, per- only those that occur in all equally parsimonious trees. sonal obs.). 16 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 noted, however, Mendelson et al.'s (2000) (part of the G. plumbea group), and Opistho- outgroup structure could not test the propo- delphys (G. ovifera as well as parts of the G. sition of hylid diphyly. marsupiata and G. plumbea groups). Duell- Cryptobatrachus: In the analysis per- mania and Opisthodelphys were shown to be formed by Mendelson et al. (2000), the paraphyletic by Mendelson et al. (2000), al- monophyly of the two representatives of though they did not test the monophyly of Cryptobatrachus is supported by several os- the subgenus Gastrotheca. In this study we teological characters, among them the pres- include two species of the Gastrotheca mar- ence of an anteromedial process in the neo- supiata group (G. cf. marsupiata and G. palatine.6 In their analysis, the relationship pseustes) and two of the G. ovifera group (G. between Cryptobatrachus and the other cornuta and G. ®ssipes). Hemiphractinae is unresolved. This genus Hemiphractus: Relationships of this genus comprises three described species; in this were recently reviewed by Sheil et al. (2001), study we include sequences of an unidenti- who provided a number of unambiguous syn- ®ed species available from GenBank. apomorphies to support its monophyly (such Gastrotheca: Mendelson et al. (2000) sug- as the cultriform process of the parasphenoid gested that Hemiphractus is nested within that becomes distinctly narrow anteriorly, the Gastrotheca, a result that contrasts with the presence of a zygomatic ridge, and the pres- opinions of previous workers (Noble, 1927; ence of a supraorbital ridge). Hemiphractus Trueb, 1974; Duellman and Hoogmoed, has six described species; we include Hemi- 1984) who considered Hemiphractus basal phractus helioi in our study. among marsupial frogs because they lack a Stefania: Duellman and Hoogmoed brooding pouch. However, Mendelson et al. (1984), SenÄaris et al. (``1996'' [1997]), and (2000) continued to recognize Hemiphractus MacCulloch and Lathrop (2002) reviewed (the older of both names) and Gastrotheca this genus. SenÄaris et al. (``1996'' [1997]) pending a more complete phylogenetic study. suggested that the zygomatic ramus of the Synapomorphies of the clade composed of squamosal being close to or in contact with these two genera are: cultriform process be- the maxilla was a diagnostic character state coming distinctly narrow anteriorly; anterior of Stefania, ``at least for the Venezuelan spe- process of vomer articulating only with max- cies'' (translated from the Spanish). Mendel- illa; pre- and postchoanal process bifurcating son et al. (2000) did not test the monophyly at the level of the dentigerous process; nature of Stefania since they included only one ex- of occipital artery pathway (a groove); emplar (S. evansi). It is unclear if any of the brooding pouch with posterior opening; and autapomorphies of S. evansi in that study are bell-shaped gills fused distally. actually synapomorphies of Stefania. Most of the 49 currently recognized spe- Stefania was divided by Rivero (1970) cies of Gastrotheca are placed in four species into two species groups based on head shape groups, the G. marsupiata, G. nicefori, G. (``as broad as long or longer than broad'' in plumbea, and G. ovifera groups (Duellman the S. evansi group; ``much broader than et al., 1988a). These groups are generally de- long'' in the S. ginesi group). The only test ®ned on the basis of overall similarity. The of the monophyly of these two groups is the only character-based test of their monophyly, phylogenetic analysis of the seven species the analysis of Mendelson et al. (2000), in- then known, performed by Duellman and cluded 17 exemplars and suggested that none Hoogmoed (1984). In that analysis, the S. gi- of the three nonmonotypic groups is mono- nesi group was monophyletic and nested phyletic. within the paraphyletic S. evansi group. Al- Dubois (1987) placed the species within though SenÄaris et al. (``1996'' [1997]) sug- three subgenera: Gastrotheca, Duellmania gested the origin of the S. ginesi group from the S. evansi group, they continued to rec- ognize of both groups. 6 For the synapomorphy list, we copied the data set from the. pdf ®le of Mendelson et al. (2000) and eval- Since the revision of Duellman and Hoog- uated character distribution in TNT (Goloboff et al., moed (1984), another 11 species assigned to 2000). both species groups of Stefania have been 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 17 named (see Barrio AmoroÂs and Fuentes, number of chromosomes. Bagnara and Ferris 2003; MacCullogh and Lathrop, 2002). In (1975) noticed the presence in some species our analysis we include one exemplar of the of Litoria of large melanosomes containing group (S. evansi) and one of the red pigment rhodomelanochrome (later the S. ginesi group (S. schuberti). identi®ed as pterorhodin; Misuraca et al., Flectonotus: Duellman and Gray (1983) 1977), a character state previously known reviewed these frogs as two genera, Flecto- only for some species of Phyllomedusinae. notus and Fritziana, even though their phy- Speci®cally, Bagnara and Ferris (1975) sug- logenetic analysis indicated that Flectonotus gested that some species of Litoria could be was paraphyletic with respect to Fritziana. related to the Phyllomedusinae, an implicit Subsequently, Weygoldt and Carvalho e Sil- suggestion of Pelodryadinae paraphyly. This va (1991) placed Fritziana in the synonymy idea was discussed by Tyler and Davies of Flectonotus to render a monophyletic tax- (1978a), who rejected the possibility of pe- onomy. Flectonotus is composed of ®ve de- lodryadine paraphyly but did not address a scribed species. possible sister-taxon relationship of Pelo- In the analysis by Mendelson et al. (2000), dryadinae and Phyllomedusinae. This alter- the position of Flectonotus remained unre- native was suggested again, based on chro- solved with respect to Cryptobatrachus and mosome morphology, by Kuramoto and Al- the clade composed of Stefania plus Gastro- lison (1991). In the phylogenetic analyses theca. Synapomorphies of Flectonotus in that presented by Duellman (2001), Pelodryadi- analysis are: quadratojugal that does not ar- nae was placed as the sister of a clade com- ticulate with maxilla; brooding pouch formed posed of the remaining subfamilies, which by dorsolateral folds of skin; overlap be- are united in having a distally bi®d tendo su- tween m. intermandibularis and m. submen- per®cialis. In this same cladogram, the only talis; and absence of supplementary elements synapomorphy of Pelodryadinae is the ante- of m. intermandibularis. Because of very rior differentiation of the m. intermandibu- limited availability of species of Flectonotus, laris, although the monophyly of Pelodry- in this study we include only Flectonotus sp., adinae was assumed and not tested in that an unidenti®ed species from southeastern analysis. Brazil, whose female has a brooding pouch The phylogenetic analysis performed by with a middorsal slit. Haas (2003) presents the most extensive test of Pelodryadinae monophyly so far pub- Pelodryadinae lished; his Pelodryadinae exemplars form a The monophyly of this Australopapuan paraphyletic series with respect to his Neo- group is supported by a single possible syn- tropical hylid exemplars. More recently, apomorphy: presence of supplementary api- Darst and Cannatella (2004) and Hoegg et al. cal elements of m. intermandibularis (Tyler, (2004) presented evidence from the ribosom- 1971). Although relationships between Aus- al mitochondrial and nuclear genes support- tralian and New World hylids were recog- ing the monophyly of their Pelodryadinae nized very early (most species of Litoria sample and the monophyly of Pelodryadinae were named as Hyla), hypotheses regarding ϩ Phyllomedusinae. the relationships of Pelodryadinae with other Litoria: The diagnosis and contents of Li- groups have been rarely advanced. Trewavas toria were reviewed by Tyler and Davies (1933), Duellman (1970), and Bagnara and (1978b). It is unclear whether any of the Ferris (1975) suggested a relationship be- character states included in their extensive tween Pelodryadinae with Phyllomedusinae. diagnosis are synapomorphic. However, con- Trewavas (1933) observed similarities in la- sidering subsequent comments by several au- ryngeal structures in the limited data set at thors (King et al., 1979; Tyler, 1979; Tyler her disposal (only three pelodryadines and and Davies, 1979; Maxson et al., 1985; Haas two phyllomedusines). Duellman (1970) re- and Richards, 1998), the available evidence ferred to ``similarities in vertebral charac- suggests that Litoria is paraphyletic with re- ters'' without further details and to identical spect to the other genera of Pelodryadinae, 18 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Nyctimystes and Cyclorana, with the latter that Nyctimystes was most closely related to being the sister taxon of the L. aurea group. some species groups of Litoria from New The 132 currently recognized species (up- Guinea, implying that Nyctimystes is nested dated from Frost, 2004) placed in 37 species within Litoria. Speci®cally, they referred to groups (Tyler and Davies, 1978b) make an the L. angiana, L. arfakiana, L. becki, L. dor- exhaustive sampling of the group a goal be- sivena, L. eucnemis, and L. infrafrenata yond the present analysis.7 Relationships groups as the most likely to be related to among some species groups of Litoria were Nyctimystes, because they share with Nycti- addressed by means of albumin immunolog- mystes similarities in cranial structure (the L. ical distances as determined through micro- infrafrenata and L. eucnemis groups) or the complement ®xation (Maxson et al., 1982; presence of large unpigmented ova and lotic Hutchinson and Maxson, 1986, 1987). From bearing large, ventral, suctorial a character-based (as opposed to a distance- mouths (the other groups). Nyctimystes cur- based) perspective, relationships among the rently comprises 24 described species, 5 of species groups of Litoria remain unknown, which (N. disruptus, N. oktediensis, N. trach- and the monophyly of most of those groups ydermis, N. tyleri, and N. papua) were in- with more than single species remains un- cluded in the N. papua species group by tested. Zweifel (1983) and Richards and Johnston Tyler and Davies (1978b) tentatively di- (1993). We could not locate tissues of any vided the 37 species groups into three ``Cat- members of the N. papua group, so we can- egories'', A (8 species groups), B (14 species not test its monophyly. Nevertheless, we in- groups), and C (7 species groups). Tyler clude the available species N. kubori, N. na- (1982) added a fourth category (D), where rinosus, and N. pulcher. he included the Litoria nannotis group. Cyclorana: This genus was thought to be These groupings were criticized by King related to the Australian leptodactylids (now (1980) on karyotypic grounds. Besides, the Myobatrachidae) by Parker (1940), and was monophyly of these four categories remain considered as such by Lynch (1971). Tyler largely untested, with the only possible ex- (1972) ®rst proposed its relationship to Aus- ception being the work by Cunningham tralian hylids on the basis of the presence of (2002) on the L. nannotis group; however, a differentiated apical element of the m. in- his lack of suf®cient outgroup sampling pre- termandibularis. Subsequently, Tyler (1978) cluded a rigorous test. transferred Cyclorana to Hylidae. Tyler In our analyses we include representatives (1979), King et al. (1979), and Tyler et al. of two species groups of category A, Litoria (1981) considered it to be related to the Li- aurea (the L. aurea group) and L. freycineti toria aurea group, a result that was coinci- (the L. freycineti group); three representa- dent with the analyses of albumin immuno- tives of category B, L. caerulea (the L. ca- logical distances generated by microcomple- erulea group), L. infrafrenata (the L. infraf- ment ®xation (Hutchinson and Maxson, renata group), and L. meiriana (the L. mei- 1987). Burton (1996) suggested that having riana group); and one representative of cat- the m. palmaris longus divided into two seg- egory C, L. arfakiana (the L. arfakiana ments (as opposed to three) is a synapomor- group). phy supporting the monophyly of Cyclorana, Nyctimystes: This genus was rediagnosed L. dahlii, and L. alboguttata (two species of by Tyler and Davies (1979). Among the list the L. aurea group). Based on sperm mor- of characters provided by them, the synapo- phology, Meyer et al. (1997) transferred L. morphies of Nyctimystes seem to be the ver- alboguttata to Cyclorana. The only morpho- tical pupil and the presence of palpebral ve- logical synapomorphy suggested for Cyclor- nation. Tyler and Davies (1979) suggested ana is the anterior ossi®cation of the sphe- nethmoid to incorporate a portion of the tec- 7 A detailed analysis of Pelodryadinae is currently be- tum nasi (Tyler and Davies, 1993). ing carried out by S. Donnellan. Taxon sampling here is provided to optimize characters effectively to the base The 13 species of Cyclorana have been of the Pelodryadinae and not to reevaluate the taxonomy separated into different groups based on kar- of Litoria and its generic satellites. yotypes, sperm morphology, and immuno- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 19 logical distances (King et al., 1979; Maxson Hylomantis: This genus was resurrected by et al., 1982; Maxson et al., 1985; Meyer et Cruz (1990) for the species formerly placed al., 1997). These are the C. brevipes, C. aus- in the Phyllomedusa aspera group (Cruz, tralis, and C. platicephala ``lineages''. In the ``1988'' [1989]). From the extensive diag- present study, we include only C. australis. nosis presented by Cruz (1990), the only ap- parent synapomorphy of Hylomantis seems Phyllomedusinae to be the lanceolate discs of ®ngers and toes. Cruz (1990: 725), however, considered likely Cruz (1990) and Duellman (2001) provid- that Hylomantis was paraphyletic with re- ed taxonomic histories of this group, mostly spect to Phasmahyla. Hylomantis has two at the generic level. The monophyly of Phyl- described species, H. aspera and H. granu- lomedusinae has not been controversial; sev- losa. Only H. granulosa was available for eral character states have been advanced to this study. support it. Some of the muscular character Pachymedusa: This monotypic genus was states include the supplementary posterolat- recognized by Duellman (1968a) to re¯ect eral elements of the m. intermandibularis his view that a remnant of the ancestral stock (Tyler, 1971); tendo super®cialis pro digiti II gave rise to the other Phyllomedusinae. (pes) arising from a deep, triangular muscle, However, Duellman (2001) found no evi- which originates on the distal tarsal 2±3; ten- dence supporting the monophyly of Agaly- do super®cialis pro digiti III arising entirely chnis independent of Pachymedusa. The sin- from the aponeurosis plantaris; and m. exten- gle species Pachymedusa dacnicolor is in- sor brevis super®cialis digiti IV with a single cluded in our analysis. slip (Burton, 2004). There are also several Phasmahyla: This genus was erected by larval character states that support the mono- Cruz (1990) for the species formerly con- phyly of this group; for example, the arcus tained in the Phyllomedusa guttata group subocularis of larval chondrocranium with (Bokermann and Sazima, 1978; Cruz, 1982). distinct lateral processes (Fabrezi and Lavil- la; 1992, Haas, 2003); ultralow suspensorium Cruz (1990) provided an extensive de®nition (Haas, 2003); secondary fenestrae parietales of the genus based on adult and larval mor- (Haas, 2003); and absence of a passage be- phology. Probable synapomorphies of Phas- tween ceratohyal and ceratobranchial I mahyla are the lack of a vocal sac in adult (Haas, 2003). males and larval modi®cations presumably The subfamily is comprised of six nominal associated with surface ®lm feeding, such as genera: Agalychnis (8 species), Hylomantis the anterodorsal position of the oral disc, re- (2 species), Pachymedusa (1 species), Phas- duction in number and size of labial tooth mahyla (4 species), Phrynomedusa (5 spe- rows, distribution and shape of submarginal cies), and Phyllomedusa (32 species). Cruz papillae, and the upper jaw sheath with a me- (1990) discussed the taxonomic distribution dial projection (see Cruz, 1982, 1990). The of several character states shared by subsets genus is composed of four species, P. coch- of these genera. A cladistic analysis testing ranae, P. exilis, P. guttata, and P. jandaia. the monophyly of each of these and their in- We include Phasmahyla cochranae and P. terrelationships remains to be completed. guttata in our study. Agalychnis: Duellman (2001) presented a Phrynomedusa: This genus was resurrect- phylogenetic analysis of Agalychnis and Pa- ed by Cruz (1990) for the species formerly chymedusa, using a vector of character states placed in the Phyllomedusa ®mbriata group present in the Phyllomedusa buckleyi group (Izecksohn and Cruz, 1976; Cruz, 1982). as an outgroup (data taken from Cannatella, From the extensive de®nition provided by 1980). His analysis suggested no synapo- Cruz (1990), possible synapomorphies of morphies for Agalychnis. In our analysis we Phrynomedusa appear to be the presence of include all species available to us: A. calcar- a bicolored iris and the complete marginal ifer, A. callidryas, A. litodryas, and A. sal- papillae in the oral disc of the larva. Phry- tator (species not included are A. annae, A. nomedusa contains ®ve described species; craspedopus, A. moreletii, and A. spurrelli). unfortunately, we could not secure any rep- 20 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 resentatives of this taxon for the present chondrialis), and P. tarsius group (P. tar- study. sius). We include also P. bicolor, P. palliata, Phyllomedusa: No synapomorphies are P. tomopterna, and P. vaillanti, four species known to support the monophyly of the 32 unassigned to groups. species of Phyllomedusa. This genus in- cludes simply those species that are not in- Hylinae cluded in the other ®ve genera of Phyllo- medusinae. There are currently ®ve species This taxon is the primary focus of this groups recognized within Phyllomedusa: the study. Hyline monophyly is supported by P. buckleyi group (Cannatella, 1980), P. bur- two synapomorphies: the tendo super®cialis meisteri group (Lutz, 1950; Pombal and digiti V with an additional tendon that arises Haddad, 1992), P. hypochondrialis group ventrally from m. palmaris longus (da Silva, (Bokermann, 1965a), P. perinesos group 1998, as cited by Duellman, 2001), and kar- (Cannatella, 1982), and P. tarsius group (De yotype with 24 (or more) chromosomes (Duellman, 2001). The published molecular la Riva, 1999). The monophyly of these 8 groups had not been tested, and relationships evidence is ambiguous regarding the issue. No comprehensive study of hyline system- among them remain unstudied. Furthermore, atics has been published, although the results several species (e.g., P. bicolor, P. palliata, of one unpublished dissertation (da Silva, P. tomopterna, and P. vaillanti) have not 1998) have been widely circulated (e.g., been assigned to any species group. Some Duellman, 2001). Although the problems of authors (Funkhouser, 1957; Duellman, hylid systematics have been recognized for 1968a, 1969; Cannatella, 1980; Jungfer and some time, almost all work has been done at Weygoldt, 1994) have suggested that the the level of satellite genera (e.g., Duellma- Phyllomedusa buckleyi group deserves ge- nohyla, Plectrohyla, Ptychohyla, Scinax)or neric recognition. species groups of Hyla. Duellman et al. (1988b) posited the exis- For the purpose of our analysis we includ- tence of a clade composed of most species ed representatives of all 27 genera of Hyli- of Phyllomedusa (excluding the P. buckleyi nae. Within the genus Hyla, we included ex- group and the P. guttata group, now Phas- emplars of 39 of the 41 species groups that mahyla, but see below), implicitly including had been recognized (we lack exemplars for the species now placed in Hylomantis. Ap- the H. claresignata and H. garagoensis parent synapomorphies of this clade are the groups). We are not recognizing monotypic well-developed parotoid glands; the presence species group because (1) they do not rep- of the slip of the m. depressor mandibulae resent testable hypothesis, and (2) they are that originates from the dorsal fascia at the level of the m. dorsalis scapulae; ®rst toe lon- ger than second; and the eggs wrapped in 8 In the analysis of Darst and Cannatella (2004), Hy- linae (including pseudids) is monophyletic only in their leaves. Duellman et al. (1988b) explicitly ex- maximum likelihood analysis, not in their parsimony cluded the species then included in the P. analysis. If, unlike Darst and Cannatella (2004), inser- guttata group (now Phasmahyla) from this tion/deletion events are considered as informative vari- apparent clade. However, Lutz (1954), Bok- ations, their results still show a paraphyletic Hylinae, having Leptodactylus pentadactylus ϩ Lithodytes linea- ermann and Sazima (1978), Weygoldt tus nested within Hylinae. In the same analysis Hemi- (1984), and Haddad (personal obs.) reported phractinae is monophyletic. We do not think that these P. guttata, P. jandaia, P. exilis, and P. coch- differences in results re¯ect relative merits of the differ- ranae, respectively, to oviposit in folded ent approaches but instead represent problems in the tax- leaves, and Cruz (1990) reported in Hylo- on sampling of the analysis of Darst and Cannatella (2003) (which was not designed to test the monophyly mantis the presence of the slip of the m. de- of Hylinae). Salducci et al. (2002) presented a molecular pressor mandibulae that originates from the phylogenetic analysis using a fragment of 16S of a sam- dorsal fascia at the level of the m. dorsalis pling restricted to sequences available in GenBank and scapulae. In this study we include represen- Hylidae of French . palmipes and Hyali- nobatrachium taylori were the only outgroups. Consid- tatives of the Phyllomedusa buckleyi group ering the restricted taxon sampling and the minimal (P. lemur), P. burmeisteri group (P. tetraplo- number of outgroups, their results are dif®cult to inter- idea), P. hypochondrialis group (P. hypo- pret or to compare with other studies. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 21 not a rank in the Linnean taxonomy and done by Faivovich et al. (2004), instead of therefore are not required for consistency and restricting its use to the H. boans group. The stability purposes. species groups that are currently referred to Hyla is the most species-rich genus of hy- the Gladiator Frog clade are the H. albom- lid frogs. It is currently placed in 41 species arginata, H. albopunctata, H. boans, H. cir- groups, plus other species that had not been cumdata, H. claresignata, H. geographica, associated with any group. In turn, major H. granosa, H. martinsi, H. pseudopseudis, clades composed of several of these species H. pulchella, and H. punctata10 groups (Bok- groups have been suggested. Because no ermann, 1972, Hoogmoed, 1979, Duellman study has ever suggested Hyla to be mono- et al., 1997, Eterovick and BrandaÄo, 2001, phyletic and several have suggested that it is Duellman, 2001, Faivovich et al., 2004). paraphyletic with respect to other hyline gen- Hyla albomarginata Group: The H. al- era (Duellman and Campbell, 1992; Cocroft, bomarginata group was ®rst recognized for- 1994; Faivovich, 2002; Haas, 2003; Darst mally by Cochran (1955) for a group of spe- and Cannatella, 2004; Faivovich et al., cies (H. albomarginata, H. albosignata, H. 2004), we refer further discussion to the albofrenata, H. musica) that Lutz (``1948'' headings for the various genera and species [1949]) referred to as the green species of groups. Comments about apparent major Hyla of southeastern Brazil. Cochran (1955) clades and proposed relationships among included H. prasina (latter included in the H. species groups are mostly reserved for the pulchella group by Lutz, 1973) in this group. discussion section of this paper. Duellman (1970) presented a de®nition of the group and included, besides the species Gladiator Frogs considered by Cochran (1955), H. ru®tela, H. pellucens, H. albopunctulata (now consid- Kluge (1979: 1) referred to the frogs then ered a member of the H. bogotensis group; placed in the Hyla boans group as ``gladiator see below), and H. albolineata (now consid- frogs'' ``in view of their extremely pugna- ered a species of Gastrotheca; see Sachsse et cious behavior and the well developed pre- al., 1999). pollical spines that they use when ®ghting.'' Cruz and Peixoto (``1985'' [1987]) divided Following Duellman (1970, 1977), Kluge the Hyla albomarginata group into three (1979) included in the group H. boans, H. ``complexes'': the H. albomarginata com- circumdata, H. crepitans, H. faber, H. par- plex, containing H. albomarginata and H. dalis, and H. pugnax. Nevertheless, a pre- ru®tela; the H. albofrenata complex, con- pollical spine has been reported for several taining H. albofrenata, H. arildae, H. ehr- species groups. Furthermore, territorial ®ght- hardti (as H. arianae; see Faivovich et al., ing has been reported or suspected to occur 2002), H. musica, and H. weygoldti; and the in several of these species.9 Because of this, and due to the lack of a better term, we prefer H. albosignata complex, containing H. al- to use the term ``Gladiator Frogs'' to refer bosignata, H. callipygia, H. cavicola, H. ¯u- collectively to all the mostly South American minea, and H. leucopygia. Hyla pellucens species having a prepollical spine, as was should also be included in the albomarginata complex, because this species was included 9 It remains to be studied if these territorial behaviors by Duellman (1970) but was overlooked by are homologous. Species of this putative clade, other Cruz and Peixoto (``1985'' [1987]); very than some members of the H. boans group, where com- likely the same applies for H. rubracyla,a bat was observed or are suspected to occur, are Hyla species that was resurrected from the syn- circumdata (Haddad, personal obs.), H. cordobae (Fai- onymy of H. pellucens by Duellman (1974) vovich, personal obs.), H. goiana (Menin et al., 2004), H. joaquini (Garcia et al., 2003), H. marginata (Garcia and included in the H. albomarginata group et al., 2001b), H. marianitae (Duellman et al., 1997), H. prasina (Haddad, personal obs.), H. melanopleura (Lehr 10 Faivovich et al. (2004) mentioned that Duellman et and May, 2004), H. pulchella (Gallardo, 1970; Langone, al. (1997) did not include the Hyla punctata group with- ``1994'' [1995]), H. punctata (Sehinkman and Faivov- in a putative clade of gladiator frogs, but overlooked the ich, personal obs.), H. raniceps (GuimaraÄes et al., 2001), fact that Duellman (2001: 776) stated that ``members of H. riojana (Blotto and Baldo, personal commun.), and the . . . H. punctata group might be included'' in this H. semilineata (Haddad, personal obs.). clade. 22 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 by Duellman in Frost (1985). The only pos- incorrectly to H. albopunctata; see Duell- sible synapomorphies that were proposed for man, 1971a). Duellman (1971a) implicitly these complexes were the red coloration of united these two groups and considered the the webbing in the two species of the H. al- larger H. albopunctata group to be composed bomarginata complex studied by the authors, of H. albopunctata, H. lanciformis, H. mul- and presence of cloacal ornamentation in the tifasciata, and H. raniceps.DeSa (1995, H. albosignata complex (several instances of 1996) stated that there was no evidence sup- homoplasy within hylids). Haddad and Sa- porting the monophyly of the group. Cara- waya (2000) and Hartmann et al. (2004) fur- maschi and Niemeyer (2003) added H. leu- ther suggested that the H. albofrenata and H. cocheila to the group and suggested that it albosignata complexes share a reproductive was monophyletic, but they presented no ev- mode where the male constructs a subterra- idence to this effect. We include all species nean nest in the muddy side of streams and except H. leucocheila in our analysis. pools that is completely concealed after Hyla boans Group: The constitution of the spawning, a nest where larvae spend early H. boans group as well as the de®nition of stages of development; subsequent to ¯ood- the group present a rather confusing history. ing, the exotrophic larvae live in or Af®nities between species of what is cur- streams. rently called the H. boans group were ®rst Cruz et al. (2003) added Hyla ibirapitanga recognized by Cochran (1955), who included and H. sibilata to the H. albosignata com- in what she called the H. faber group the plex. Note that species included in both the species H. crepitans, H. faber, H. langsdorf®i H. albofrenata and H. albosignata complex- (now a species of Osteocephalus, see Duell- es do not posses a prepollical spine, as do man, 1974), and H. pardalis. Some of the species in the H. albomarginata complex. On diagnostic characters of this group were large recent occasions, some authors (Haddad and size and the presence of what she called a Sawaya, 2000; Garcia et al., 2001a) referred prominent spurlike prepollex in males. Coch- directly to the H. albofrenata and H. albo- ran and Goin (1970) included H. faber, H. signata groups without further comment. We pardalis, H. rosenbergi, and H. maxima include in the present analysis representa- (now a junior of H. boans; see tives of the three complexes: H. albosignata, Duellman, 1971a) in the H. maxima group, H. callipygia, H. cavicola, and H. leucopygia and they excluded H. crepitans, placing it in as representatives of the H. albosignata com- its own group. Duellman (1970) presented a plex; H. arildae, H. weygoldti, and a Hyla formal de®nition of the H. boans group, in sp. 1, a new species similar to H. ehrhardti, which he included H. boans, H. circumdata as representatives of the H. albofrenata com- (now in the H. circumdata group), H. cre- plex; and H. albomarginata, H. pellucens, pitans, H. faber, H. langsdorf®i, H. pardalis, and H. ru®tela as exemplars of the H. albo- and H. rosenbergi. Lutz (1973) included the marginata complex. species in three different groups,11 in one of Hyla albopunctata Group: Cochran (1955) which she also included several species now recognized the H. albopunctata group on the included in the H. circumdata, H. pseudop- basis of the ``more streamlined body shape, seudis, and H. martinsi groups (the ``species by lacking an outer metatarsal tubercle, and with long, sharp pollex rudiment''). Kluge by having the ®ngers webbed only at the (1979) resurrected H. pugnax from the syn- base ...''.Sheincluded in the group H. al- onymy of H. crepitans, including it also in bopunctata, H. raniceps, and several species the H. boans group. Martins and Haddad from southeastern Brazil that are now in the (1988) included in the group H. lundii (using H. claresignata and H. pulchella groups. the name H. biobeba, a junior synonym, see Cochran and Goin (1970) recognized a H. Caramaschi and Napoli, 2004), based on ob- lanciformis group (on the basis of large size, a white margin on the upper lip, pointed 11 The ``species with long, sharp pollex rudiment'', the heads, and reduced webbing between the ®n- ``species with undulated glandular outline'', and the gers) in which they included H. lanciformis, ``species with pattern on the transparent part of the lower H. multifasciata, and H. boans (name applied eyelid''. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 23 servations of nest construction done by Jim species of the Hyla circumdata group should (1980). Implicitly, they also removed H. cir- be transferred to the H. pulchella group. Fai- cumdata from the group. Hoogmoed (1990) vovich et al. (2004) demonstrated by using resurrected H. wavrini from the synonymy of DNA sequences from four mitochondrial H. boans and retained it in the group. Duell- genes that the two groups are not closely re- man (2001) omitted H. lundii from the group lated. In the analysis of Faivovich et al. without comment. Caramaschi and Ro- (2004), the three exemplars of the H. circum- drigues (2003) added H. exastis, suggesting data group then available (H. astartea, H. that it was related to H. lundii and H. par- circumdata, and H. hylax) formed a mono- dalis on the basis of its lichenous color pat- phyletic group that is the sister taxon of the tern and the rugose skin texture. Caramaschi remaining Gladiator Frogs they included in and Napoli (2004) presented a formal de®- their analysis. Napoli and Pimenta (2003), nition of the group. In summary, and follow- Napoli and Caramaschi (2004), and Napoli ing Caramaschi and Napoli (2004), we re- (2005) recognized 15 species in the group: gard the H. boans group to be composed of H. ahenea, H. astartea, H. caramaschii, H. H. boans, H. crepitans, H. exastis, H. faber, carvalhoi, H. circumdata, H. feioi, H. gou- H. lundii, H. pardalis, H. pugnax, H. rosen- veai, H. hylax, H. ibitipoca, H. izecksohni, bergi, and H. wavrini. The only synapomor- H. lucianae, H. luctuosa, H. nanuzae, H. rav- phy that has ever been proposed for this ida, and H. sazimai. We include ®ve species group is the nest-building behavior of males, in our analysis: H. astartea, H. circumdata, which has been observed in most species H. hylax, as well as Hyla sp. 3 and Hyla sp. (see Martins and Moreira, 1991 for a re- 4, two undescribed species from littoral areas view). Early reports of H. crepitans indicated of northern SaÄo Paulo (state) and southrn Rio that males do not construct nests; this was de Janeiro (state), Brazil, respectively. shown to be facultative by Caldwell (1992). Hyla claresignata Group: A close relation- This behavior is still unknown in H. pugnax. ship between H. clepsydra and H. claresig- From this group we include in our analysis nata was suggested by Bokermann (1972), H. boans, H. crepitans, H. faber, H. lundii, who noticed striking similarities in larval and and H. pardalis. adult morphology. Bokermann (1972) sug- Hyla circumdata Group: This group was gested a possible relationship of these species ®rst mentioned by Bokermann (1967a, with the H. circumdata group; following 1972), without providing any diagnosis. him, Jim and Caramaschi (1979) included H. Heyer (1985) provided the ®rst formal de®- clepsydra and H. claresignata in the H. cir- nition, diagnosing the group by the combi- cumdata group. However, subsequent work- nation of a well-developed prepollex and the ers (Caramaschi and Feio, 1990; Pombal and posterior face of the thigh having dark ver- Haddad, 1993) who referred to the H. cir- tical stripes. The group was further discussed cumdata group did not include them in the and expanded by Caramaschi and Feio group. The H. claresignata group was rec- (1990), Pombal and Haddad (1993), Napoli ognized in the restricted form by Duellman (2000), Caramaschi et al. (2001), and Napoli et al. (1997). Possible synapomorphies of the and Pimenta (2003). Three other species H. claresignata group are character states as- groups, the H. claresignata, H. martinsi, and sociated with the torrent-dwelling larvae of H. pseudopseudis groups, as well as H. al- these species: oral disc completely surround- varengai, historically had been satellites of ed by marginal papillae, and 7/12±8/13 labial the H. circumdata group, with these species tooth rows. We were not able to secure sam- being alternatively included or excluded ples of either of the two species of this from the group. These groups and H. alvar- group. engai are treated separately. With the rec- Hyla geographica Group: This group was ognition of these three groups being separate delimited by Cochran (1955: 180) as being from the H. circumdata group, it is unclear characterized by its ``extremely attenuate which synapomorphies support its monophy- limbs''. Cochran and Goin (1970) character- ly as currently de®ned. ized the species of this group as ``moderate- Duellman et al. (1997) suggested that all sized tree frogs with elongate dermal ap- 24 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 pendages on the heels and reduced webbing complex of the H. albomarginata group, see between the ®ngers.'' Duellman (1973a) pre- above), and H. guibei (now a junior synonym sented an extensive characterization of the of H. pellucens; see Duellman, 1974). Pre- group (including vomers large with angular viously, Rivero (1964) stated that H. alemani dentigerous processes, each bearing as many was allied with H. granosa. Rivero (``1971'' as 20 teeth; nuptial excrescences present in [1972]) considered H. sibleszi to be related breeding males; projecting prepollices absent to H. granosa. Hoogmoed (1979) mentioned, in both sexes; calcars present; palpebral without any diagnosis, the H. granosa group membrane clear or reticulated). However, it in the Guayanas, in which he included H. is unclear from his account if any of these ornatissima. Mijares-Urrutia (1992a) consid- character states could be considered syna- ered H. alemani, H. granosa, H. ornatissima, pomorphic of the group. and H. sibleszi to be the members of this Duellman (1973a) included in this group group, and he provided a characterization Hyla calcarata, H. fasciata, and H. geogra- based on larval features. We are not aware phica. Later, Pyburn (1977, 1984) added H. of any synapomorphies for this group. In this microderma and H. hutchinsi. Goin and analysis we include H. granosa and H. sib- Woodley (1969) considered H. kanaima re- leszi. lated to the H. geographica group, and Py- Hyla martinsi Group: This group was rec- burn (1984) included H. kanaima in the ognized by Bokermann (1965b) for two spe- group. Lutz (1963, 1973) and Bokermann cies, H. langei and H. martinsi, characterized (1966a) stressed similarities between H. se- by the presence of an extensive hooklike hu- cedens and H. semilineata (as H. geographi- meral crest and by a bi®d prepollex. Boker- ca), but Caramaschi et al. (2004a) suggested mann (1964a) noticed ``super®cial similari- that actually this species is closer to H. bis- ties'' of H. martinsi with H. circumdata. Car- chof® (of the H. pulchella group). Duellman amaschi and Feio (1990) and Cardoso (1983) (in Frost, 1985) and Duellman and Hoog- included H. martinsi in the H. circumdata moed (1992), respectively, included H. pic- group for having the diagnostic characters turata and H. roraima in the H. geographica established by Heyer (1985). However, based group. D'Heursel and de Sa (1999) argued on the presence of bi®d prepollex and a hu- for the recognition of H. semilineata, a spe- meral spine, Caramaschi et al. (2001) pre- cies that had previously been placed in the ferred to keep it as a separate species group. synonymy of H. geographica. Lescure and As a representative of this group we include Marty (2000) included H. dentei, a species H. martinsi in the analysis. that Bokermann (1967b) considered to have Hyla pseudopseudis Group: This group character states of both H. raniceps (H. al- was recognized by Pombal and Caramaschi bopunctata group) and the H. geographica (1995) as closely related to the H. circum- group. Caramaschi et al. (2004a) added H. data group, from which it was differentiated pombali to the group. In summary, the H. mostly by its color pattern. Eterovick and geographica group is currently composed of BrandaÄo (2001) further differentiated both 11 species: H. calcarata, H. dentei, H. fas- groups based on the presence of short, lateral ciata, H. geographica, H. hutchinsi, H. kan- irregular tooth rows and for having addition- aima, H. microderma, H. picturata, H. pom- al posterior tooth rows (6±8 rows) in the oral bali, H. roraima, and H. semilineata. We in- discs of the larvae of the H. pseudopseudis clude H. fasciata, H. calcarata, H. kanaima, group (a maximum of 5 posterior rows in the H. microderma, H. picturata, H. roraima, H. circumdata group). Caramaschi et al. and H. semilineata in our study. (2001) transferred H. ibitiguara from the H. Hyla granosa Group: This group was ®rst circumdata group to the H. pseudopseudis de®ned by Cochran and Goin (1970) as group on the basis of its similar external green frogs that share the vomerine teeth be- morphology, color pattern, and habits. The ing in rather heavy, arched series, and with group currently comprises three species, H. males having a ``protruding spine in the pre- ibitiguara, H. pseudopseudis and H. saxico- pollex''. These authors included H. granosa, la, plus Hyla sp. 6 (aff. H. pseudopseudis), a H. rubracyla (now in the H. albomarginata new species from Bahia, Brazil, that is being 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 25 described by Lugli and Haddad (in prep.). polytaenia; H. prasina; H. pulchella; H. rio- Only tissues of this new species were avail- jana; H. secedens; H. semiguttata; and H. able for this study. stenocephala. In this analysis we include the Hyla pulchella Group: The history of this same species that were available to Faivovich group was recently reviewed by Faivovich et et al. (2004) (H. andina; H. balzani; H. bis- al. (2004). These authors also presented a chof®; H. caingua; H. cordobae; H. ericae; phylogenetic analysis based on mitochondri- H. guentheri; H. joaquini; H. leptolineata; H. al DNA sequences of four genes, and includ- marginata; H. marianitae; H. prasina; H. ed 10 of the then 14 species included in the pulchella; H. riojana; H. semiguttata, and an group, plus exemplars of the former H. po- undescribed species), plus H. polytaenia. The lytaenia group and several outgroups. Their species that Faivovich et al. (2004) called results indicate that the H. polytaenia group, Hyla sp. 2 corresponds to what Caramaschi as de®ned by Cruz and Caramaschi (1998), and Cruz (2004) recently described as H. la- is nested within the H. pulchella group. Con- tistriata, and so is included under that name. sequently, species included in the H. poly- Hyla punctata Group: This group was ®rst taenia group were transferred to the H. pul- recognized by Cochran and Goin (1970), chella group, where they are recognized as who included H. punctata, H. rhodoporus, the polytaenia clade. Considering this action and H. rubeola (these last two were subse- and the species status given to H. cordobae quently considered to be synonyms of H. and H. riojana, Faivovich et al. (2004) raised punctata by Duellman, 1974). They charac- the number of species included in the H. pul- terized the group as ``moderately small green chella group to 25. Carnaval and Peixoto tree frogs with small vomerine tooth patches, (2004) recently added H. freicanecae to the reduced webbing between the ®ngers, with- group. Caramaschi et al. (2004a) suggested out spines on the pollex, and without ulnar that H. secedens is related to H. bischof®, or tarsal ridges.'' Hoogmoed (1979) men- therefore adding implicitly the species to the tioned this group without de®ning it. No syn- H. pulchella group. Caramaschi and Cruz apomorphies have been proposed for this (2004) added H. beckeri and H. latistriata to group. Besides H. punctata, two other spe- the H. polytaenia clade, adding two more cies could be included on this poorly de®ned species to the H. pulchella group. Faivovich group: H. hobbsi, a species resurrected from et al. (2004) had doubts regarding the rec- the synonymy of H. punctata by Pyburn ognition of H. callipleura. Duellman et al. (1978), and H. atlantica, a name recently ap- (1997) included this name as a junior syno- plied by Caramaschi and Velosa (1996) for nym of H. balzani, but KoÈhler (2000) res- the populations on eastern Brazil previously urrected it using the combination H. cf. cal- considered as H. punctata. In this analysis lipleura for some populations in . We we include H. punctata. tentatively recognize H. callipleura as valid, Species of Probable Gladiator Frogs Un- but stress the necessity of further studies to assigned to Species Group: Hyla alvarengai: clarify its status. This bizarre species was said by Bokermann While the monophyly of this rede®ned (1964a) to share some character states with Hyla pulchella group is supported by molec- H. martinsi and H. saxicola (now placed in ular evidence, no morphological synapomor- the H. martinsi and H. pseudopseudis phies have been proposed so far (see also groups, respectively), such as the notable de- comments for the H. circumdata and H. lar- velopment of the prepollex and the shape of inopygion groups). In summary, there are 30 the sacral diapophyses. Lutz (1973) included species included in this group: H. albonigra; it in the group of the ``species with long, H. andina; H. balzani; H. beckeri; H. bis- sharp pollex rudiment'', together with H. chof®; H. buriti; H. caingua; H. callipleura; crepitans, H. faber, and species now includ- H. cipoensis; H. cordobae; H. cymbalum; H. ed in the H. circumdata and H. martinsi ericae; H. freicanecae; H. goiana; H. guen- groups. She referred to it as Hyla (Plectro- theri; H. joaquini; H. latistriata; H. leptoli- hyla?) alvarengai and stated that it was ``de- neata; H. marginata; H. marianitae; H. me- void of af®nities with the very large species lanopleura; H. palaestes; H. phaeopleura; H. of Hyla'', suggesting instead a possible re- 26 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 lationship with Plectrohyla. A similar opin- been posited to be related to any other spe- ion was presented by Sazima and Bokermann cies or group of species: H. benitezi, H. le- (1977), who noticed ``super®cial similari- mai, and H. rhythmicus. The presence of a ties'' with Plectrohyla, but they argued that prepollical spine (Rivero, ``1971'' [1972]; they differed in larval morphology, spawn, Donnelly and Myers, 1991; SenÄaris and Ay- and vocalizations. Duellman et al. (1997) in- arzaguÈena, 2002) associates these species cluded H. alvarengai in the H. circumdata with Gladiator Frogs. Hyla benitezi and H. group, presumably because it shares the di- lemai were included in the analysis. agnostic characters of the group. Eterovick Hyla varelae: Carrizo (1992) described and BrandaÄo (2001) and Caramaschi et al. this species based on a single adult male. It (2001) did not consider it as a member of the was suggested to be related to H. raniceps in H. circumdata group. Unfortunately, we the description. No additional specimens could not secure this species for our analysis, have been collected since the description, although we include a new species similar to and it was not included in this analysis. H. alvarengai that is in the process of being described by Lugli and Haddad (in prep.). Andean Stream-Breeding Hyla Hyla fuentei: This species was described Duellman et al. (1997) presented a phy- by Goin and Goin (1968) based on a single logenetic analysis restricted to wholly or par- adult female from Surinam. Hoogmoed tially Andean species groups of Hyla.On (1979) mentioned the existence of two ad- their most parsimonious tree, the H. armata, ditional specimens collected close to the type H. bogotensis, and H. larinopygion groups locality. Since then, no author has referred to together form a monophyletic group sup- this species. From the original description, ported by three transformations in larval there are few characters that allow the asso- morphology: the enlarged, ventrally oriented ciation of this species with any other group oral disc; the complete marginal papillae; of Hyla. The angulate dentigerous process of and labial tooth rows formula 4/6 or more. the vomer suggests that this species could be Hyla armata Group: The H. armata group associated with certain Gladiator Frogs, as was ®rst recognized by Duellman et al. some species currently placed in the H. al- (1997) for its single species, H. armata.KoÈh- bopunctata, H. boans, and H. geographica ler (2000) and De la Riva et al. (2000) sub- groups have this character state. A study of sequently reported that H. charazani was a the holotype and discovery of male speci- second member of the H. armata group. mens should clarify the matter. Duellman et al. (1997) described four syna- Hyla heilprini: This West Indian hylid was pomorphies for the H. armata group: the associated with the H. albomarginata group presence in males of keratin-covered bony by Duellman (1970) based on the presence spines on the proximal ventral surface of the of a ``green'' peritoneum (actually it is white humerus, on the expanded distal element of parietal peritoneum, like in species of the H. the prepollex, and on the ®rst metacarpal; albomarginata, H. bogotensis, H. granosa, tail long with low ®ns and bluntly and H. punctata groups; Lynch and Ruiz- rounded tip; forearms hypertrophied; and the Carranza [1991: 4]; Faivovich, personal obs.) presence of a ``shelf'' on the larval upper jaw and external pigmentation. This was fol- sheath. We include both species in our anal- lowed by Trueb and Tyler (1974), who no- ysis. ticed that its morphology was ``highly rem- Hyla bogotensis Group: This group was iniscent'' of those from that species group. reviewed by Duellman (1970, 1972b, 1989) While it seems clear that H. heilprini is a and Duellman et al. (1997). The only syna- Gladiator Frog, we are not aware of any syn- pomorphy that has been suggested for this apomorphy relating it to the H. albomargin- group is the presence in males of a mental 12 ata group. This species was included in the gland. Hyla albopunctulata was redescribed analysis. 12 See Duellman (2001) and La Marca (1985) for com- Three species of Hyla from the Venezue- ments on taxonomic distribution and morphological var- lan Tepuis: There are three species of Hyla iation of this gland, and Romero de Perez and Ruiz- from the Venezuelan Tepuis that have not Carranza (1996) for its histological structure. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 27 by Duellman and Mendelson (1995), who re- ticta, H. psarolaima, H. ptychodactyla, H. jected a possible relationship with the H. bo- sarampiona, and H. staufferorum. In this gotensis group, as suggested by Goin in Riv- analysis, we include H. pacha, H. pantostic- ero (1969) and Duellman (in Frost, 1985), ta, and H. tapichalaca. and they simply stated that its relationships were unclear. Faivovich et al. (in prep.) stud- The 30-Chromosome Hyla ied two male syntypes (BMNH 1880.12. 5159 and 1880.12.5160), which posses a no- Only the species of the Hyla microcephala ticeable mental gland. For this reason, we as- group were initially reported to have 30 chro- sociate this species with the H. bogotensis mosomes (Duellman and Cole, 1965; Duell- group. The Hyla bogotensis group is then man, 1967). However, as species of other composed of 15 species: H. albopunctulata, groups were reported to have 30 chromo- H. alytolylax, H. bogotensis, H. callipeza, H. somes (Duellman, 1970; Bogart, 1973), it be- colymba, H. denticulenta, H. jahni, H. las- came evident that this was a characteristic of cinia, H. lynchi, H. palmeri, H. phyllognata, several species groups. Currently, the H. co- H. piceigularis, H. platydactyla, H. simmon- lumbiana, H. decipiens, H. garagoensis, H. si, and H. torrenticola. In this analysis we labialis, H. leucophyllata, H. marmorata, H. were able to include only H. colymba and H. microcephala, H. minima, H. minuta, H. palmeri. parviceps, and H. rubicundula groups, plus Hyla larinopygion Group: Duellman and several species unassigned to any group are Hillis (1990) and Duellman and Coloma believed to conform to a monophyletic group (1993) reviewed this group, and Duellman supported by this character state (Duellman, and Hillis (1990) and Duellman et al. (1997) 1970; Duellman and Trueb; 1983; Duellman provided a formal de®nition, although it is et al., 1997; Napoli and Caramaschi, 1998; unclear whether any of the morphological Carvalho e Silva et al., 2003). character states employed in these character- Hyla columbiana Group: This group was izations is synapomorphic for the group. ®rst proposed by Duellman and Trueb (1983) Duellman and Hillis (1990) performed a phy- for three species: H. carnifex, H. columbi- logenetic analysis using isozymes of ®ve ana, and H. praestans. Kaplan (1991, 1999) species of the group. In the phylogenetic found no evidence of monophyly for the analysis of Duellman et al. (1997), the au- group. Kaplan (1997) resurrected H. bogerti thors did not identify any synapomorphy for from the synonymy of H. carnifex, adding a the H. larinopygion group; it merely lacks fourth species to the group. Kaplan (1999) the apparent synapomorphies of the H. ar- suggested that ``the presence of two close, mata and H. bogotensis groups. Because of triangular lateral spaces between the cricoid problems with the limits of the H. larinopy- and arytenoids at the posterior part of the gion group, Kizirian et al. (2003) were un- larynx'' is a synapomorphy of the H. colum- certain about the placement of H. tapichal- biana group excluding H. praestans, which aca, a species that they considered most sim- he considered to be closely related to the H. ilar to the H. larinopygion, H. armata, and garagoensis group. The group therefore is H. pulchella groups.13 Faivovich et al. (2004) composed of H. bogerti, H. carnifex, and H. showed that H. tapichalaca and H. armata columbiana. In the present analysis, we in- (the only exemplars of Andean stream-breed- clude H. carnifex. ing Hyla they included) were sister taxa, and Hyla decipiens Group: While describing only very distantly related to the H. pulchella the tadpoles of H. oliveirai and H. decipiens, group. The H. larinopygion group currently Pugliese et al. (2000) noticed that they have comprises nine species: H. caucana, H. lar- marginal papillae (unlike other known larvae inopygion, H. lindae, H. pacha, H. pantos- of the H. microcephala group), and they pointed out that they may not be members of the H. microcephala group as considered by 13 The only character state that led Kizirian et al. (2003) to consider Hyla tapichalaca similar to the H. Bastos and Pombal (1996). Pugliese et al. pulchella group is the presence of an enlarged, pointed, (2000) noticed similarities in tadpole mor- recurved prepollex. phology with H. berthalutzae, with which 28 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 these two species also share oviposition on extensive de®nition, the only possible syna- leaves outside the water. Pugliese et al. pomorphy seems to be the presence of two (2000) also associated H. haddadi with these glandular patches in the pectoral region (this three species based on external similarity. character state, however, was ignored in ev- Carvalho e Silva et al. (2003) suggested ery subsequent paper dealing with phyloge- the recognition of the Hyla decipiens group netic relationships of 30-chromosome Hyla). for these species. The group was de®ned by In the phylogenetic analysis presented by larval features that include one row of mar- Duellman and Trueb (1983), the only syna- ginal papillae, an ovoid body in lateral view, pomorphy they proposed for the group was eyes in the anterior third of the body, dorsal violin larval body shape. This character state ®n arising at the end of the body, tail with seems problematic in that it is present in lar- transverse dark stripes on a light background, vae of some species associated with the H. and pointed tip without a ¯agellum. It is un- microcephala and H. rubicundula groups clear which of these character states could be (see Lavilla, 1990; Pugliese et al., 2001), and considered to be possible synapomorphies. therefore the level of inclusiveness of the Perhaps one apparent synapomorphy of the clade that is supported by this transformation group, not mentioned by the authors, could is unclear. From the perspective of adult mor- be the oviposition on leaves outside the wa- phology, we suggest that glandular patches ter. The group is composed of H. berthalut- in the pectoral region is a synapomorphy of zae, H. decipiens, H. haddadi, and H. oliv- the H. leucophyllata group; we observed it eirai. In our analysis, we include H. ber- clearly on specimens of both sexes in all spe- thalutzae. cies of the group. Another character state that Hyla garagoensis Group: This species is either a likely synapomorphy of the H. leu- group was ®rst recognized by Kaplan and cophyllata group or of a more inclusive clade Ruiz-Carranza (1997), who diagnosed it by is the oviposition on leaves hanging over wa- the presence of alternated pigmented and un- ter (this oviposition mode occurs also in oth- pigmented longitudinal stripes on the hind- er 30-chromosome species; see comments in limbs of larvae. The H. garagoensis group is the H. microcephala and H. parviceps currently composed of three species, H. gar- groups). agoensis, H. padreluna, and H. virolinensis. The Hyla leucophyllata group is com- Unfortunately, no species of this group was available for our analysis. posed of seven species: H. bifurca, H. ebrac- Hyla labialis Group: This group was ®rst cata, H. elegans, H. leucophyllata, H. trian- recognized by Cochran and Goin (1970) for gulum, H. rossalleni, and H. sarayacuensis. H. labialis (including what is now H. platy- In our analysis, we include H. ebraccata, H. dactyla, a species of the H. bogotensis sarayacuensis, and H. triangulum. group). They characterized the group by the Hyla marmorata Group: This group was vomerine teeth being in two rounded patches recognized by Cochran (1955) for H. mar- and by the presence of a well-developed ax- morata, H. microps, and H. giesleri based on illary membrane (referred to as a patagium) the presence of an axillary membrane, warty that is bright blue in life. Duellman (1989) skin around the margin of the lower lip, short presented a more extensive de®nition of the snout, crenulated margin of limbs, short group, noting that the axillary membrane was hindlimbs, developed ®nger and toe web- absent, a point with which we agree. A sim- bing, dorsal marbled pattern, and orange col- ilar de®nition was presented by Duellman et oration in thighs and webbings. Bokermann al. (1997). No synapomorphies were sug- (1964b) further diagnosed the group by its gested for this species group. The group cur- possession of a very large vocal sac. Several rently comprises three species, H. labialis, H. of these character states are possible syna- meridensis, and H. pelidna. In this study we pomorphies for the group (such as the warty include H. labialis. skin around the margin of the lower lip, the Hyla leucophyllata Group: This group was crenulated margin of limbs, the dorsal mar- de®ned and later partly reviewed by Duell- bled pattern). Duellman and Trueb (1983) man (1970, 1974). From Duellman's (1970) suggested that this group could be diagnosed 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 29 by the presence of a row of small marginal (1982) in the H. minima group. Furthermore, papillae in the larval oral disc. MaÂrquez et al. (1993) noticed that H. leali Bokermann (1964b), like Cochran (1955), and H. rhodopepla share vocalizations with included in the Hyla marmorata group other short, pulsatile notes with extremely low species as well: H. parviceps, H. microps, H. dominant frequencies. Because of these sim- schubarti, and H. moraviensis (now consid- ilarities in vocalizations of H. leali with a ered a synonym of H. lancasteri; see Duell- species of the H. microcephala group, in the man, 1966). Subsequent authors transferred absence of other evidence we prefer to keep these species to other groups. This group is H. leali in this group. now composed of eight species: H. acreana, Bastos and Pombal (1996) suggested that H. dutrai, H. marmorata, H. melanargyrea, Hyla branneri, H. decipiens, H. haddadi, and H. nahdereri, H. novaisi, H. senicula, and H. H. oliveirai were closely related species that soaresi. In our analysis we include H. mar- could be tentatively associated with the H. morata and H. senicula. microcephala group based on overall simi- Hyla microcephala Group: This group was larity of adult morphology, but this was de®ned by Duellman and Fouquette (1968) questioned by Pugliese et al. (2000) and Car- and Duellman (1970). Despite their extensive valho e Silva et al. (2003), who excluded characterization, the only character state these species from the group (see comments mentioned by these authors that subsequently for the H. decipiens group). Pombal and Bas- has been considered a possible synapomor- tos (1998) also added H. berthalutzae, H. phy of this group is the lack of marginal pa- cruzi, and H. meridiana. Cruz et al. (2000) pillae in the oral disc. Later, Duellman and added H. pseudomeridiana.KoÈhler and LoÈt- Trueb (1983) added the depressed body ters (2001a) tentatively included H. joannae, shape of the larvae, another likely synapo- based on its similarities in vocalization and morphy. adult morphology with H. leali (but see com- While the study of Duellman and Fou- ments regarding H. leali above). Carvalho e quette (1968) was focused on Middle Amer- Silva et al. (2003) added H. studerae and ex- ican species, Duellman (1970) referred a cluded H. berthalutzae (see comments for the number of South American species to the H. decipiens group). Hyla microcephala group. Overall, he in- Of the 20 species currently included in the cluded in the group H. elongata (a junior Hyla microcephala group, tadpoles are only synonym of H. rubicundula; see Napoli and known for 9 species: H. bipunctata, H. mer- Caramaschi, 1999), H. microcephala, H. idiana, H. microcephala, H. nana, H. phle- minuta, H. nana, H. phlebodes, H. robert- bodes, H. pseudomeridiana, H. rhodopepla, mertensi, H. sartori, and H. werneri. Duell- H. sanborni, and H. studerae (Bokermann, man (1972a) also included H. mathiassoni 1963, Duellman, 1970, 1972a, Lavilla, 1990, and H. rhodopepla in the group, and he ex- Cruz and Dias, 1991, Cruz et al., 2000, Pug- cluded H. minuta. Cochran and Goin (1970) liese et al., 2000, Carvalho e Silva et al., also had excluded H. minuta by placing it in 2003). All of these species have the two ap- their H. minuta group. Duellman (1973b) in- parent synapomorphies of the H. microce- cluded H. gryllata, and Langone and Basso phala group (see comments for the H. rubi- (1987) added H. minuscula, H. sanborni, and cundula group). H. walfordi. The 20 species currently included in the Cruz and Dias (1991) placed Hyla bipunc- Hyla microcephala group are H. bipunctata, tata in the group on the basis of larval char- H. branneri, H. cruzi, H. gryllata, H. joan- acters.14 MaÂrquez et al. (1993) included H. nae, H. leali, H. mathiassoni, H. meridiana, leali in the H. microcephala group, without H. microcephala, H. minuscula, H. nana, H. mentioning that it was included by Duellman phlebodes, H. pseudomeridiana, H. rhodo- pepla, H. robertmertensi, H. sanborni, H. sartori, H. studerae, H. walfordi, and H. wer- 14 Duellman (2001) stated that the relationships of Hyla bipunctata were uncertain. Presumably he was not neri. In this analysis we include H. bipunc- aware of the description of its tadpole by Cruz and Dias tata, H. microcephala, H. nana, H. rhodo- (1991). pepla, H. sanborni, and H. walfordi. 30 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Hyla minima Group: Duellman (1982) ten- and H. xapuriensis, and, following KoÈhler tatively grouped together ®ve species from and LoÈtters (2001b), we tentatively include the Upper and Middle and H. delarivai. For the purpose of our analysis, eastern Andes for which data on larval mor- only H. minuta was available. phology, vocalizations, and osteology were Hyla parviceps Group: This group was mostly absent. He based the grouping of ®rst de®ned by Duellman (1970), and by these species on small body size and distri- Duellman and Crump (1974), who also re- bution. The species he included were H. viewed it. According to Duellman and aperomea, H. leali, H. minima, H. riveroi, Crump (1974), the species in the H. parvi- and H. rossalleni. The group as such was not ceps group differ from other 30-chromosome named until Duellman in Frost (1985) re- Hyla species by having: (1) a pronounced ferred to it as the H. minima group. Vigle in size; (2) shorter snout; and Goberdhan-Vigle (1990) added H. mi- (3) tympanic ring indistinct or absent; (5) yatai to this group; MaÂrquez et al. (1993) small (or reduced) axillary membrane; (9) implicitly transferred H. leali to the H. mi- sexual dimorphism in width of dorsolateral crocephala group (see comments for the H. stripes; (10) suborbital bars; (11) thighs microcephala group above); De la Riva and marked with spots; (13) iris pale gray with Duellman (1997) redescribed H. rossalleni red ring around pupil; (15) more perichon- and placed it in the H. leucophyllata group. dral ossi®cation in the tectum nasi and solum Small size is a dif®cult criterion to apply nasi; and (17) squamosal articulating with for the Hyla minima group, considering that prootics. Duellman and Crump (1974) char- its constituent species are not smaller than acterized the tadpoles as having ovoid bodies several species of the H. microcephala and xiphicercal tails with moderately deep group. Duellman (2001) suggested that the ®ns not extending into body; anteroventral H. minima group should be associated with oral disc, large marginal papillae, robust ser- the H. parviceps group. Unfortunately, this rated jaw sheaths, and no more than one row does not improve the systematics of these of labial teeth. It is unclear which of these frogs, because no synapomorphies are known character states could be synapomorphies of for either of these two groups (see the H. the group. Duellman and Trueb (1983) did parviceps group for more comments). In the not provide any synapomorphy for the group. present analysis, we could include only H. Duellman and Crump (1974) included in miyatai. the Hyla parviceps group H. bokermanni, H. Hyla minuta Group: This group was ®rst brevifrons, H. luteoocellata, H. microps, H. de®ned by Cochran (1955); most of the spe- parviceps, and H. subocularis. Heyer (1977) cies then included subsequently were trans- added H. pauiniensis. Heyer (1980) resur- ferred by several authors to the H. leuco- rected H. giesleri from the synonymy of H. phyllata, H. microcephala,orH. rubicundula microps. Weygoldt and Peixoto (1987) ten- groups. The character state Cochran (1955) tatively included H. ruschii in the group. used to distinguish the H. minuta group was Martins and Cardoso (1987) added H. tim- the immaculate anterior and posterior surfac- beba. Duellman and Trueb (1989) added es of the thigh, a character state that is shared H. allenorum and H. koechlini. Duellman by several 30-chromosome Hyla. (2001) added H. grandisonae and H. schu- Martins and Cardoso (1987) described barti. Lescure and Marty (2000) referred H. Hyla xapuriensis and referred it to the H. luteoocellata to a separate group, the H. lu- minuta group without providing any de®ni- teoocellata group, which they characterized tion. KoÈhler and LoÈtters (2001b) described by the presence of a cream-colored suborbit- H. delarivai and tentatively suggested that it al stripe. Because they did not discuss dif- is close to H. minuta. Duellman and Trueb ferences with the H. parviceps group, we still (1983) stated that the H. minuta group con- consider H. luteoocellata a member of the H. tained two species, but they did not state parviceps group. However, the species they which one was the second species, and they described, H. gaucheri, does not seem to provided no evidence for its monophyly. The have this stripe. group is currently composed of H. minuta The Hyla parviceps group is currently 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 31 composed of 15 species: H. allenorum, H. we consider it a 30-chromosome species. We bokermanni, H. brevifrons, H. gaucheri, H. could not include this species in the analysis. giesleri, H. grandisonae, H. koechlini, H. lu- Hyla battersbyi: Since its original descrip- teoocellata, H. microps, H. parviceps, H. tion (Rivero, 1961) this species has been pauiniensis, H. ruschii, H. schubarti, H. su- scarcely mentioned in the literature. We con- bocularis, and H. timbeba. In our analysis we sider it tentatively as a 30-chromosome spe- include H. brevifrons, H. giesleri, and H. cies based on the association made by Mi- parviceps. jares-Urrutia (1998) of this species with H. Hyla rubicundula Group: This group was minuta based on overall similarity. We could recently de®ned by Napoli and Caramaschi not include this species in the analysis. (1998) and was diagnosed by small body size, Hyla haraldschultzi: Bokermann (1962) patternless thighs, and green dorsum in life stated that the relationships of this species that changes to pinkish or violet when pre- were uncertain. Lutz (1973), while treating served. Bogart (1970), Rabello (1970) and the ``small to minute forms'', where she in- Gruber (2002) reported a 30-chromosome cluded most of the 30-chromosome Hyla, karyotype in H. rubicundula and H. elianeae. considered H. haraldschultzi to be insuf®- Historically, species of this group were asso- ciently known. We could not include this ciated with species now placed in the H. mi- species in the analysis. crocephala group, such as H. nana and H. Hyla limai: In the original description, sanborni (Lutz, 1973). The group is currently Bokermann (1962) associated this species composed of H. anataliasiasi, H. araguaya, with H. minuta and H. werneri. Apart from H. cachimbo, H. cerradensis, H. elianeae, H. a brief comment by Lutz (1973), it has not jimi, H. rhea, H. rubicundula, and H. tritaen- been referred to again in the literature. Had- iata. In our analysis, we include H. rubicun- dad (unpubl. data), based on morphological dula. variation in populations of H. minuta, ®nds Species Known or Presumed to Have 30 that H. limai could be a junior synonym of Chromosomes Not Assigned to Any Group: this species. We could not include this nom- Hyla anceps: Lutz (1948, 1973) associated inal species in the analysis. H. anceps with H. leucophyllata based on it Hyla praestans: Duellman and Trueb having an axillary membrane, tadpoles with (1983) originally placed this species in the xiphicercal tail, and vivid ¯ash colors. Coch- H. columbiana group. Kaplan (1999), based ran (1955) considered this species to have no on the presence of a small medial depression known close relatives and placed it on its in the internal surface of each arytenoid, sug- own species group. Bogart (1973) reported a gested that H. praestans was related to the 30-chromosome karyotype for this species, H. garagoensis group and possibly its sister and he tentatively associated it with H. mi- taxon. We could not secure samples for the crocephala, H. bipunctata, H. elongata (a ju- analysis. nior synonym of H. rubicundula), and H. Hyla stingi: This species, externally simi- rhodopepla for sharing a single pair of telo- lar to H. minuta, has been suggested to be centric chromosomes. Regardless of having the sister group of a clade composed of the been reported to have 30 chromosomes, Hyla H. minuta, H. marmorata, H. parviceps, H. anceps has been ignored in all subsequent leucophyllata, and H. microcephala groups literature dealing with phylogenetic relations (this being supported by the reduction in the of 30-chromosome species of Hyla. Wogel et labial tooth row formula from 1/2 to 0/1; al. (2000) redescribed the tadpole of H. an- Kaplan, 1994). The apparent synapomorphy ceps and stated that its morphology support- uniting H. stingi with this clade is the ante- ed the idea of this species belonging to its rior position of the oral disc. This species own species group, without giving further could not be included in the analysis. details. We include this species in the anal- Hyla tintinnabulum: This species was as- ysis. sociated with H. branneri and H. rubicun- Hyla amicorum: This species was consid- dula by Lutz (1973). This fact and our study ered to be similar to H. battersbyi and H. of one of the syntypes (NHMG 473; adult minuta (Mijares-Urrutia, 1998). On this basis male) suggest that it is a 30-chromosome 32 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Hyla. We could not include this species in (2001) added the bright red iris and the labial the analysis. stripe expanded below the orbit. Duellma- Hyla yaracuyana: This species was asso- nohyla contains the following eight species: ciated with the 30-chromosome Hyla by Mi- D. chamulae, D. ignicolor, D. lythrodes, D. jares-Urrutia and Rivero (2000), but it was ru®oculis, D. salvavida, D. schmidtorum, D. not included in any species group. We could soralia, and D. uranochroa. In our analysis, not include this species in the analysis. we include D. ru®oculis and D. soralia. Hyla arborea Group: All of the species of Middle American/Holarctic Clade Hyla of Europe, North Africa, and Asia have long been recognized as composing a single The monophyly of most Middle American species group (Stejneger, 1907; Pope, 1931). and Holarctic Hylinae was suggested by Probably because species of this group have Duellman (1970, 2001) based on biogeo- generally been discussed in isolation of other graphic grounds. This clade would include hylids, we are not aware of any author hav- most Middle American and Holarctic species ing provided a diagnosis of this group that groups of Hyla plus the genera Acris, Anoth- could differentiate them, at least phenotypi- eca, Duellmanohyla, Plectrohyla, Pseuda- cally, from the Nearctic species placed in the cris, Pternohyla, Ptychohyla, Smilisca, and H. cinerea and H. eximia groups. No syna- Triprion. pomorphy has ever been suggested; the Acris: This very distinctive taxon was re- monophyly of the group has apparently been viewed by Duellman (1970) and was includ- assumed based on geography and the exter- ed in several studies of Holarctic hylids nal similarity of most species (9 of the 16 (Gaudin, 1974; Hedges, 1986; Cocroft, 1994; currently recognized species have been con- da Silva, 1997). In the strict consensus of the sidered at some point of it taxonomic history analysis by Cocroft (1994), the position of to be subspecies or varieties of H. arborea). Acris was unresolved with respect of the oth- Various authors considered the Hyla ar- er Holarctic hylids. In the reanalysis done by borea group to be closely related with some da Silva (1997), it is sister to a clade com- North American species. Based on similari- posed of the species of the Hyla cinerea and ties in advertisement calls, Kuramoto (1980) H. versicolor groups. The two species A. cre- suggested that the H. arborea group is close- pitans and A. gryllus are included in our ly related to the H. eximia group of temperate analysis. Mexico and southwestern United States. Anotheca: This monotypic genus was re- The assumed monophyly of the Hyla ar- viewed by Duellman (1970, 2001). Autapo- borea group was challenged by Anderson morphies of this taxon include the unique (1991) on karyotypic grounds, and this was skull ornamentation composed of sharp, dor- supported by Borkin (1999). These authors sally pointed spines in the margins of fron- suggested the presence of at least two line- toparietal, maxilla, nasal (including canthal ages resulting from two independent inva- ridge), and squamosal, and character states sions to Eurasia. According to Anderson that result in its reproductive mode, including (1991), at least H. japonica and H. suweo- the female feeding tadpoles with trophic eggs nensis (she did not include other eastern (see Jungfer, 1996). We include the single Asian species) share the presence of a NOR species Anotheca spinosa in this analysis. in chromosome 6 with the representatives Duellmanohyla: This genus was reviewed she studied of the H. eximia group (H. ar- by Duellman (2001). Duellmanohyla was enicolor, H. euphorbiacea, H. eximia), some proposed by Campbell and Smith (1992), of the H. versicolor group (H. avivoca, H. based on four suggested synapomorphies in- chrysoscelis, H. versicolor; H. femoralis), volving larval morphology: a greatly en- and with H. andersonii. Hyla arborea, H. larged, pendant oral disc (referred to as fun- chinensis, H. meridionalis, and H. savignyi nel-shaped mouth by Duellman, 2001); long share with most Nearctic species of Hyla,as and pointed serrations on the jaw sheaths; well as several of the outgroups that Ander- upper jaw sheath lacking lateral processes; son (1991) included, the NOR located in and greatly shortened tooth rows. Duellman chromosomes 10/11 (she considered the 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 33 chromosome pairs to be homologous in these radricola, H. chryses, H. crassa, H. cyanom- species, with the shift in NOR position pre- ma, H. labedactyla, H. mykter, H. pachyder- sumably corresponding to modulation of het- ma, H. pentheter, H. psarosema, H. robert- erochromatin material and not to a translo- sorum, H. sabrina, and H. siopela. In this cation event; Anderson 1991: 323). analysis we include H. bistincta and H. cal- The Hyla arborea group as currently un- thula. derstood is composed of the following 16 Hyla bromeliacia Group: The taxonomy, species: H. annectans, H. arborea, H. chi- composition, and history of this group were nensis, H. hallowellii, H. immaculata, H. in- reviewed by Duellman (1970, 2001). Possi- termedia, H. japonica, H. meridionalis, H. ble synapomorphies suggested by Duellman sanchiangensis, H. sarda, H. savignyi, H. (2001) are those modi®cations of the phyto- simplex, H. suweonensis, H. tsinlingensis, H. telmic larvae, mostly the depressed body and ussuriensis, and H. zhaopingensis. In this the elongated tail. The other characters he analysis we include H. arborea, H. annec- used to separate this group from the brome- tans, H. japonica, and H. savignyi. liad-dwelling species of the H. pictipes group Hyla bistincta Group: This group was re- are likely plesiomorphic, such as the lack of viewed by Duellman (2001). The lack of ev- massive temporal musculature (present only idence supporting the monophyly of the H. in H. zeteki and H. picadoi), the presence of bistincta group, together with the possibility more than one tooth row (only one in H. pi- that Plectrohyla is nested within it, has been cadoi and H. zeteki), and the oral disc not repeatedly noted (Duellman and Campbell: entirely bordered by a single row of papillae 1992; Toal, 1994; Wilson et al., 1994a; Men- (as in H. zeteki and H. picadoi). The group delson and Toal, 1995; Ustach et al., 2000; comprises two species, H. bromeliacia and Canseco-MaÂrquez et al., 2002). H. dendroscarta. In this study we include Duellman (2001) presented a cladistic only H. bromeliacia. analysis of the Hyla bistincta group that in- Hyla cinerea Group: This group was ®rst cluded the 17 species known at that time, recognized by Blair (1958) based on adver- using a vector of character states of Plectro- tisement call structure. For a review of its hyla and H. miotympanum as the root. He history see Anderson (1991). The group is reported that the analysis resulted in 89 most currently composed of four species, H. ci- parsimonious trees, from which he chose one nerea, H. femoralis, H. gratiosa, and H. squi- that is presented in his ®gure 400 (Duellman rella, and the group is monophyletic in the 2001: 952). In this tree, the H. bistincta analyses of Hedges (1986), Cocroft (1994), group is monophyletic, being supported by a and da Silva (1998), being supported by al- single transformation, the loss of vocal slits. lozyme data (taken in the last two studies A reanalysis of his data set15 indicates that from Hedges, 1986). We included all four Plectrohyla is nested within the H. bistincta species of the group in the present analysis. group on several of the most parsimonious Hyla eximia Group: The taxonomy, com- trees, and that the strict consensus tree is al- position, and history of this group were thor- most entirely collapsed. Therefore, Duell- oughly reviewed by Duellman (1970, 2001). man's analysis provides no evidence for the Duellman (2001) presented an extensive def- monophyly of the H. bistincta group. inition; however, it is unclear which of the The Hyla bistincta group currently com- character states could be taken as evidence prises the following 18 described species: H. of monophyly of the group. Hedges (1986) ameibothalame, H. bistincta, H, calthula, H. and Cocroft (1994) included two species, H. calvicollina, H. celata, H. cembra, H. cha- arenicolor and H. eximia, in their analyses. While in Hedges's (1986) results these two 15 This reanalysis, like that attempted by Canseco- species form a monophyletic group, on the MaÂrquez et al. (2002), could not reproduce the results strict consensus of Cocroft's (1994) most presented by Duellman (2001). The present discussion parsimonious trees, both species are not is based on the results that were obtained using the ad- ditivities speci®ed by Duellman. It resulted in 45 most monophyletic and form a basal polytomy parsimonious trees of 56 steps, with CI ϭ 0.57 and RI with several other species of Hyla. da Silva's ϭ 0.52. (1997) reanalysis of Cocroft's (1994) data set 34 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 yielded on its strict consensus H. arenicolor um, H. perkinsi, and H. pinorum. Our anal- and H. eximia as a monophyletic group, ysis includes H. arborescandens, H. cyclada, which appears to be supported by the allo- H. melanomma, H. miotympanum, and H. zyme data of Hedges (1986). Besides the perkinsi. seven species included by Duellman (2001) Hyla mixomaculata Group: Duellman in the group, Eliosa LeoÂn (2002) resurrected (1970) reviewed the group and listed several H. arboricola from the synonymy of H. ex- character states that de®ne it. Some of these imia, adding an eigth species to the group. are probably synapomorphies, such as See the H. arborea group for additional com- (known) larvae with an enlarged oral disc ments. The H. eximia group is currently com- with 7/10 or 11 labial tooth rows (the largest posed of eight species: Hyla arboricola, H. number of posterior tooth rows known for a arenicolor, H. bocourti, H. euphorbiacea, H. Middle American hylid group); the taxonom- eximia, H. plicata, H. walkeri, and H. wrigh- ic distribution of other character states indi- torum. In this analysis we include H. areni- cate that they are likely synapomorphies of color, H. euphorbiacea, H. eximia, and H. a more inclusive clade, such as the large walkeri. frontoparietal fontanelle and the absence (or Hyla godmani Group: The taxonomy, reduction, unclear on ®g. 211 of Duellman, composition, and history of this group were 1970) of the quadratojugal. The group is cur- reviewed by Duellman (1970, 2001). Duell- rently composed of four species, H. mixe, H. man (2001) included in this group the only mixomaculata, H. nubicola, and H. pellita. lowland -breeders from Middle America Only H. mixe was available for this analysis. that do not have 30 chromosomes. He sug- Hyla pictipes Group: The taxonomy, com- gested as tentative evidence of monophyly position, and history of this group were re- the weakly ossi®ed skulls and the presence viewed by Duellman (1970, 2001). Duellman of an axillary membrane. This group cur- (2001) provided a phylogenetic analysis17 of rently comprises four species: H. godmani, the montane species of Hyla of lower Central H. loquax, H. picta, and H. smithii. We in- America, where he included the H. pseudop- clude H. picta and H. smithii in our analysis. uma and H. pictipes groups. Hyla miotympanum Group: The taxonomy, Duellman (2001) suggested six synapo- composition, and history of this group were morphies for the group: slender nasals in thoroughly reviewed by Duellman (1970, adults; tadpoles with stream-dwelling habits; 2001). Duellman (2001), using a hypotheti- oral disc ventral; complete marginal papillae; cal outgroup, suggested eight synapomor- only one row of marginal papillae; and pres- phies for the group16: abbreviated axillary ence of submarginal papillae. Note that with membrane; indistinct fold on wrist; ®ngers the possible exception of slender nasals in less than one-half webbed; tarsal fold present adults, the other three character states as de- through the entire length of the tarsus; cloa- ®ned by Duellman (2001) are also present in cal opening directed posteroventrally; nuptial several other groups of Middle American excrescences present; medial ramus of pter- stream-breeding frogs (i.e., the Hyla bistincta ygoid short, not in contact with prootic; and group, H. mixomaculata group, H. sumi- larval oral disc in ventral position. It seems chrasti group, and Plectrohyla). unlikely that any of these character transfor- The Hyla pictipes group includes 11 spe- mations will hold as synapomorphies of the cies: H. calypsa, H. debilis, H. insolita, H. group in the context of a more inclusive anal- lancasteri, H. picadoi, H. pictipes, H. rivu- ysis. The group currently contains 11 spe- cies: H. abdivita, H. arborescandens, H. biv- 17 We could not reproduce the results of Duellman ocata, H. catracha, H. cyclada, H. hazelae, (2001) using his data matrix under the same additivities. H. juanitae, H. melanomma, H. miotympan- This is most probably due to an editorial problem with the data matrix; the scores for Hyla debilis are all 0. 16 Note that in ``the preferred'' cladogram, there is a Evidently the data set as printed is different from that character 27 as one of the synapomorpies of the Hyla used to choose the trees shown, where H. debilis is the miotympanum group; presumably this is an error for 17, sister species of H. rivularis. Because of this situation, since the data set has 22 characters, and character 17 is we discuss the synapomorphies shown in the book, not inclusive of the ingroup. those from our reanalysis. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 35 laris, H. thorectes, H. tica, H. xanthosticta, species of fringe-limbed treefrogs were ®rst and H. zeteki. Considering the uncertainties suggested by Dunn (1943) and by Taylor regarding the monophyly of this group, an (1948, 1952) based on their overall appear- appropriate taxon sampling should ideally in- ance. Firschein and Smith (1956) suggested clude representatives of the four former spe- that the presence of a ``prepollex'' (presum- cies groups currently combined into the H. ably referring to an enlarged prepollex) and pictipes group. Unfortunately, the only rep- similarity of external habitus, size, skin tex- resentatives available are H. rivularis and ture, and fringed limbs were indicative of a Hyla sp. 5 (aff. H. thorectes), an undescribed common origin. Duellman (1970, 2001) pre- species from Mexico similar to H. thorectes. sented a formal de®nition of the group, as- Hyla pseudopuma Group: The taxonomy, serting that these frogs be placed in the same composition, and history of this group were group based on their large size, presence of reviewed by Duellman (1970, 2001), who dermal fringes on the limbs (although absent could not provide a synapomorphy for it. In in H. dendrophasma), extensive webbing on his phylogenetic analysis of the H. pseudop- hand and feet, and modi®ed prepollices. (Im- uma and H. pictipes groups, the H. pseudop- portantly, note that apparently the modi®ed uma group appears as a basal unresolved prepollices involve three different morphol- grade, although this is a consequence of con- ogies: modi®cation into a projecting spine or straining the nonmonophyly of the H. pseu- a spadelike blade or a clump of spines; dopuma group by using H. angustilineata as Duellman, 1970.) Duellman (2001) added the root. The H. pseudopuma group includes that there is no compelling evidence that the four species: H. angustilineata, H. graceae, group is monophyletic, an opinion that we H. infucata, and H. pseudopuma. In this share. Furthermore, he tentatively suggested study we include only H. pseudopuma. that this group could be related with the Hyla sumichrasti Group: The taxonomy, Gladiator Frogs rather than with the Middle composition, and history of this group were American/ Holarctic clade. The Hyla tuber- reviewed by Duellman (1970, 2001). Possi- culosa group has been referred to as the H. ble synapomorphies for the group (Duell- miliaria group (Campbell et al., 2000; Duell- man, 2001) are the presence of massive na- man, 1970, 2001; Savage and Heyer, ``1968'' sals, and tadpoles with immense oral discs, [1969]) and is composed of H. dendrophas- with 3/6 to 3/7 labial tooth rows instead of ma, H. echinata, H. ®mbrimembra, H. mili- the 2/3 to 2/6 of the H. miotympanum group. aria, H. minera, H. phantasmagoria, H. sal- The group currently includes four species: H. vaje, H. thysanota, H. tuberculosa, and H. chimalapa, H. smaragdina, H. sumichrasti, valancifer. In this analysis, we include H. and H. xera. In this study we include H. chi- dendrophasma and H. miliaria. malapa and H. xera. Hyla versicolor Group: This group was Hyla taeniopus Group: This group was re- ®rst recognized by Blair (1958) on the basis viewed by Duellman (1970, 2001), who de- of advertisement call structure. See Duellman ®ned it as having well-ossi®ed quadratoju- (1970) and Anderson (1991) for a brief tax- gals in contact with maxillaries, and tadpoles onomic history. Both Blair (1958) and Duell- that have ventral mouths with two or three man (1970) included H. arenicolor in the anterior rows of teeth and three or four pos- group until Hedges (1986), Cocroft (1994), terior rows. While the presence of enlarged and da Silva (1997) showed on successive testes is a possible synapomorphy of a sub- analyses that this species was more closely group composed of H. altipotens, H. trux, related to H. eximia (see the H. eximia group and H. taeniopus, there is no evidence for the for further comments), always on the basis monophyly of the entire group (Mendelson of the allozyme data collected by Hedges and Campbell, 1999; Duellman, 2001). Five (1986). species are currently included in this group: Although placed originally in the Hyla ci- H. altipotens, H. chaneque, H. nephila, H. nerea group by Blair (1958), H. andersonii taeniopus, and H. trux. In this analysis, we was transferred to the H. versicolor group by include H. nephila and H. taeniopus. Wiley (1982), with this being supported by Hyla tuberculosa Group: Af®nities among Hedges (1986), Cocroft (1994), and da Silva 36 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

(1997) on the basis of the allozyme data col- ®ed four major clades: (1) the P. regilla lected by Hedges (1986). Similarly, H. fe- clade (P. cadaverina and P. regilla; Moriarty moralis was considered a member of the H. and Cannatella referred to it as the West versicolor group until Hedges (1986) trans- Coast clade); (2) the Pseudacris ornata clade ferred it to the H. cinerea group, an assign- (P. ornata, P. streckeri, and P. illinoiensis; ment also corroborated by da Silva (1997). Moriarty and Cannatella called it fat frogs The group currently comprises four species: clade); (3) the P. crucifer clade (P. crucifer H. andersonii, Hyla avivoca, H. chrysoscelis, and P. ocularis); and (4) the P. nigrita clade and H. versicolor. In this study we include (including P. brimleyi, P. brachyphona, P. all but H. chrysoscelis. clarkii, P. feriarum, P. maculata, and P. tris- Pseudacris: The phylogenetic relation- eriata; Moriarty and Cannatella called it ships of this genus were reviewed by Hedges Trilling Frogs clade). In our study we include (1986), Cocroft (1994), da Silva (1997), and Pseudacris cadaverina, P. crucifer, P. ocu- Moriarty and Cannatella (2004). Hedges laris, P. regilla, and P. triseriata. (1986) presented an electrophoretic analysis Pternohyla: This Mexican casque-headed of 33 presumed genetic loci, where all spe- frog genus was reviewed by Trueb (1969) cies of Pseudacris were monophyletic, and and Duellman (1970, 2001). In Duellman's which provided evidence to include the for- (2001) phylogenetic analysis of Pternohyla, mer Hyla cadaverina, H. crucifer, and H. re- Smilisca, and Triprion, the monophyly of gilla in Pseudacris. Cocroft (1994) per- Pternohyla is supported by four synapomor- formed a phylogenetic analysis of Pseuda- phies: small discs on ®ngers; supernumerary cris, including several Holarctic hylids as tubercles diffuse or absent; large inner meta- outgroups, with characters from various tarsal tubercle18; and large marginal papillae sources (osteology, vocalizations, karyo- in the larval oral disc. Unfortunately, small types, allozymes, sperm morphology) and discs on ®ngers are a synapomorphy only un- previous analyses (Hedges, 1986). The strict der an accelerated optimization (ACCT- consensus of his most parsimonious trees RAN), and therefore they have no evidential shows P. crucifer as the sister taxon of the value for the clade. remaining species of Pseudacris; the two In Duellman's (2001) analysis, Triprion classically recognized species groups (the P. plus Pternohyla forms a monophyletic group ornata and the P. nigrita groups) each being nested within Smilisca. The synapomorphies monophyletic; and P. ocularis being the sis- supporting Triprion plus Pternohyla are19: ter taxon of the P. nigrita group. However, nasals with broad medial contact; median ra- Hedges (1986) found no evidence supporting mus of pterygoid not in contact with prootic; the inclusion of P. cadaverina and P. regilla maxilla moderately expanded laterally; cra- in Pseudacris, and for this reason he treated nial-integumentary co-ossi®cation present; them as Hyla. Furthermore, the relationships webbing between ®ngers absent; and inner of the remaining, monophyletic species of metatarsal tubercle small. Pternohyla is com- Pseudacris with the other Holarctic hyline posed of two similar species, P. dentata, and are unresolved. In the modi®ed reanalysis performed by da Silva (1997), the strict con- 18 For the character ``inner metatarsal tubercle'', Duellman (2001) de®ned four character states: moderate sensus shows that the clade composed of H. (0), small (1), large (2), and spadelike (3). He stated that regilla and H. cadaverina is sister to Pseu- he considered this character as additive in the order dacris and is supported apparently by allo- 0→1→2→3; unless there is an editorial mistake, this zyme data. Because of this, these two species seems a rather peculiar and unjusti®ed ordering. are considered again to be within Pseudacris 19 Duellman maps on his preferred tree character states 4.1, 7.2, 8.1, 9.1, 13.1, 16.1, and 19.1. However, an ex- (da Silva, 1997). amination of the character list and matrix shows that Moriarty and Cannatella (2004) presented there is no state 2 de®ned for character 7, and that char- a phylogenetic analysis of the mitochondrial acter 13 is actually an autapomorphy of Triprion spa- ribosomal genes 12S, tRNA valine, and 16S tulatus; it is very likely that 13 is a typographical error for character 14, which according to the data set is a that included all species of Pseudacris and synapomorphy for the group; in the synapomorphy list three outgroups, Hyla andersonii, H. chry- given above, we assume that these problems were ®xed, soscelis, and H. eximia. The analysis identi- and so we ignore character state 7.2. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 37

P. fodiens. In this analysis we include P. fod- plus other species of stream-breeding hylids iens. that also have a tooth row formula larger Plectrohyla: This genus was reviewed by than 2/3. Similarly, ventrolateral glands are Duellman (2001) and discussed by McCranie present also in some species of Duellmano- and Wilson (2002). Its phylogenetic relation- hyla (Campbell and Smith, 1992; Duellman, ships were addressed by Duellman and 2001). Campbell (1992), Wilson et al. (1994a), and For an unstated reason, Savage (2002a) Duellman (2001). The monophyly of Plec- excluded Ptychohyla legleri and P. salvador- trohyla does not appear to be controversial. ensis from Ptychohyla, placing them back in Duellman and Campbell (1992) listed six Hyla. These two species were originally in synapomorphies: bifurcated alary process of Hyla (former H. salvadorensis group; see premaxilla; sphenethmoid ossi®ed anteriorly, Duellman, 1970) until Campbell and Smith incorporating the septum nasi and projecting (1992) transferred them to Ptychohyla. Be- forward to the leading margins of the nasals; cause we are not aware of any evidence sup- frontoparietals abutting broadly anteriorly porting Savage's action, we consider them to and posteriorly, exposing a small area of the be members of Ptychohyla. frontoparietal fontanelle; hypertrophied fore- Ptychohyla is composed of 12 species: P. arms; and absence of lateral folds in the oral acrochorda, P. erythromma, P. euthysanota, disc. Wilson et al. (1994a) added ``prepollex P. hypomykter, P. legleri, P. leonhard- enlarged, elongated, ossi®ed, ¯at, terminally schultzei, P. macrotympanum, P. panchoi, P. blunt.'' Duellman (2001) interpreted that this salvadorensis, P. sanctaecrucis, P. spinipol- de®nition corresponded to more than one lex, and P. zophodes. In this analysis we character, and so he divided it into two char- include P. euthysanota, P. hypomykter, P. acters, the derived state of the ®rst one being leonhardschultzei, P. spinipollex, P. zopho- ``enlarged and ossi®ed prepollex in both sex- des, and Ptychohyla sp., an undescribed spe- es'', and the derived state of the second one cies from Oaxaca, Mexico. being ``enlarged and truncate prepollex.'' See Smilisca: This genus was reviewed by comments under the Hyla bistincta group. Duellman and Trueb (1966) and Duellman Plectrohyla currently contains 18 species: (1970, 2001). Duellman (2001) could ad- P. acanthodes, P. avia, P. chrysopleura, P. vance no evidence for the monophyly of dasypus, P. exquisitia, P. glandulosa, P. gua- Smilisca. He presented a phylogenetic anal- temalensis, P. hartwegi, P. ixil, P. lacertosa, ysis rooted with a hypothetical ancestor, P. matudai, P. pokomchi, P. psiloderma, P. whose strict consensus showed Pternohyla pycnochila, P. quecchi, P. sagorum, P. te- plus Triprion nested within Smilisca, being cunumani, and P. teuchestes. In this analysis more closely related to S. baudinii and S. we include P. guatemalensis, P. glandulosa, phaeota. The synapomorphies supporting and P. matudai. Pternohyla ϩ Triprion ϩ ``Smilisca'' are the Ptychohyla: This group was reviewed by presence of lateral ¯anges on the frontopari- Duellman (2001). Campbell and Smith etals, and the unexposed frontoparietal fon- (1992) suggested three synapomorphies for tanelle. The species of Smilisca have been Ptychohyla: the presence of two rows of mar- divided (Duellman and Trueb, 1966) into the ginal papillae, an increased number of tooth S. sordida group (S. puma and S. sordida), rows in larvae (from 3/5 to 6/9), and a the S. baudinii group (S. baudinii, S. cy- strongly developed lingual ¯ange of the pars anosticta, and S. phaeota), and S. sila, a form palatina of the premaxilla. Duellman (2001) considered intermediate between these two also suggested as synapomorphies the pres- groups. In Duellman's (2001) phylogenetic ence of ventrolateral glands in breeding analysis, S. sila plus the S. sordida group is males, and the coalescence of tubercles to monophyletic, with its synapomorphy being form a distinct ridge on the ventrolateral the short maxillary process of the nasal. Smi- edge of the forearm. The increase in the lisca contains six species: S. baudinii, S. cy- number of tooth rows could actually be a anosticta, S. phaeota, S. puma, S. sila, and synapomorphy not of Ptychohyla but for a S. sordida. In this analysis we include the more inclusive clade containing Ptychohyla three species in the S. baudinii group, S. bau- 38 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 dinii, S. cyanosticta, S. phaeota, and one spe- moid, the poorer development of ossi®cation cies of the S. sordida group, S. puma. and cranial sculpturing, and vocal sacs that Triprion: This genus was reviewed by when in¯ated protrude posteroventrally to Trueb (1969) and Duellman (1970, 2001). In the angles of the jaw. Possible autapomor- Duellman's (2001) phylogenetic analysis of phies of this taxon include the fusion of the Pternohyla, Smilisca, and Triprion, the zygomatic ramus of the squamosal with the monophyly of Triprion is supported by three pars facialis of the maxilla. The genus com- synapomorphies20: maxilla greatly expanded prises a single species, A. siemersi, for which laterally, prenasal bone present, and presence a northern subspecies, A. s. pederseni, was of parasphenoid odontoids. See comments described by Williams and Bosso (1994). In for Smilisca and Pternohyla. Triprion is this analysis we included a specimen that composed of two species, T. petasatus and corresponds to the northern form. T. spatulatus. In the analysis we include T. Corythomantis: This monotypic genus was petasatus. reviewed by Trueb (1970a). Autapomorphies of this genus include the absence of pala- Casque-Headed Frogs and Related Genera tines, and nasals that conceal the allary processes of premaxillaries (Trueb, 1970a). Duellman's (2001) suggestion of Middle We include the single species Corythomantis American/Holarctic frogs being monophylet- greeningi in this analysis. ic clearly separates the Middle American Osteocephalus: This genus was diagnosed casque-headed frogs (Triprion, Pternohyla) by Goin (1961) and Trueb (1970a) and stud- from the South American and West Indian ied in detail by Trueb and Duellman (1971). casque-headed frogs. This is not surprising These authors recognized ®ve species: Osteo- considering that traditionally the group cephalus verruciger, O. taurinus, O. buckleyi, known as the casque-headed frogs was con- O. leprieurii, and O. pearsoni. In the last 20 sidered to be nonmonophyletic (Trueb, years, several new species were described, 1970a, 1970b). However, the position of the adding to a total of 18 currently recognized South American and West Indian casque- species (see Jungfer and HoÈdl, 2002; Lynch, headed frogs remains controversial, and no 2002). Trueb and Duellman (1971) employed author has presented evidence indicating 20 character states to characterize Osteoce- whether they form a monophyletic group. phalus. Jungfer and HoÈdl (2002) modi®ed Aparasphenodon: This genus of casque- some of these characters to take into account headed frogs was reviewed and characterized subsequently discovered species. As stated by by Trueb (1970a) and Pombal (1993). The Ron and Pramuk (1999), referring to the di- presence of a prenasal bone is a likely syn- agnostic states employed earlier by Trueb and apomorphy of Aparasphenodon (with a Duellman (1971), it is unclear which, if any, known homoplastic occurrence in Triprion, of the character states are synapomorphic for as reported by Trueb, 1970a). This genus cur- the genus. Trueb (1970a) and Trueb and rently comprises three species, A. bokerman- Duellman (1971) suggested, based on the ni, A. brunoi, and A. venezolanus. We include presence of paired lateral vocal sacs in the A. brunoi in the analysis. ®ve species then recognized, that Osteoce- Argenteohyla: This monotypic genus was phalus was related to a group composed of described and reviewed by Trueb (1970b), Argenteohyla, Trachycephalus, and Phryno- who segregated it from Trachycephalus, hyas. where it had been placed by Klappenbach Martins and Cardoso (1987) described Os- (1961). Motives for this segregation were the tecephalus subtilis that, unlike the other spe- absence in Argenteohyla of several character cies known at that time, is characterized by states of Trachycephalus as rede®ned by a single, subgular vocal sac that expands lat- Trueb (1970a), such as the dermal spheneth- erally; a similar morphology was described by Smith and Noonan (2001) in O. exoph- 20 On his preferred tree (his ®g. 410), one of the char- acter transformations is numbered 18; this is a typo- thalmus. Jungfer and Schiesari (1995) de- graphical error for 12, the only other character that sup- scribed O. oophagus, a species with a single, ports this clade but not shown in the tree. median vocal sac, a reproductive mode in- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 39 volving oviposition in bromeliads, and phy- vasta, H. wilderi), and the new genus they totelmous oophagous larvae. Jungfer et al. erected, Calyptahyla, represented several in- (2000), Jungfer and Lehr (2001), and Lynch dependent invasions from the mainland. (2002) described four species, O. deridens, Maxson (1992) and Hass et al. (2001), us- O. fuscifacies, O. leoniae, and O. heyeri, ing albumin immunological distances, sug- which also have a single, median vocal sac. gested that Osteopilus is paraphyletic with According to Lynch (2002), O. cabrerai also respect to most other West Indian hylids shares this characteristic. Reproductive (with the exception of Hyla heilprini, a Glad- modes are unknown for O. cabrerai, O. ex- iator Frog). Hedges (1996) mentioned that ophthalmus, O. heyeri, O. leoniae, and O. unpublished DNA sequence data con®rmed subtilis; spawning in bromeliads is suspected these ®ndings. Anderson (1996) presented a for O. deridens and O. fuscifacies (Jungfer et karyological study of the three species of Os- al., 2000). Note that Lynch (2002) doubted a teopilus, indicating that her data were com- possible relationship between O. heyeri and patible with a monophyletic Osteopilus. what he called the ``presumed clade of oop- Based on the comments by Hedges (1996), hagous species'' (where he included O. der- and immunological results of Hass et al. idens, O. fuscifacies, and O. oophagus), sug- (2001), Franz (2003), Powell and Henderson gesting instead that it could be related to (2003a, 2003b), and Stewart (2003) trans- what he called O. rodriguezi (at that time al- ferred Calyptahyla crucialis, H. marianae, ready transferred to the new genus Tepuihyla H. pulchrilineata, H. vasta, and H. wilderi to by AyarzaguÈena et al., ``1992'' [1993b]). Osteopilus that now includes eight species. While the species known or suspected to Osteopilus is grouped together only on the spawn in bromeliads could be monophyletic, basis of the immunological distance results, we are not aware of any synapomorphy sup- as no discrete character data set supporting porting the monophyly of all remaining spe- its monophyly has yet been published. The cies of Osteocephalus. species of Osteopilus available for our study The species currently included in Osteo- were O. crucialis, O. dominicensis, O. sep- cephalus are O. buckleyi, O. cabrerai, O. tentrionalis, and O. vastus. deridens, O. elkejungingerae, O. exophthal- Phrynohyas: This genus was reviewed by mus, O. fuscifacies, O. heyeri, O. langsdorf- Duellman (1971b). Although very distinctive ®i, O. leoniae, O. leprieurii, O. mutabor, O. externally, the only seeming synapomorphy oophagus, O. pearsoni, O. planiceps, O. sub- in the diagnostic de®nition of Phrynohyas tilis, O. taurinus, O. verruciger, and O. ya- provided by Duellman (1971b) is the exten- suni. Considering the uncertainties regarding sively developed parotoid glands in the oc- Osteocephalus, we attempted to include rep- cipital and scapular regions. Likely related to resentatives of the morphological and repro- this character state, the viscous, milky secre- ductive diversity within the genus: O. ca- tions of the species of this genus could also brerai, O. langsdorf®i, O. leprieurii, O. oop- be considered synapomorphic. Lescure and hagus, and O. taurinus. Marty (2000) transferred Hyla hadroceps to Osteopilus: The genus Osteopilus was res- this genus; this was con®rmed in a phylo- urrected by Trueb and Tyler (1974) for three genetic analysis using the mitochondrial ri- apparently related species that were often re- bosomal gene 12S by Guillaume et al. ferred to collectively as the Hyla septentrion- (2001). Pombal et al. (2003) described P. alis group (see Dunn, 1926; Trueb, 1970a). lepida. See Osteocephalus for further com- Trueb and Tyler (1974) provided a diagnostic ments. Phrynohyas currently contains seven de®nition of the genus; a possible synapo- species: P. coriacea, P. hadroceps, P. imi- morphy is the differentiation of the m. inter- tatrix, P. lepida, P. mesophaea, P. resini®c- mandibularis to form supplementary apical trix, and P. venulosa. In our analysis we in- elements. Trueb and Tyler (1974) also main- clude P. hadroceps, P. mesophaea, P. resi- tained, due to the impressive morphological ni®ctrix, and P. venulosa. divergence, that Osteopilus, the other Antil- Tepuihyla: This genus was de®ned by Ay- lean groups then considered to be in Hyla (H. arzaguÈena et al. (``1992'' [1993b]) for ®ve heilprini, H. marianae, H. pulchrilineata, H. species of Osteocephalus previously consid- 40 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 ered to constitute the O. rodriguezi species phores, small nasals, and large prepollex. group (Duellman and Hoogmoed, 1992; Ay- They included as well other character states, arzaguÈena et al., ``1992'' [1993a]). Ayarza- that actually, like some of these just men- guÈena et al. (``1992'' [1993b]) differentiated tioned, are either shared with several neo- Tepuihyla from Osteocephalus using the fol- tropical groups (supraorbital cartilaginous lowing character states present in Tepuihyla: process; Faivovich, personal obs.), or some subgular vocal sac, absence or extreme re- species of the H. larinopygion group (vo- duction of hand webbing, more reduced toe merine odontophores smoothly S-shaped; webbing, smaller size, absence of cranial co- Duellman and Hillis, 1990: 5), or with the H. ossi®cation, large frontoparietal fontanelle, armata group (labial tooth row formula; see shorter nasals, and shorter frontoparietals. It Cadle and Altig, 1991), or they support the is unclear which, if any, of these character monophyly of the H. aromatica group states are apparent synapomorphies of Te- (adults with strong odor). Considering the puihyla. There are eight species currently in- lack of evidence of monophyly for the H. cluded in this genus: T. aecii, T. celsae, T. larinopygion group, AyarzaguÈena and SenÄa- edelcae, T. galani, T. luteolabris, T. rima- ris (``1993'' [1994]) cannot be questioned for rum, T. talbergae, and T. rodriguezi. In this recognizing a separate species group. analysis we include only T. edelcae. Ongoing research by Faivovich and Trachycephalus: The relationships of this McDiarmid suggests that Hyla loveridgei casque-headed taxon were discussed should also be considered part of the H. aro- by Trueb (1970a) and Trueb and Duellman matica group. For this analysis, we include (1971). They diagnosed Trachycephalus from H. inparquesi. Argenteohyla, Osteocephalus, and Phrynoh- Hyla uruguaya Group: This group has yas for having heavily casqued and co-ossi- never been mentioned as such in the litera- ®ed skulls, a medial ramus of pterygoid that ture. However, clear similarities had been does not articulate with the prootic, and a par- shown by Langone (1990) between H. uru- asphenoid having odontoids. A likely syna- guaya and H. pinima (these species being al- pomorphy of Trachycephalus is the presence most undistinguishable). Possible synapo- of exostosis on the alary process of the pre- morphies of the H. uruguaya group are the maxillae (Trueb, 1970a). Trachycephalus con- bicolored iris (also shared with Aplastodis- tains three species: T. atlas, T. jordani, and T. cus; see Garcia et al., 2001a), the presence nigromaculatus. In this analysis we include T. in tadpoles of two small, keratinized plates jordani and T. nigromaculatus. below the lower jaw sheath, and a reduction in the size of the marginal papillae of the Species and Species Groups of Hyla Not posterior margin of the oral disc relative to Associated with Any Major Clade the other papillae (Kolenc et al., ``2003'' [2004]). From this apparent clade we include Hyla aromatica Group: This group was H. uruguaya in our analysis. proposed by AyarzaguÈena and SenÄaris Hyla chlorostea: Duellman at al. (1997) (``1993'' [1994]) for two species from the proposed the recognition of a species group Venezuelan Tepuis, H. aromatica and H. in- to include the enigmatic Hyla chlorostea,a parquesi, which they could not associate species known only from its holotype (a sub- with any of the species groups known from adult male), which could not be associated the Guayanas. AyarzaguÈena and SenÄaris with any known group of Hyla after its de- (``1993'' [1994]) noticed that the H. aroma- scription (Reynolds and Foster, 1992). Un- tica group shares some characters with the fortunately, we were unable to include this H. larinopygion group; however, they pre- taxon in our analysis. ferred to retain it as a separate group. They Hyla vigilans: Different perspectives con- justi®ed this decision based on the smaller cerning this enigmatic species were summa- size of members of the H. aromatica group, rized by Suarez-Mayorga and Lynch different coloration pattern, supraorbital car- (2001a). These authors rejected the possibil- tilaginous process, vomerine odontophores ity of a relationship with Scinax (as suggest- smoothly S-shaped and with more odonto- ed by La Marca in Frost, 1985). Instead, they 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 41 asserted that they suspected a possible rela- be related with Anotheca spinosa because tionship with Sphaenorhynchus or with H. both share the medial ramus of the pterygoid picta (from the H. godmani species group) that is juxtaposed squarely against the an- based on ``oral disc and mouth position'' of terolateral corner of the ventral ledge of the the tadpoles. We could not obtain samples of otic capsule. Also, frogs of both genera are this species for our analysis. known (Anotheca; Taylor, 1954; Jungfer, Hyla warreni: This species, known only 1996) or suspected (Nyctimantis; Duellman from two adult females, was described by and Trueb, 1976) to deposit their eggs in wa- Duellman and Hoogmoed (1992), who did ter-®lled tree cavities. However, Duellman not associate it with any other species or spe- (2001) latter placed Anotheca in the Middle cies group. Unfortunately, we could not ob- American/Holarctic clade, implicitly sug- tain samples of this species for our analysis. gesting no relationship with Nyctimantis. Considering the uncertainty of the position Other Genera of Nyctimantis within hylines, at this stage it is dif®cult to interpret which character states Aplastodiscus: The taxonomy and history are autapomorphic. We include the single of this genus was recently reviewed thor- species Nyctimantis rugiceps in this analysis. oughly by Garcia et al. (2001a). According Phyllodytes: The history of this genus was to these authors the monophyly of the genus reviewed by Bokermann (1966b). Possible is supported by four putative synapomor- synapomorphies of the taxon are the pres- phies: (1) the absence of webbing between ence of odontoids on the mandible and on toes I and II and basal webbing between the the cultriform process of the parasphenoid other toes; (2) bicolored iris; (3) females with (Peters, ``1872'' [1873]), something unique unpigmented eggs; and (4) great develop- within the Hylinae. Peixoto and Cruz (1988) ment of internal metacarpal and metatarsal noticed that among the six species recog- tubercles. Based on overall morphological nized at that time, four species (P. acumi- and advertisement call similarities B. Lutz natus, P. brevirostris, P. luteolus, and P. tub- (1950) suggested a close relationship of this erculosus) share the presence of series of en- genus with Hyla albosignata. Garcia et al. larged tubercles on the venter and an en- (2001a) suggest that Aplastodiscus could be larged tubercle on each side at the origin of related with the H. albofrenata and H. al- the thigh (Bokermann, 1966b: ®g. 6). The bosignata complexes of the H. albomargin- other two species, P. auratus and P. kautskyi, ata group, as de®ned by Cruz and Peixoto have uniform granulation on the venter and (1984), based on the presence of enlarged in- lack enlarged tubercles on the thighs, as also ternal metacarpal and metatarsal tubercles, seems to be the case in P. melanomystax,a and unpigmented eggs. Haddad et al. (2005) species described later (see Caramaschi et al., described the reproductive mode of A. per- 1992). Peixoto et al. (2003) described two viridis and noticed that it was the same as additional species, P. edelmoi and P. gyri- that described by Haddad and Sawaya (2000) naethes; both have a tubercle on each side at and Hartmann et al. (2004) in species in- the origin of the thigh. Phyllodytes edelmoi cluded in H. albofrenata and H. albosignata has a series of indistinct tubercles on the ven- complexes. Based on this, Haddad et al. ter; in P. gyrinaethes they do not form series. (2005) suggested a possible relationship be- Caramaschi and Peixoto (2004) added P. tween these two species complexes and punctatus, which has two medial, poorly dis- Aplastodiscus. Aplastodiscus is composed of tinct rows of tubercles. Caramaschi et al. two species, Aplastodiscus cochranae and A. (2004a) resurrected P. wuchereri. Peixoto et perviridis; we include both in our analysis. al. (2003) suggested three different species Nyctimantis: This monotypic Neotropical groups based on color pattern, and Caramas- genus was considered a member of the Hem- chi et al. (2004) further expanded the de®- iphractinae by Duellman (1970) and Trueb nitions. The P. luteolus group is character- (1974). Duellman and Trueb (1976) reviewed ized by a plain pattern with a variably de- the taxon and placed it in Hylinae. Duellman ®ned dorsolateral dark brown to black line and Trueb (1976) considered Nyctimantis to on canthus rostralis and/or behind the corner 42 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 of eye. This group includes P. acuminatus, L. laevis and L. limellum; we include in our P. brevirostris, P. edelmoi, P. kautskyi, P. analysis the last two. Pseudis is composed of luteolus, and P. melanomystax. The P. tub- six species: P. bolbodactyla, P. cardosoi, P. erculosus group has a pale brown dorsum fusca, P. minuta, P. paradoxa, and P. tocan- with scattered dark brown dots and includes tins, of which we include in our analysis P. P. punctatus and P. tuberculosus. The P. au- minuta and P. paradoxa. ratus group has a dorsal pattern of two dor- Scarthyla: Duellman and de Sa (1988) and solateral, longitudinal white or yellowish Duellman and Wiens (1992) suggested that stripes, with each stripe being bordered by a this monotypic genus was sister to Scinax, dark brown or black line from posterior cor- but more recently, Darst and Cannatella ner of eye to groin. This group includes P. (2003) presented evidence supporting a sister auratus and P. wuchereri. Finally, P. gyri- group relationship between Scarthyla and naethes is placed in its own group for having ``pseudids''. The single species, Scarthyla red color on hidden surfaces of thighs and a goinorum, is included in our analysis. highly modi®ed tadpole. It is unclear if any Scinax: With roughly 86 recognized spe- of these groups is monophyletic. Tissues cies, Scinax is the second largest genus with- were available for P. luteolus and an uniden- in Hylinae. This genus includes the species ti®ed species, Phyllodytes sp., from Bahia, formerly placed in the Hyla catharinae and Brazil. H. rubra groups; a taxonomic history was Lysapsus and Pseudis: The monophyly of presented by Faivovich (2002). The relation- the former subfamily Pseudinae has not been ships among the species of Scinax were re- historically controversial; it is supported by cently addressed by Faivovich (2002), who the presence of a long, ossi®ed intercalary performed a phylogenetic analysis using 38 element between the ultimate and penulti- species representing the ®ve species groups mate phalanges. Haas (2003) added several then recognized. Although he employed synapomorphies from larval morphology, eight outgroups, the analysis is not a strong based on the study of larvae of two species test of the monophyly of Scinax nor of the of Pseudis. The limits and de®nitions of relationships of Scinax with other hylines. Pseudis and Lysapsus were reviewed by Sav- Duellman and Wiens (1992) suggested that age and Carvalho (1953) and by Klappen- Scinax is the sister group of Scarthyla and bach (1985). From their observations it is un- that this clade is sister to Sphaenorhynchus. clear which character states support the Faivovich (2002) did not test this assertion monophyly of either genus. Savage and Car- because his selection of outgroups was valho (1953: 199) implicitly proposed the heavily in¯uenced by da Silva's results paraphyly of Pseudis, when they suggested (1998), which did not suggest a close rela- that Lysapsus ``seems to have arisen from tionship between Scinax and these two gen- Pseudis.'' Garda et al. (2004) recently distin- era. Taxon choice in the present study will guished both genera on the basis of sperm test more appropriately the hypothesis of morphology. In (the only (Scinax ϩ Scarthyla) ϩ Sphaenorhynchus. species of Lysapsus available to them) the Faivovich's (2002) results suggested that subacrosomal cone is nearly absent, but it is Scinax contains two major clades: (1) a S. clearly present in the four species of Pseudis ruber clade composed of species that had they studied. Regardless, the monophyly of been previously grouped into the S. rostra- either genus has not been satisfactorily doc- tus, S. ruber, and S. staufferi groups; and (2) umented. a S. catharinae clade composed of the spe- Morphological diversity within Pseudis in- cies that were included in the S. catharinae cludes large species, several of which were and S. perpusillus groups. Faivovich (2002) included in the past in the synonymy of P. continued recognition of these two species paradoxa and were recently resurrected (Car- groups within the S. catharinae clade, as well amaschi and Cruz, 1998), and smaller spe- as the S. rostratus group within the S. ruber cies with a double vocal sac, P. cardosoi and clade, as the individual monophyly of the S. P. minuta (Klappenbach, 1985; Kwet, 2000). catharinae and S. rostratus groups were cor- Lysapsus includes three species, L. caraya, roborated by his analysis. The S. perpusillus 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 43 group is recognized because its monophyly the maxilla. Izecksohn (1996) suggested also could not be tested, and it still awaits a rig- a close relationship with Scinax based on the orous test. All species previously included in presence in Xenohyla of a coracoid ridge and the nonmonophyletic groups of S. ruber and an internal, subgular vocal sac. While the S. staufferi are included in the larger S. ruber coracoid ridge is present in Scinax, it is also clade, without being assigned to any group. present in several other hylines (e.g., see Fai- For a list of the species currently included in vovich, 2002). The internal, subgular vocal Scinax, see page 95. sac is not a synapomorphy of all Scinax, but In anticipation of a forthcoming study of only of the S. catharinae clade. Caramaschi the phylogeny of Scinax by Faivovich and (1998) added X. eugenioi, a second species associates, we include only S. berthae and S. for the genus. We include X. truncata in our catharinae as exemplars of the S. catharinae study. clade, and S. acuminatus, S. boulengeri, S. elaeochrous, S. staufferi, S. fuscovarius, S. CHARACTER SAMPLING ruber, S. squalirostris, and S. nasicus as ex- emplars of the S. ruber clade. GENE SELECTION Sphaenorhynchus: More has been written Because this study involves the simulta- about nomenclatural confusion surrounding neous analysis of taxa of disparate levels of Sphaenorhynchus than about its systematics divergence, we assembled a large data set, (see Frost, 2004). This genus has been re- including four mitochondrial and ®ve nuclear viewed by Caramaschi (1989). Duellman and genes, spanning a broad range of variation, Wiens (1992) proposed the following syna- from the fast-evolving cytochrome b (Gray- pomorphies for Sphaenorhynchus: posterior beal, 1993) to the much conserved nuclear ramus of pterygoid absent; zygomatic ramus genes such as 28S (Hillis and Dixon, 1991). of squamosal absent or reduced to a small Ribosomal mitochondrial genes and cyto- knob; pars facialis of maxilla and alary pro- chrome b have been employed recently in cess of premaxilla reduced; postorbital pro- several phylogenetic studies of various an- cess of maxilla reduced, not in contact with uran groups at various levels of divergence quadratojugal; neopalatine reduced to a sliver (Read et al., 2001; Vences and Glaw, 2001; or absent; pars externa plectri entering tym- Cunningham, 2002; Salducci et al., 2002). panic ring posteriorly (rather than dorsally); Nuclear genes have been poorly explored for pars externa plectri round; hyale curved me- their use in anuran phylogenetics. The 28S dially; coracoids and clavicle elongated; ribosomal nuclear gene has been used in am- transverse process of presacral vertebra IV phibians by Hillis et al. (1993). The protein- elongate, oriented posteriorly; and prepollex coding genes rhodopsin, tyrosinase, RAG-1, ossi®ed, bladelike. The genus is composed of and RAG-2 were used to study problems at 11 species: S. bromelicola, S. carneus, S. different levels by Bossuyt and Milinkovitch dorisae, S. lacteus, S. orophilus, S. palustris, (2000), Biju and Bossuyt (2003), and Hoegg S. pauloalvini, S. planicola, S. prasinus, S. et al. (2004). In this study we include 12S, platycephalus, and S. surdus. In our analysis tRNA valine, 16S, and fragments of cyto- we include S. dorisae and S. lacteus. chrome b, rhodopsin, tyrosinase, 28S, RAG- Xenohyla: This genus was named by Iz- 1, and seventh in absentia. The last gene is ecksohn (1996) for the bizarre frog Hyla used here for the ®rst time in . truncata, which had previously been sug- gested to be related to Sphaenorhynchus by DNA ISOLATION AND SEQUENCING Izecksohn (1959, 1996) and Lutz (1973). Ac- cording to Izecksohn (1996), Xenohyla Whole cellular DNA was extracted from shares with Sphaenorhynchus the reduced frozen and ethanol-preserved tissues (usually number of maxillary teeth, a relatively short liver or muscle) using either phenol-chloro- urostyle, and the development of the trans- form extraction methods or the DNeasy verse processes of presacral vertebra IV; fur- (QIAGEN) isolation kit. See table 2 for a list thermore, Xenohyla shares with Sphaenor- and sources of the primers employed. hynchus the quadratojugal not in contact with Ampli®cation was carried out in a 25-␮l- 44 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

TABLE 2 Primers Used in this Study

Primer Sequence Reference MVZ59 5Ј-ATAGCACTGAAAAYGCTDAGATG-3Ј Graybeal (1997) 12L1 5Ј-AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT-3Ј Feller and Hedges (1998) 12SM 5Ј-GGCAAGTCGTAACATGGTAAG-3Ј Darst and Cannatella (2004) MVZ50 5Ј-TYTCGGTGTAAGYGARAKGCTT-3Ј Graybeal (1997) 12sL13 5Ј-TTAGAAGAGGCAAGTCGTAACATGGTA-3Ј Feller and Hedges (1998) 16sTitus I 5Ј-GGTGGCTGCTTTTAGGCC-3Ј Titus and Larson (1996) 16sL2A 5Ј-CCAAACGAGCCTAGTGATAGCTGGTT-3Ј Hedges (1994) 16sH10 5Ј-TGATTACGCTACCTTTGCACGGT-3Ј Hedges (1994) 16sAR 5Ј-CGCCTGTTTATCAAAAACAT-3Ј Palumbi et al. (1991) 16sBR 5Ј-CCGGTCTGAACTCAGATCACGT-3Ј Palumbi et al. (1991) 16sWilk2 5Ј-GACCTGGATTACTCCGGTCTGA-3Ј Wilkinson et al. (1996) MVZ15 5Ј-GAACTAATGGCCCACACWWTACGNAA-3Ј Moritz et al. (1992) H15149(H) 5Ј-AAACTGCAGCCCCTCAGAAATGATATTTGTCCTCA-3Ј Kocher at al. (1989) Rhod1A 5Ј-ACCATGAACGGAACAGAAGGYCC-3Ј Bossuyt and Milinkovitch (2000) Rhod1C 5Ј-CCAAGGGTAGCGAAGAARCCTTC-3Ј Bossuyt and Milinkovitch (2000) Rhod1Da 5Ј-GTAGCGAAGAARCCTTCAAMGTA-3Ј Bossuyt and Milinkovitch (2000) R1-GFF 5Ј-GAGAAGTCTACAAAAAVGGCAAAG-3Ј Taran Grant and Julian Faivovich R1-GFR 5Ј-GAAGCGCCTGAACAGTTTATTAC-3Ј Taran Grant and Julian Faivovich Tyr 1C 5Ј-GGCAGAGGAWCRTGCCAAGATGT-3Ј Bossuyt and Milinkovitch (2000) Tyr 1G 5Ј-TGCTGGGCRTCTCTCCARTCCCA-3Ј Bossuyt and Milinkovitch (2000) sia1b 5Ј-TCGAGTGCCCCGTGTGYTTYGAYTA-3Ј Bonacum et al. (2001) sia2 5Ј-GAAGTGGAAGCCGAAGCAGSWYTGCATCAT-3Ј Bonacum et al. (2001) 28SV 5Ј-AAGGTAGCCAAATGCCTCGTCATC-3Ј Hillis and Dixon (1991) 28SJJ 5Ј-AGTAGGGTAAAACTAACCT-3Ј Hillis and Dixon (1991) a This primer, instead of Rhod1C, was used to amplify this gene in the 30-chromosome Hyla. b The primer pair sia1-2 was used together with the universal primers T3 and T7, as done by Bonacum et al. (2001). volume reaction using either puRe Taq beled PCR products were isopropanol-pre- Ready-To-Go PCR beads (Amersham Bio- cipitated following the manufacturer's pro- sciences, Piscataway, NJ) or Invitrogene tocol. The products were sequenced either PCR SuperMix. For all the ampli®cations, with an ABI 3700 or with an ABI Prism 377 the PCR program included an initial dena- sequencer. Most samples were sequenced in turing step of 30 seconds at 94ЊC, followed both directions. by 35 or 38 cycles of ampli®cation (94ЊC for Chromatograms obtained from the auto- 30 seconds, 48±60ЊC for 60 seconds, 72ЊC mated sequencer were read and contigs made for 60 seconds), with a ®nal extension step using the sequence editing software Se- at 72ЊC for 6 min. quencher 3.0. (Gene Codes, Ann Arbor, MI). Polymerase chain reaction (PCR)-ampli- Complete sequences were edited with Bio- ®ed products were cleaned either with a Edit (Hall, 1999). QIAquick PCR puri®cation kit (QIAGEN, Valencia, CA) or with ARRAY-IT (Tele- MORPHOLOGY Chem International, Sunnyvale, CA) and la- beled with ¯uorescent-dye labels terminators Because the present study is mostly based (ABI Prism Big Dye Terminators v. 3.0 cycle on molecular data, the failure to include a sequencing kits; Applied Biosystems, Foster thorough morphological data set doubtless is City, CA). Depending on whether the its weakest point. As trained morphologists, cleaned product was puri®ed with QIAquick most of the authors of this paper think that a or Array-It, the sequencing reaction was car- phylogenetic hypothesis that explains all the ried out in either 10 ␮lor8␮l volume re- available data is the best hypothesis that we action following standard protocols. The la- can aspire to, and that no class of data is 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 45 better than any other. Apart from da Silva's results and conclusions were described and unpublished dissertation, which is comment- commented in detail by Duellman (2001). ed upon below, published comparative stud- Because the present paper deals speci®cally ies involving a diversity of hylid exemplars with the phylogeny of Hylinae, we cannot are rare. Major exceptions are the thorough avoid a few comments dealing with da Sil- osteological studies by Trueb (1970a) and va's work. Considering the mostly coincident those on hand muscles of Pelodryadinae scope of both da Silva's dissertation and this (Burton, 1996), distal extensor muscles of paper, it is evident that a thorough discussion anurans (Burton, 1998a), and foot muscles of and comparison of his results with ours Hylidae (Burton, 2004). Explicit character would almost amount to the publication of descriptions in the context of phylogenetic his chapter on Hylinae relationships. This is comparisons include those by Duellman and a situation with which we feel most uncom- Trueb (1983), Campbell and Smith (1992), fortable, because we think that this is a re- Duellman and Campbell (1992), Duellman sponsibility that rests on Helio R. da Silva. and Wiens (1992), Fabrezi and Lavilla From a purely practical perspective, at this (1992), Kaplan (1994, 1999), Cocroft (1994), point the integration of da Silva's data set Burton (1996, 1998a, 2004), Haas (1996, with ours is impracticable for two reasons: 2003), da Silva (1997), Duellman et al. (1) The data matrix as printed in the disser- (1997), Kaplan and Ruiz-Carranza (1997), tation distributed by the University of Mich- Mendelson et al. (2000), Sheil et al. (2001), igan is incomplete, as it lacks the scorings Faivovich (2002), and Alcalde and Rosset for 10 characters (chars. 110±120) for all (``2003'' [2004]). Most of these studies were taxa. This is also the situation with the thesis targeted in general to very speci®c apparent that is deposited at the Department of Her- clades or to very large clades using very few petology library of the University of Kansas, terminals, which leaves particular sets of Natural History Museum (Faivovich, person- characters known for very few terminals. al obs.). (2) A few scorings for groups that Unfortunately, for the inclusion of the char- we are familiar with are not coincident with acters employed in these studies to be infor- our observations on the same species, some- mative, detailed anatomic work would be re- thing suggestive either of polymorphism in quired on a very large number of terminals those characters or mistaken scorings.21 If (besides the potentially serious need to re- this were the case, it would not be surprising, de®ne several characters), a task that we ®nd as scoring mistakes are to be expected in impossible to pursue at this time. Much to such an impressive data set. The problem our regret, we ®nd that there are almost no with them is that once detected, they have to published studies from which we could de- be corrected and the analysis has to be re- rive character scorings to enrich our data set done. It is evident that a revision of the data without extensive work. The only data set set is necessary before any integration can that we thought could be included, due to its take place. relatively dense taxon sampling, is the one resulting from the collection of observations PHYLOGENETIC ANALYSIS presented by Burton (2004). Although its Our optimality criterion to choose among sampling of nonhylid taxa that match our trees is parsimony. The logical basis of par- sampled taxa is particularly sparse, we con- simony as an optimality criterion has been sider Burton's study to be an important ad- presented by Farris (1983). However, parsi- dition to this analysis. Characters are listed and discussed in appendix 3. 21 For example, character 60 (anterior process of the hyale) is scored 0 (absent) in Aplastodiscus, where it is da Silva's (1998) Dissertation present in the material available to us (Faivovich, 2002; Garcia, personal obs.). Character 61 (anterolateral pro- da Silva (1998) presented his Ph.D. dis- cess of the hyoid plate) is scored 0 (absent) in Hyla albofrenata, H. albomarginata, H. albopunctata, H. al- sertation on phylogeny of hylids with em- bosignata, H. faber, and H. multifasciata, whereas it is phasis on Hylinae. Although da Silva's dis- present in the specimens available to us (Garcia and Fai- sertation has not been published, some of its vovich, personal obs.) 46 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 mony has repeatedly been attacked from dif- of the clades cannot be interpreted as values ferent perspectives, all of which tend to por- of truth or support. Furthermore, Kola- tray parsimony as inferior to such model- czkowski and Thornton (2004) demonstrat- based approaches as maximum likelihood. ed, by using simulations in the presence of Criticisms of parsimony have centered on heterogeneous data, that parsimony performs two main topics: statistical inconsistency and better than both maximum likelihood and the notion that parsimony is an overpara- BMCMC over a wide range of conditions. meterized likelihood model. As stated by Go- We contend that all serious criticisms of loboff (2003), the emphasis on statistical parsimony have been rebutted. We consider consistency decreased following several that while the ®rst point mentioned (incon- studies showing that: (1) maximum likeli- sistency of likelihood when the data are gen- hood can be inconsistent even with minor vi- erated with different models) could certainly olations of the model when they were gen- occur in any analysis, it is particularly prob- erated with a mix of models (Chang, 1996); lematic in the present one, because we are (2) given some evolutionary models, maxi- combining morphology with both mitochon- mum likelihood estimators could be incon- drial and nuclear coding and non-coding sistent (Steel et al., 1994; Farris, 1999); (3) genes. Furthermore, for a data set of this size, parsimony can be consistent (Steel et al., maximum likelihood is quite impractical to 1993); (4) assuming likelihood as a more ac- apply for computational reasons. curate method, inferences based on trees sub- For the phylogenetic analyses of the DNA optimal under the maximum likelihood could sequence data, we used the method of Direct be less reliable than inferences made on trees Optimization (Wheeler, 1996, 1998, 2002), optimal under otherwise inferior but faster as implemented in the program POY (Wheel- criteria (Sanderson and Kim, 2000); and (5) er et al., 2002), a heuristic approximation to at least under some conditions, parsimony the optimal tree alignment methods of San- may be more likely than maximum likeli- koff (1975) and Sankoff and Cedergren hood to ®nd the correct tree, given ®nite (1983). Sequence alignment and tree search- amounts of data (Yang, 1997; Siddall; 1998; ing have traditionally been treated as two in- Pol and Siddall, 2001). Tuf¯ey and Steel dependent steps in phylogenetic analyses: se- (1997) demonstrated that parsimony is a quences are ®rst aligned, and a ®xed or static maximum likelihood estimator when each multiple alignment is then treated as a stan- site has its own branch length. Farris (1999, dard character matrix that is the basis for tree 2000) and Siddall and Kluge (1999) sug- searching in the test of character congruence. gested that the results of Tuf¯ey and Steel However, there may be other equally defen- (1997) were an indication that the model im- sible multiple sequence alignments that plied by parsimony (``no special model of would require fewer hypothesized transfor- evolution'' or ``no common mechanism mod- mations to explain the observed sequence el'') was indeed more realistic. However, variation; an explanation that requires fewer likelihood advocates (Steel and Penny, 2000; transformations is more parsimonious and is Lewis, 2001; Steel, 2002) countered that therefore objectively preferred over expla- models that assume constant probabilities of nations that require a greater number of change across all sites are to be preferred on transformations (see De Laet [2005] for a the grounds of simplicity (i.e., as having few- much more sophisticated approach to the er parameters to estimate). Goloboff (2003) problems of constructing multiple alignments demonstrated that parsimony could actually prior to tree searching). Direct Optimization be derived from models that require even seeks the cladogram-alignment combination fewer parameters than the commonly used (i.e., the optimal tree alignment) that mini- likelihood models. mizes the total number of hypothesized The use of Bayesian Markov chain Monte transformation events required to explain the Carlo (BMCMC) techniques has become observations. Within this framework, inser- quite popular among evolutionary biologists. tion/deletion events (indels, gaps) are histor- However, for reasons outlined by Simmons ical evidence that is taken into account when et al. (2004), the posterior probability values hypothesizing common ancestry. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 47

The simplest minimization of transforma- 1981). These result in a substitution cost of tions is obtained when tree searches are con- 2, a gap opening cost of 2 ϩ 1 (the same ducted under equal weights for indels and all cost of a substitution plus the cost of the ®rst substitutions (1:1:1, this is the ratio of the unit gap), and a gap extension cost of 1. All cost of opening gap:extension gap:substitu- this development rests on the perspective of tions) (Frost et al., 2001). This weighting parsimony as a two-taxon analysis (De Laet scheme implies that indels are as costly as and Smets, 1998). The most immediately ap- the number of nucleotides they span. This is pealing aspect of De Laet's perspective is not a situation with which we are comfort- that it offers a rationale for the use of gap- able, inasmuch as a single deletion event extension costs different from substitution could entail more than a single nucleotide costs, thus avoiding giving an insertion/de- and hence necessarily require a lower cost letion event of n nucleotides the same weight than if all the nucleotides it includes were of n substitutions. lost independently of each other. However, We conducted our searches using equal theoretical justi®cations for the selection of weights for minimizing transformations. In differential costs for gap opening and gap ex- order to examine the effect of the gap treat- tension are not evident. ment in our results, and following De Laet's De Laet and Smets (1998) suggested that development (2005), we also submitted our parsimony analysis searches for the trees on ®nal tree to a round of tree-bisection and re- which the highest number of compatible in- connection branch swapping (TBR) by using dependent pairwise similarities can be ac- a weighting scheme of 2 for substitutions and commodated; that is, they described parsi- morphological transformations, 3 for a gap mony as a two-taxon analysis. When dealing opening, and 1 for a gap extension. with static data sets, this approach and the This study is guided by the idea that a si- minimization of transformations give the multaneous analysis of all available evidence same rank of tress. However, De Laet (2005) maximizes explanatory power (Kluge, 1989; showed that when considering parsimony as Nixon and Carpenter, 1996). Consequently, a two-taxon analysis in the presence of in- we analyzed all molecular and available mor- applicable character states (e.g., unequal- phological evidence simultaneously. The length sequences), the minimization of trans- analysis was performed using subclusters of formations (as obtained under 1:1:1) does not 60±100 processors of the American Museum maximize the number of accommodated of Natural History parallel computer cluster. compatible independent pairwise a priori Heuristic algorithms applied to both tree similarities. De Laet (2005) suggested that searching and length calculation (i.e., align- sequence homology has two components, ho- ment cost) were employed throughout the mology of subsequences (the fragments of analysis. As with any heuristic solution, the sequences that are comparable across a optimal solution from these analyses under branch) and base-to-base homology within Direct Optimization represents the upper homologous subsequences. When maximi- bound, and more exhaustive searching could zation of homology is transformed into a result in an improved solution. Considering problem of minimization of changes, the op- the large size of our data set, we tried two timization of the two components that max- different approaches. The ®rst strategy tries imizes the accommodated independent pair- to collect many locally optimal trees from wise similarities is obtained by summing up many replications to input them into a ®nal the cost regimes that are involved for each round of tree fusing (Goloboff, 1999). For component. The number of subsequences is the second strategy, quick concensus esti- quanti®ed by counting the number of inser- mates (Goloboff and Farris, 2001) are used tion/deletion events (independent of their as constraints for additional tree searching, length, and therefore represented each as a following the suggestion of Pablo Goloboff whole by a unit opening gap). Base-to-base (personal commun.). homology within homologous subsequences For maximizing the number of trees for is maximized when substitutions are weight- tree fusing, we employed two different rou- ed twice as much as unit gaps (Smith et al., tines: 48 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

1. Three hundred ®fty random addition se- jacent nodes of the internal node of interest. quences were done in groups of 5 or 10, Because any change in the reconstructed se- followed by a round of tree fusing, sending quence could potentially affect adjacent the best tree to 10±25 parsimony ratchet cy- nodes, the procedure is done iteratively until cles (Nixon, 1999a) using TBR, reweighting stabilization is achieved. between 15 and 35% of the fragments, keep- ing one tree per cycle, and by setting the The large size of the data set imposes a character weight multiplier between two and heavy burden in computer times to estimate ®ve in different replicates, with a ®nal round support measures. Bremer supports (Bremer, of TBR branch swapping. Tree fusing was 1988) were calculated using POY, without always done fusing sectors of at least three using ``iterative pass''. Parsimony Jackknife taxa with two successive rounds of fusing. values (Farris et al., 1996) were calculated 2. One hundred ®fty random addition sequenc- using the implied alignment (Wheeler, es were built in groups of 5, 7, or 10 by 2003b) of the best topology. In turn, this im- submitting the best of each group to 10±25 plies that the parsimony jackknife values ratchet cycles using TBR. could be overestimated. Parsimony Jackknife The 40 best trees resulting from these was calculated in TNT (Goloboff et al., analyses where submitted to tree fusing in 2000); 1000 pseudoreplicates were per- groups of ®ve, and the resulting eight trees formed. For each pseudoreplicate the best to- were subsequently fused. This ®nal tree was pology was searched for by using sectorial submitted to 30 replicates of Ratchet using searches and tree fusing, starting with two the same settings as above, with the resulting Wagner trees generated through random ad- trees being submitted to a ®nal round of TBR dition sequences. branch swapping. Final tree lengths under the 1:1:1 weight- Alternatively, we did 50 random addition ing scheme were checked with TNT. Lists of sequences followed by a round of TBR and synapomorphies were generated with TNT; made an 85% majority rule consensus, as only unambiguous transformations common suggested by Goloboff and Farris (2001) to to all most parsimonious trees were consid- quickly estimate the groups actually present ered. in the consensus of large data sets without For the analysis, the complete 12S-tRNA having to do intensive searches. The ap- valine-16S sequence was cut into 14 frag- proach of Goloboff and Farris (2001) as- ments and the partial 28S sequence was cut sumes that groups that are present in all or into 4 fragments coincident with conserved most independent searches are more likely to regions (Giribet, 2001). Although this con- be actually supported by the data. To speed strains homology assessment, the universe of up the searches for the estimation of the alternative ancestral sequences that has to be quick consensus, we treated the partial se- explored is a more tractable problem than us- quences of the RAG-1, rhodopsin, SIA, and ing long single fragments. The sequence ®les tyrosinase genes as prealigned. Once the as they were input into POY are available quick consensus was estimated, it was input- from http://research.amnh.org/users/julian. ted in POY as a constraint ®le, with which Tree editing was done using WinClada (Nix- we built 100 Wagner trees, each followed by on, 1999b). 10 ratchet replicates. All trees resulting from these constrained searches were fused in RESULTS groups of different size, and the ®nal trees were submitted to a round of TBR. The orig- In total, we sequenced 256 terminals. The inal constraint ®le was not used during the contiguous 12S, tRNA valine, and 16S genes fusing and ®nal TBR steps. were sequenced for all but seven terminals. While all searches were done using stan- For these terminals we were unable to am- dard direct optimization, all were submitted plify or sequence one or two of the overlap- to ®nal rounds of TBR under the command ping PCR fragments. The partial cytochrome ``iterative pass'' (Wheeler, 2003a). This rou- b fragment was sequenced for all but 12 ter- tine does a three-dimensional optimization, minals. The success with the nuclear loci taking into account the states of the three ad- varied from 232 terminals sequenced for the 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 49

®rst exon of rhodopsin to as few as 166 se- DISCUSSION quenced for 28S. See appendix 2 for a com- MAJOR PATTERNS OF RELATIONSHIPS OF plete list of the loci sequenced for each tax- HYLIDAE AND OUTGROUPS on, voucher specimens, locality data, and GenBank accessions. All sequences were As in previous analyses (Ruvinsky and produced for this project and for that of Fai- Maxson, 1996; Haas, 2003; Darst and Can- vovich et al. (2004) with the exception of 21 natella, 2004), our results do not recover Hy- sequences taken from GenBank that were lidae as a monophyletic taxon (®gs. 1, 2). produced by Bijou and Bossuyt (2003) and Hemiphractinae appears as only distantly re- by Darst and Cannatella (2004). The fact that lated to the Hylinae, Pelodryadinae, and the morphological characters are not scored Phyllomedusinae, each of which is mono- for 70% of the terminals led to several am- phyletic. For this reason, we exclude Hemi- biguous optimizations. A list of nonambigu- phractinae from Hylidae, being thereby re- ous morphological synapomorphies is pro- stricted to Hylinae, Pelodryadinae, and Phyl- vided in appendix 3, many of which are men- lomedusinae. In the same way, Centroleni- tioned throughout the discussion and in the dae, for a long time suspected to be related section ``Taxonomic Conclusions: A New Tax- with hylids, appears as a distantly related onomy of Hylinae and Phyllomedusinae''. clade, as suggested by previous studies The phylogenetic analysis resulted in four (Haas, 2003; Darst and Cannatella, 2004). most parsimonious trees of 65,717 steps. One Hylidae, as understood here, excludes the of these trees resulted from one of the rounds Hemiphractinae. Otherwise, the major clades of tree fusing of the trees resulting from the within the Hylidae are coincident with the constrained search, and the other three trees remaining subfamilies currently recognized. were obtained after a round of TBR swap- The Pelodryadinae is the sister taxon of ping of the ®rst one. Parsimony Jackknife Phyllomedusinae, corroborating the results of Darst and Cannatella (2004); in turn, Pelo- and Bremer support values are generally dryadinae ϩ Phyllomedusinae is the sister high. Most of the 272 nodes of the strict con- taxon of Hylinae (®gs. 1, 2). sensus (®gs. 1±5) are well supported, with Ranoids appear as monophyletic, with the 226 nodes having a Bremer support of Ն10 two microhylid exemplars being the sister and 162 nodes with a Bremer support of taxon of the Astylosternidae ϩ remaining Ն20; additionally, 255 nodes have a jack- ranoids (®g. 2). Ranidae forms a paraphyletic knife value of Ն75% and 245 nodes have a Ն melange, with the exemplars of Hemisotidae, jackknife value of 90%. Mantellidae, and Rhacophoridae being nest- All con¯ict among the trees is restricted to ed among the few ranid exemplars. Ranoids two points: (1) the relationships among Hyla are the sister taxon of all remaining terminals circumdata, H. hylax, and the undescribed (®g. 2). species Hyla sp. 4 (®g. 3); and (2) the rela- Within hyloids, as expected, Leptodacty- tionships of H. femoralis with the H. versi- lidae is rampantly paraphyletic, with all other color and H. eximia groups (®g. 5). included families nested within it (®gs. 1, 2). When the best trees were submitted to a Ceratophryinae, Eleutherodactylinae, Lepto- round of TBR using a weighting scheme of dactylinae, and Telmatobiinae are not mono- 3:1:2 as suggested by De Laet (in press) and phyletic (®g. 2). mentioned earlier, the resulting tree differs At the base of hyloids, the two exemplars from the original ones only in that (1) the of Eleutherodactylus are the sister taxon of a clade composed of Cryptobatrachus and Ste- clade composed of Hemiphractus helioi, fania moves to be the sister group of Flec- Brachycephalus ephippium, and Phrynopus tonotus and Gastrotheca (®g. 2), and (2) the sp. This situation renders Eleutherodactyli- clade composed of Lysapsus, Pseudis, and nae and Hemiphractinae nonmonophyletic Scarthyla moves from the sister taxon of Sci- (®g. 2). The nonmonophyly of Hemiphrac- nax to the sister taxon of the 30-chromosome tinae is further given by the fact that in the Hyla groups, Sphaenorhynchus, and Xeno- 1:1:1 analysis, Stefania ϩ Cryptobatrachus hyla (®g. 4). and Gastrotheca ϩ Flectonotus are not 50 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 monophyletic but occur as a grade leading to here are quite different from the results of the other hyloids (®g. 2); however, the group the cladistic analysis based on morphology is monophyletic in the 3:1:2 analysis. Mov- and life-history data presented by Mendelson ing upward in the tree ®nds two large clades: et al. (2000). These authors found Hemi- one composed of Hylidae in the sense used phractus to be nested within Gastrotheca,a here (i.e., excluding Hemiphractinae), and result that Duellman (2001) considered im- the other composed of the remaining hyloid plausible. Although we did not incorporate families and subfamilies of Leptodactylidae. their data set into our analysis, the fact that Leptodactylinae as de®ned by Laurent they employed only hylid outgroups could (1986) is not monophyletic in that Limno- have affected their results. With the impor- medusa is only distantly related to the re- tant difference that we do not recover a maining ``Leptodactylinae'', being the sister monophyletic Hemipractinae, our results cor- taxon of Odontophrynus. Note that this ar- roborate the sister taxon relationship between rangement is congruent with Leptodactylinae the northern Andean Cryptobatrachus and as de®ned by Lynch (1971). Centrolenidae the Guayanan Stefania, as well as the sister obtains as monophyletic and as the sister tax- group relationship between Flectonotus and on of Allophrynidae. The only cycloram- Gastrotheca, as suggested by Duellman and phine exemplar, Crossodactylus schmidti,is Hoogmoed (1984) and Wassersug and Duell- the sister taxon of the dendrobatid exemplars. man (1984). Regarding the monophyly and Telmatobiinae is not monophyletic for actual position of Hemiphractinae within having one of the Ceratophryinae exemplars, Neobatrachia, our results are inconclusive Ceratophrys cranwelli, nested within it. Fur- (similar to those of Darst and Cannatella, thermore, the other two Telmatobiinae ex- 2004) most likely because of a lack of the emplars, gargola and Euspsophus appropriate taxon sampling to address the calcaratus, form a clade with the Leptodac- problem. Their positions in the tree suggest tylinae exemplar Limnomedusa macroglossa that a much denser taxon sampling of ``Lep- and the other Ceratophryinae exemplar todactylidae'' and perhaps Eleutherodactyli- Odontophrynus americanus. This clade is nae will be necessary to better understand also the sister taxon of all Bufonidae exem- their relationships. plars (®g. 2). In general, most results concerning the re- PELODRYADINAE AND PHYLLOMEDUSINAE lationships among outgroup taxa should be considered cautiously, because the taxon Our results of a monophyletic Pelodryadi- sampling of this analysis was not designed nae ϩ Phyllomedusinae corroborate early to address those speci®c questions. Some re- suggestions by Trewavas (1933), Duellman sults are nonetheless expected or at least sug- (1970), Bagnara and Ferris (1975), and more gestive. In the former group we include, for recent results by Darst and Cannatella (2004) example, the monophyly of Bufonidae, Den- and Hoegg et al. (2004). The monophyly of drobatidae, Centrolenidae, and Ranoidea. Pelodryadinae and Phyllomedusinae was not The relationship between Crossodactylus and recovered in the analyses by Duellman dendrobatids is consistent with the results of (2001), Burton (2004), and Haas (2003). Dis- Haas (2003). crepancies between the analyses of Burton The fact that hemiphractines are not relat- (2004) and Haas (2003) and our's may be the ed to the Hylidae, and are likely nonmono- result of different taxon sampling and as- phyletic, requires a change in how study of sumptions. Duellman (2001) assumed that this group is approached. For instance, rela- Hylidae, in the classical sense (including tionships of Hemiphractinae as recovered Hemiphractinae), was monophyletic, and

→ Fig. 1. A reduced image of the strict consensus of the four most parsimonious trees showing the major patterns of relationships of the outgroups, hylid subfamilies, and the four major clades of Hylinae recovered in the analysis. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 51 52 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 53

Burton (2004) assumed that Hylidae, Centro- PELODRYADINAE lenidae, and Allophrynidae formed a mono- As stated previously, our analysis does not phyletic group. Our analysis did not include include enough of a comprehensive taxon the morphological characters employed by sampling of Pelodryadinae to address its in- Haas (2003) in his analysis, nor does our pe- ternal relationships in a meaningful way. lodryadine taxon sampling match his. For Nonetheless, our results corroborate the this reason, our results are not directly com- long-held idea (see previous discussions) that parable to his, and we do not consider the Cyclorana and Nyctimystes are nested within monophyly of the Pelodryadinae a settled is- Litoria. For the reasons detailed earlier, our sue. analysis is not an overly strong test of the In our analysis, the presence of a tendon positions of the former two genera within Li- of the m. ¯exor ossis metatarsi II arising only toria. Nevertheless, the single exemplar of from distal tarsal 2±3 is a synapomorphy of Cyclorana is the sister taxon of L. aurea,an Pelodryadinae plus Phyllomedusinae. Fur- exemplar of the L. aurea group with which thermore, the presence of the pigment pter- Cyclorana is supposed to be related based on various sources of evidence (King et al., orhodin (Bagnara and Ferris, 1975) may be 1979; Tyler, 1979; Tyler et al., 1981). Nyc- a synapomorphy of this clade, although the timystes is the sister taxon of L. infrafrenata, distribution of this character state requires one of the groups of Litoria that Tyler and further elucidation. Both Pelodryadinae and Davies (1979) considered as possibly related Phyllomedusinae share the presence of sup- to Nyctimystes based on morphological sim- plementary elements of the m. intermandi- ilarities of its skull with that of N. zweifeli. bularis. These elements are apical in Pelod- The other groups they considered are mostly ryadinae and posterolateral in Phyllomedu- the montane species of Litoria; from these sinae (Tyler, 1971). Both character states we included a single exemplar, L. arfakiana, have previously been considered nonhomo- that is quite distant from Nyctimystes, being logs (Tyler and Davies, 1978a) that separate- the sister taxon of L. meiriana (with which, ly support the monophyly of each of these incidentally, it also shares the presence of a groups (Duellman, 2001). In the context of ¯ange in the medial surface of metacarpal our analysis, however, the sole presence of III; Tyler and Davies, 1978b). In our analy- supplementary elements is more parsimoni- sis, the ®brous origin of the m. extensor ously interpreted as a putative synapomorphy brevis super®cialis digiti III on the distal end of this clade, while it is ambiguous which of of the ®bulare is a synapomorphy of Pelod- ryadinae; we are skeptical, however, that this the positions of the elements (apical or pos- optimization will hold with better sampled terolateral) is the plesiomorphic state. Note outgroups for muscular characters, because that this ambiguity is a potential challenge to Burton (2004) found the same character state the only known morphological synapomor- in several leptodactylids, none of which is phy of Pelodryadinae. Future anatomical included in our outgroup sample. work will corroborate whether these two morphologies could be considered as states PHYLLOMEDUSINAE of the same transformation series, as is ten- Several authors (Funkhouser, 1957; Duell- tatively being done here. man, 1970; Donnelly et al., 1987; Hoogmoed

← Fig. 2. A partial view of the strict consensus showing the relationships of the outgroups, Pelodry- adinae, and Phyllomedusinae. Numbers above nodes are Bremer support values. Numbers below nodes are Parsimony Jackknife absolute frequencies; those with an asterisk (*) have a 100% frequency. Num- bers in boldfaced italic are node numbers for the list of morphological synapomorphies (see appendix 3). Black circles denote nodes that are present in the quick consensus estimation. The arrow shows alternative placement of the (Cryptobatrachus ϩ Stefania) clade when using the 3:1:2 weighting scheme (see text). 54 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 and Cadle, 1991) noticed the distinctiveness dusa, suggesting that the eggs wrapped in a of Agalychnis calcarifer and its presumed leaf are a synapomorphy of this clade. sister taxon, A. craspedopus, from the other species of Agalychnis. Corroborating the re- MAJOR PATTERNS OF RELATIONSHIPS sults of Duellman (2001), we found no evi- WITHIN HYLINAE dence for the monophyly of Agalychnis. Our For purposes of discussion, we consider results indicate that A. calcarifer is the sister Hylinae to be composed of four major clades group of the remaining Phyllomedusinae, (®g. 1), called here: (1) the South American and it has no close relationship with the other clade I; (2) South American clade II (SA-II); exemplars of Agalychnis. (3) Middle American/Holarctic clade; and (4) Phyllomedusa lemur, the only exemplar of South American/West Indian Casque-headed the P. buckleyi group available for this anal- Frogs. These major sections and their sub- ysis, is recovered, although with low Bremer clades will be discussed in this order. support (3), as the sister group of Hyloman- tis, and it is only distantly related with the SOUTH AMERICAN CLADE I other exemplars of Phyllomedusa. This situ- ation corroborates previous suggestions This clade is composed of all Gladiator (Funkhouser, 1957; Cannatella, 1980; Jung- Frogs, the Andean stream-breeding Hyla, the fer and Weygoldt, 1994) that the P. buckleyi genus Aplastodiscus, and a Tepuian clade of group should not be included in Phyllome- Hyla. It contains ®ve major clades (®g. 3). dusa. Cruz (``1988'' [1989]) suggested, on The ®rst of these is called the Tepuian clade, the basis of iris coloration, skin texture, poor and is composed solely of two exemplars of development of webbing, and slender body, the H. aromatica and H. geographica that Hylomantis is related to two species of groups. The second clade is composed of all the P. bukleyi group, P. buckleyi and P. psi- Andean stream-breeding Hyla. The third is composed of all the exemplars of the H. cir- lopygion. On the basis of the same character cumdata, H. martinsi, and H. pseudopseudis states, Cruz (1990) associated the P. buckleyi groups, from southeastern Brazil, and we are group with both Hylomantis and Phasmahy- calling it informally the Atlantic/Cerrado la. Our results support these ideas only in clade. The fourth is composed of the south- part, because while our only exemplars of eastern Brazilian H. albosignata and H. al- Hylomantis and the P. buckleyi group are bofrenata complexes of the larger, nonmon- each monophyletic, Phasmahyla is more ophyletic H. albomarginata group plus the closely related to Phyllomedusa (excluding two species of Aplastodiscus, and we are the P. buckleyi group). calling it informally the Green clade. The We had no clear idea regarding the posi- ®fth clade is composed of all the remaining tion of Hylomantis and Phasmahyla. Mor- species groups (H. geographica, H. pulchel- phologically, the evidence is con¯icting in la, H. boans, H. granosa, H. punctata, H. that each one shares at least one different albomarginata complex of the H. albomar- possible synapomorphy with the restricted ginata group) and unassigned species asso- Phyllomedusa (Phyllomedusa excluding the ciated in the past with the Gladiator Frogs, P. buckleyi group). Phasmahyla has the same and we are calling it informally the TGF type of nest where the eggs are wrapped in clade (for True Gladiator Frogs.) a leaf; nests are unknown in Hylomantis, but Six currently recognized species groups species of this genus share with Phyllome- within the South American clade I are not dusa (excluding the P. buckleyi group) the monophyletic. The Hyla albomarginata presence of the slip of the m. depressor man- group is not monophyletic because its three dibulae that originates from the dorsal fascia ``complexes'' de®ned by Cruz and Peixoto at the level of the m. dorsalis scapulae (Cruz, (``1985'' [1987]) are spread throughout the 1990; Duellman et al., 1988b), a character Green clade and the TGF clade. The H. al- state that is absent in all other Phyllomedu- bomarginata complex is not monophyletic, sinae. Our analysis recovers Phasmahyla as with its species being related with different the sister group of the restricted Phyllome- groups in the TGF clade (see below). The H. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 55

Fig. 3. A partial view of the strict consensus showing the relationships of the South American I clade and its correspondence with the currently recognized species groups. Numbers above nodes are Bremer support values. Numbers below nodes are Parsimony Jackknife absolute frequencies; those with an asterisk (*) have a 100% frequency. Black circles denote nodes that are present in the quick consensus estimation. 56 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Fig. 4. A partial view of the strict consensus showing the relationships of the South American II clade and its correspondence with the currently recognized species groups. Numbers above nodes are Bremer support values. Numbers below nodes are Parsimony Jackknife absolute frequencies; those with an asterisk (*) have a 100% frequency. Numbers in boldfaced italic are node numbers for the list of morphological synapomorphies (see appendix 3). Black circles denote nodes that are present in the quick consensus estimation. The arrow shows alternative placement of the (Scarthyla ϩ (Lysapsus ϩ Pseudis)) clade when using the 3:1:2 weighting scheme (see text). albosignata complex is monophyletic, as is ter group of the clade composed of H. heil- the H. albofrenata complex. These two com- prini and the paraphyletic H. albopunctata plexes, however, do not form a monophyletic group (see below); H. albomarginata is the group, because Aplastodiscus is the sister sister taxon of a fragment of the H. boans group to the H. albosignata complex, and group (see below). The H. albopunctata this clade is sister to the H. albofrenata com- group is paraphyletic inasmuch as H. fasciata plex. Within the TGF Clade, the only group plus H. calcarata is nested within it. The H. that is not represented by a single exemplar boans group is polyphyletic because the (the Hyla punctata group) that results as mostly southeastern Brazil/northeastern Ar- monophyletic is the H. pulchella group. The gentina exemplars (H. faber, H. lundii, H. H. albomarginata complex, H. albopunctata, pardalis, H. crepitans, and H. albomargina- H. boans, H. geographica, and H. granosa ta) together with H. albomarginata are the groups are nonmonophyletic. sister taxon of the H. pulchella group and are Hyla pellucens and H. ru®tela are the sis- only distantly related to H. boans. Hyla 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 57 boans is the sister taxon of H. geographica Kizirian et al. (2003) had doubts about the plus H. semilineata. The H. geographica placement of Hyla tapichalaca. Faivovich et group is rampantly polyphyletic, with its ex- al. (2004) showed that this species is related emplars partitioned into ®ve different clades to the H. armata±H. larinopygion groups (al- within the South American clade I: (1) H. though they only included H. armata in their kanaima is the sister taxon of H. inparquesi, analysis). Our results go a step further, indi- the single exemplar of the H. aromatica cating a closer relationship with the H. lari- group; (2) H. roraima and H. microderma nopygion group. form a monophyletic group with four Guay- Hyla inparquesi and H. kanaima forming anese and one Amazonian species; (3) Hyla the sister taxon of all the remaining South picturata is related to the exemplars of the American clade I is an unexpected result. On H. punctata and H. granosa groups; (4) Hyla the basis of morphology, we expected our semilineata ϩ H. geographica are related to only exemplar of the H. aromatica group, H. H. boans; and (5) H. fasciata ϩ H. calcarata inparquesi22, to be related to the Andean are nested within the H. albopunctata group stream-breeding clade of Hyla, because both as detailed above. The H. granosa group is share the character states that Duellman et al. paraphyletic by having H. picturata and H. (1997) suggested as synapomorphies in sup- punctata nested within it. port of the monophyly of the Andean stream- breeding Hyla: (1) known larvae with ven- Andean Stream-Breeding Hyla and the Te- tral, enlarged oral discs; (2) complete mar- puian Clade ginal papillae; and (3) with a minimum labial tooth row formula of 4/6. Furthermore, The monophyly of the Andean stream- adults of the H. aromatica group share a breeding Hyla is congruent with suggestions greatly enlarged prepollex without a project- presented by Duellman et al. (1997) and Mi- ing spine in males that, as we mentioned jares-Urrutia (1997), who noticed similarities above, is present in most species of Andean in larval morphology of the H. bogotensis stream-breeding Hyla (the only known ex- and H. larinopygion groups. Duellman et al. ception being H. tapichalaca; Kizirian et al., (1997) presented a phylogenetic analysis re- 2003). stricted to wholly or partially Andean species This sister-group relationship between the groups of Hyla. In their most parsimonious Tepuian clade and all the remaining groups tree, the H. armata, H. bogotensis, and H. of the South American clade I has further larinopygion groups formed a monophyletic implications. Based on the available material, group supported by three transformations in Duellman et al. (1997) considered the pre- tadpole morphology: the enlarged, ventrally pollex greatly enlarged without a projecting oriented oral disc; the complete marginal pa- spine to be an intermediate state in an or- pillae; and a labial tooth row formula 4/6 or dered transformation series from prepollex higher. not greatly enlarged to prepollex greatly en- Duellman et al. (1997) suggested a close larged with a projecting spine. Our topology relationship between the H. armata and H. implies that the greatly enlarged prepollex larinopygion groups based on the presence without a projecting spine is a synapomorphy in males of a greatly enlarged prepollex lack- of the whole South American clade I (with ing a projecting spine. While our results are subsequent transformations, including the congruent with this, note that males of the H. development of a projecting spine). Howev- bogotensis group also have a prepollex with er, H. kanaima does not have an enlarged the same external morphology as those of the prepollex as prominent as that found in the H. armata and H. larinopygion groups. Ki- H. armata, H. aromatica, H. bogotensis, and zirian et al. (2003) suggested that the H. ar- H. larinopygion groups. In order to clarify mata group was nested in the H. larinopy- this situation, it would be necessary to (1) gion group. Our results do not support this de®ne the prepollex character states osteo- suggestion. However, this could be a conse- logically, and (2) include a denser sampling quence of the few exemplars of the H. lari- nopygion group available for our study. 22 The tadpole of Hyla kanaima is unknown. 58 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 59 of the H. aromatica group, to better under- also belong to that clade (these authors fur- stand its relationship with H. kanaima. (Per- ther included the H. polytaenia group within haps the character state of H. kanaima could the H. pulchella group), which was called be interpreted as a reversal.) earlier in this paper ``Gladiator Frogs''. Our Our topology implies an interesting sce- results indicate that a clade with the com- nario regarding the evolution of larval mor- position suggested by Duellman et al. (1997) phology in the South American clade I; that and Faivovich et al. (2004) is paraphyletic is, that larval morphology of the Atlantic/ because Aplastodiscus is nested within it; Cerrado, Green, and TGF clades evolved furthermore, H. kanaima of the H. geogra- from an ancestor with the highly modi®ed phica group is only distantly related to this morphology typical of stream larvae (includ- clade. ing large numbers of labial tooth rows, a large oral disc with complete marginal pa- Atlantic/Cerrado Clade pillae, and relatively low ®ns) that during Our results corroborate the long-suspected evolution, underwent a transformation of association of the Hyla circumdata group these character states (speci®cally, reduction with the groups of H. pseudopseudis and H. in labial tooth row formulae, a reduced oral martinsi (Bokermann, 1964a; Cardoso, 1983; disc, and formation of an anterior gap in the Caramaschi and Feio, 1990; Pombal and marginal papillae). These transformations Caramaschi, 1995), even though the mono- were coincident with distributional shifts phyly of these two groups could not be tested from high-elevation mountain streams (as in by our analysis. We also consider as corrob- the Tepuian and Andean stream-breeding orated the suspected relationship of the Hyla clades) toward lower elevation forest moun- circumdata and H. pseudopseudis groups tain streams (the cases of the Atlantic/Cer- with H. alvarengai (Bokermann, 1964a; rado clade, the Green clade, and, and some Duellman et al., 1997), because Hyla sp. 9 taxa of the TGF clade), and Amazonian low- (aff. H. alvarengai) is nested in this clade. lands and the Cerrado-Chaco (several taxa of Unfortunately, due to the unavailability of the TGF clade). samples, we could not test the relationships of the Hyla claresignata group with this clade. Gladiator Frogs Considering the phylogenetic context of the Duellman et al. (1997) suggested the ex- Atlantic/Cerrado clade within the South istence of a clade composed of the Hyla al- American clade I, we must revisit the appar- bomarginata, H. albopunctata, H. boans, H. ent synapomorphies of the H. claresignata circumdata, H. geographica, and H. pul- group mentioned earlier (oral disc completely chella groups. The synapomorphy supporting surrounded by marginal papillae, and 7/12±8/ this clade is, according to these authors, the 13 labial tooth rows). The presence and dis- presence of ``an enlarged prepollical spine tribution of these character states in the Te- lacking a quadrangular base''. Faivovich et puian and Andean stream-breeding Hyla al. (2004), based on the analysis of mito- clades is suggestive, not of a closer relation- chondrial DNA sequences and on the obser- ship of the H. claresignata group with any of vation (Garcia and Faivovich, personal obs.) them (these character states are plesiomor- that H. punctata and the H. polytaenia group phies in this context), but of the nature of its show the same morphology of the prepollical relationship with the Atlantic/Cerrado clade. spine, argued that these additional groups Perhaps the H. claresignata group is not a

← Fig. 5. A partial view of the strict consensus showing the relationships of the Middle American± Holarctic and South American/West Indian Casqued-headed frog clades and it correspondence with the currently recognized species groups. Numbers above nodes are Bremer support values. Numbers below nodes are Parsimony Jackknife absolute frequencies; those with an asterisk (*) have a 100% frequency. Numbers in boldfaced italic are node numbers for the list of morphological synapomorphies (see ap- pendix 3). Black circles denote nodes that are present in the quick consensus estimation. 60 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 member of the Atlantic/Cerrado clade, but is Cerrado clade (Bokermann, 1964a; Garcia a basal group related either to the Tepuian or 2003) and H. tapichalaca (Kizirian et al., Andean stream-breeding clade, or perhaps it 2003), the only Andean stream-breeding is even the sister taxon of the clade composed Hyla with any described postcranial osteol- of the Atlantic/Cerrado, Green, and TGF ogy, have the transverse processes poorly ex- clades. At this point we are not aware of ev- panded or not expanded at all. However, the idence favoring any of these alternatives. distribution of this character state is in con- ¯ict with the presence of a prepollical spine Green Clade in the Atlantic/Cerrado clade and the TGF clade, which is absent in the Green clade, Lutz (1950) was the ®rst to suggest that where there is a fairly enlarged prepollex but Aplastodiscus was related to species latter in- no spine. A detailed study of prepollex mor- cluded in the Hyla albosignata complex, as phology in these taxa would help to better de®ned by Cruz and Peixoto (``1985'' de®ne the relevant transformation series and [1987]). This was supported by Garcia et al. it transformation sequences in the tree. (2001a) based on the presence of enlarged internal metacarpal and metatarsal tubercles True Gladiator Frog Clade and unpigmented eggs. More recently, Had- dad et al. (2005) described the reproductive The results imply the nonmonophyly of sev- mode of Aplastodiscus perviridis, which in- eral species groups within this clade, as de- cludes deposition in a subterranean nest scribed earlier. This situation is not unexpected excavated by the male, where exotrophic lar- considering the paucity of evidence of mono- vae spend the early stages of development phyly previously available for most of them. until ¯ooding releases them to a nearby water The monophyly of the group composed of body. This mode is the same as that observed the two unassigned species from the Gua- in one species of the H. albosignata com- yana Highlands, Hyla benitezi, H. lemai, plex, H. leucopygia (Haddad and Sawaya, Hyla sp. 2, two members of the H. geogra- 2000), and for the undescribed species of the phica group (H. microderma and H. rorai- H. albofrenata complex included in our anal- ma), and Hyla sp. 8 is further supported by ysis, Hyla sp.1 (aff. H. ehrhardti) (Hartmann the presence of a mental gland in males (Fai- et al., 2004); this mode is further suspected vovich et al., in prep.) to occur in all species of both the H. albo- In the DNA-based phylogenetic analysis signata and H. albofrenata complexes (Had- of the Hyla pulchella group performed by dad and Sawaya, 2000, Hartmann et al., Faivovich et al. (2004), H. punctata is the 2004). Species included in the H. albomar- sister species of H. granosa, with this overall ginata complex instead lay their eggs on the clade forming the sister taxon of a clade water ®lm surface (Duellman, 1970). Based composed of the H. albopunctata, H. geo- on the shared reproductive mode, Haddad et graphica, H. albomarginata, H. boans, and al. (2005) suggested that Aplastodiscus could H. pulchella groups. In our analysis, H. be related to the H. albofrenata and H. al- punctata, our only exemplar of the group, is bosignata complexes. Our results support the the sister taxon of H. granosa, and this taxon monophyly of both the H. albofrenata and is at the apex of a pectinated series that in- H. albosignata complexes and their close re- cludes H. sibleszi and, curiously, H. pictur- lationship with Aplastodiscus, that is the sis- ata. Prior to the analysis, we had no idea as ter taxon of the H. albosignata complex. to with which species group H. picturata While we are not aware of nonmolecular would be related, but certainly we did not synapomorphies for several nodes supported expect this colorful frog to be nested within by molecular evidence, the few osteological a group of green species. data available for the South American clade Our results lend only partial support for a I indicate that the Green clade and the TGF relationship between Hyla heilprini and the clade share the presence of transverse pro- H. albomarginata group, as tentatively sug- cesses of the sacral diapophyses notably ex- gested by Duellman (1974) and Trueb and panded distally, while species of the Atlantic/ Tyler (1974) based on overall pigmentation 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 61 and the white peritoneum, because H. heil- Faivovich et al. (2004), we continue to rec- prini is the sister taxon of the H. albopunc- ognize a H. polytaenia clade within the H. tata group (including a fragment of the H. pulchella group. These authors stated that the geographica group), with H. heilprini plus lack of any pattern on the hidden surfaces of this unit being the sister taxon of a fragment thighs was one of two possible morphological of the H. albomarginata group. The non- synapomorphies of this clade (with the other monophyly of the H. albopunctata group being the mostly striped dorsal pattern). This corroborates comments advanced by de Sa observation is mistaken, because the same (1995, 1996) as to the lack of evidence for character state occurs in H. ericae (Caramas- its monophyly. chi and Cruz, 2000), H. joaquini, H. margin- Hyla crepitans, H. faber, H. lundii, and H. ata, H. melanopleura, H. palaestes, and H. pardalis form, together with H. albomargin- semiguttata (Duellman et al., 1997; Garcia et ata, a monophyletic group only distantly re- al., 2001b), suggesting that it actually may be lated to H. boans, the species that gives the a synapomorphy of a more inclusive clade name to the former group. Within this clade, whose contents are still unde®ned. the nest builders23 H. faber, H. lundii, and H. pardalis, are monophyletic. SOUTH AMERICAN II CLADE The polyphyly of the Hyla boans group The South American II clade (®g. 4) is has implications for the evolution of repro- composed of the 30-chromosome Hyla, the ductive modes, in that it implies independent Hyla uruguaya group, Lysapsus, Pseudis, origins of nest-building behavior by males. Scarthyla, Scinax, Sphaenorhynchus, and Xe- Although theoretically possible, certainly no nohyla. It contains two main clades: one author had ever suggested that such a char- composed of Lysapsus, Pseudis, Scarthyla, acteristic behavior as the nest building could and Scinax (including the H. uruguaya be a homoplastic feature.24 However, the mo- group), and the other composed of Sphae- lecular evidence points that way, and further norhynchus, Xenohyla, and all the exemplars evidence indicates that this or a similar re- of 30-chromosome Hyla species groups. productive mode also occurs in at least some Within this clade, Scinax and the Hyla mi- species of the H. circumdata group (Pombal crocephala group are not monophyletic. Sci- and Haddad, 1993, Pombal and Gordo, nax has H. uruguaya, an exemplar of the H. 2004), implying then at least three indepen- uruguaya group, nested within it. The H. mi- dent occurrences within the South American crocephala group is paraphyletic with re- clade I. In a wider context, nest building was spect to the available exemplars of the H. reported as well in Pelodryadinae in males decipiens and H. rubicundula groups. of Litoria jungguy (Richards, 1993; using the name L. lesueuri, see Donnellan and Mahony Relationships of Scinax [2004]), thus implying a fourth instance of homoplasy within Hylidae. Several hypotheses have been advanced on Our topology for the Hyla pulchella group the relationships of Scinax. Aparasphenodon is identical to that of Faivovich et al. (2004), was considered by Trueb (1970a) to be closely including the exemplars of the former H. po- related to Corythomantis and, in turn, she con- lytaenia group nested within it. Following sidered these two genera to be nested within the (then) Hyla rubra group (currently the ge- 23 Caldwell (1992) referred to the facultative nature of nus Scinax), based on overall similarities in nest building in males of Hyla crepitans on specimens cranial morphology. Scarthyla was considered from , far away from the range of H. crepitans to be related to Scinax by Duellman and de Sa in Brazil. Other authors (Lynch and Suarez-Mayorga, 2001), expressed doubts regarding the taxonomic status (1988). Duellman and Wiens (1992) extended of northwestern South American H. crepitans, and un- this to suggest that Scarthyla is the sister taxon published molecular data from Faivovich and Haddad of Scinax, which together form the sister taxon indicate that more than one species is involved. of Sphaenorhynchus. According to Duellman 24 Our surprise with these results led us to sequence an additional sample of each Hyla boans and H. faber and Wiens (1992), character states supporting to check for the possibility of cross-contaminations; both the monophyly of these three genera are nar- were identical with the sequences we already had. row sacral diapophyses, anteriorly inclined ala- 62 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 ry processes of the premaxillae, and tadpoles Wiens (1992). Mijares-Urrutia et al. (1999) with large, laterally placed eyes. Duellman and also noted that Tepuihyla has rounded sacral Wiens (1992) suggested that possible morpho- diapophyses as found in these three genera logical synapomorphies of Scinax and Scarthy- (Duellman and Wiens, 1992). la are reduced webbing on the hand and the Our results do not support a relationship presence of an anterior process of the hyale. of Scinax with Aparasphenodon, Corythom- Tepuihyla was suggested to be closely related antis,orTepuihyla because these three gen- with Scinax, this being supported by the ab- era are nested within the South American/ sence or extreme reduction of webbing be- West Indies Casque-headed Frog clade. Fur- tween toes I and II, adhesive discs wider than thermore, Scinax is not the sister group of long, and the presence of double-tailed sperm Scarthyla but of a clade composed of Scar- (AyarzaguÈena et al., ``1992'' [1993b]). This as- thyla plus Lysapsus and Pseudis (in the 1:1: sociation was questioned by Duellman and 1 analysis) or of all the remaining genera in- Yoshpa (1996) on the grounds that the absence cluded in the South American II clade (in the or extreme reduction of webbing between toes 3:1:2 analysis). I and II was homoplastic among hylids (al- Scinax is also paraphyletic with respect to though Duellman and Wiens [1992] suggested the Hyla uruguaya group, for which Boker- this same character state to be a synapomorphy mann and Sazima (1973a) and Langone of Scinax). These authors suggested that the (1990) could not suggest af®nities with any only evidence uniting Tepuihyla with Scinax other hylids. Most recently, Kolenc et al. could be the double-tailed sperm reported by (``2003'' [2004]) observed in the larvae of AyarzaguÈena et al. (``1992'' [1993b]) for Te- H. uruguaya and H. pinima the morpholog- puihyla and by Fouquette and Delahoussaye ical synapomorphies of the larvae of the Sci- (1977) for Scinax.25 nax ruber clade that were reported by Fai- Mijares-Urrutia et al. (1999) again suggested vovich (2002), and they suggested a possible a close relationship of Tepuihyla with Scinax, relationship between the H. uruguaya group but also with Scarthyla and Sphaenorhynchus± and the Scinax ruber clade. Adults of the H. Scinax relatives, as suggested by Duellman and uruguaya group are quite characteristic mor- phologically, and perhaps as a consequence 25 The interpretation of the double-tailed sperm as a this group was never associated with any putative synapomorphy is problematic for two practical species of Scinax prior to Kolenc et al. reasons: (1) Taboga and Dolder (1998), Kuramoto (``2003'' [2004]). (1998), and Costa et al. (2004) suggested that previous reports of double-tailed spermatozoa in several Anura Our results reveal that none of the out- based on optical microscopy are in error, because scan- groups employed by Faivovich (2002) in the ning electron microscopy and transmission electron mi- phylogenetic analysis of Scinax is particular- croscopy of ultrathin serial sections show that actually ly close to Scinax; instead, all other compo- there is a single axoneme/paraxonemal rod and the axial nents of the South American II clade are ®ber. This suggests that there could be a problem of homology between the structures present in Scinax and much more suitable to establish character- those in Tepuihyla. (2) Even if we would assume that state polarities in this genus. Consequently, the problem is only about the correct interpretation of exemplars of these closer neighbors of Sci- two different states in the optical microscopy (i.e., nax need to be added, and the synapomor- whether the ``double tail'' is actually a double ¯agellum or an axoneme/paraxonemal rod and the axial ®ber), we phies of Scinax resulting from that analysis ®nd that the studied hylid taxa using optical microscopy need to be reevaluated. are not numerous. Although Fouquette and Delahous- saye (1977) mentioned that they studied several hylines, an exhaustive list of those taxa was not given, and pub- Lysapsus, Pseudis, and Scarthyla lished records only include Acris (Delahoussaye, 1966), 10 species of Hyla (Delahoussaye, 1966; Pyburn, 1993; The sister-group relationship between Kuramoto, 1998; Taboga and Dolder, 1998; Costa et al., and ``pseudids'' (Lysap- 2004), 1 species of Pseudacris (Delahoussaye, 1966), sus ϩ Pseudis), and this group being nested Pseudis and Lysapsus (Garda et. al., 2004), Scarthyla within Hylinae, corroborates recent ®ndings goinorum (Duellman and de SaÂ, 1988), several species of Scinax (Fouquette and Delahoussaye, 1977; Taboga by Darst and Cannatella (2004) and Haas and Dolder, 1998; Costa et al., 2004), and Sphaenorhyn- (2003). Burton (2004) reported a likely syn- chus lacteus (Fouquette and Delahoussaye, 1977). apomorphy for the Scarthyla plus the ``pseu- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 63 did'' clade that is corroborated in the present chus and Scinax (Izecksohn, 1996). These analysis; that is, the m. transversus metatar- ideas are partially corroborated by our 1:1:1 sus II oblique, with a narrow, proximal con- results, with the exception that they also sug- nection to metatarsus II, and a broad, distal gest that Xenohyla is the sister group of the connection to metatarsus III. Another char- 30-chromosome Hyla. The karyotype is still acter state described by Burton (2004), the unknown in Xenohyla, and this poses an ob- undivided tendon of the m. ¯exor digitorum stacle to our understanding of the limits of brevis super®cialis, optimizes in this analysis the 30-chromosome Hyla. Interestingly, as a synapomorphy of this clade plus Scinax. while both Sphaenorhynchus and Xenohyla Besides the molecular data, the monophy- do have a quadratojugal, in both cases it does ly of Lysapsus plus Pseudis is further sup- not articulate with the maxilla (Duellman and ported by the tendo super®cialis pro digiti III Wiens, 1992; Izecksohn, 1996), which could arising from the m. ¯exor digitorum brevis be seen as an intermediate step before the super®cialis, with no contribution from the extreme reductions of the quadratojugal seen aponeurosis plantaris; the origin of m. ¯exor in the 30-chromosome Hyla (Duellman and ossis metatarsi IV and the joint tendon of or- Trueb, 1983). Tadpoles of Xenohyla and sev- igin of mm. ¯exores ossum metatarsorum II eral species of 30-chromosome Hyla share and III crossing each other; the m. ¯exor os- the presence of the tail tip extended into a sis metatarsi IV very short, inserting on the ¯agellum, as well as the presence of high proximal two-thirds of metatarsal IV or less; caudal ®ns (e.g., see Bokermann, 1963; Ken- absence of a tendon from the m. ¯exor dig- ny, 1969; Gomes and Peixoto, 1991a, 1991b; itorum brevis super®cialis to the medial slip Izecksohn, 1996; Peixoto and Gomes, 1999). of the medial m. lumbricalis brevis digiti V; Phylogenetic hypotheses of the 30-chro- and m. transversus metatarsus III oblique, mosome Hyla species groups using morpho- with a narrow, proximal connection onto logical characters were presented by Duell- metatarsal III, and a broad, distal connection man and Trueb (1983), Duellman et al. to metatarsal IV. Another likely morpholog- (1997), Kaplan (1991, 1994), and Kaplan ical synapomorphy is the elongated interca- and RuõÂz (1997); none of these tested the lary elements. monophyly of the contained species groups. Vera Candioti (2004) noticed that Lysap- A summary of their proposals and the sup- sus limellum and most of the 30-chromosome porting evidence are depicted in ®gure 6. Hyla (H. nana and H. microcephala) studied Chek et al. (2001) presented a phyloge- by her and Haas (2003) share two of the syn- netic analysis using partial 16S and cyto- apomorphies that Haas (2003) reported for chrome b sequences of the Hyla leucophyl- and P. minuta: insertion of lata group, including exemplars of other 30- the m. levator mandibulae lateralis in the na- chromosome Hyla species groups. Because sal sac, and a distinct gap in the m. subar- they did not include non-30-chromosome hy- cualis rectus II±IV. Haas (2003) observed lids, they did not test the monophyly of this different character states for H. ebraccata clade. (the m. levator mandibulae lateralis inserts in The distribution of certain characters in tissue close to posterodorsal process of su- several species associated with the currently prarostral cartilage or adrostral tissue; contin- recognized species groups suggests problems uous m. subarcualis rectus II±IV), suggesting in our phylogenetic understanding of these the need for additional studies on its taxo- frogs. The monophyly of a group composed nomic distribution within the 30-chromo- of the Hyla leucophyllata, H. marmorata, H. some Hyla and in the other genera of the microcephala, and H. parviceps groups is South American II clade. currently supported by the absence of labial tooth rows in their larvae (Duellman and Sphaenorhynchus, Xenohyla and the 30- Trueb, 1983). However, within the H. parv- Chromosome Hyla iceps group, H. microps (Santos et al., 1998) and H. giesleri (Bokermann, 1963; Santos et Izecksohn (1959, 1996) suggested possible al., 1998) have at least one labial tooth row. relationships of Xenohyla with Sphaenorhyn- Similarly, Gomes and Peixoto (1991a) and 64 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Fig. 6. Current state of phylogenetic knowledge of the 30-chromosome Hyla. Redrawn from Duell- man (2001: 857) with the addition of Kaplan's (2000) suggestion regarding the relationships of Hyla praestans with the H. garagoensis group. Numbered synapomorphies, as textually described by these authors, are: 1, 30 chromosomes; 2, reduced quadratojugal; 3, 1/2 labial tooth rows; 4, nuptial excres- cences absent; 5, tadpole tail xiphicercal; 6, tadpole mouth terminal; 7, 0/1 labial tooth rows; 8, 0/0 labial tooth rows; 9, one ventral row of small labial papillae in tadpoles; 10, extensive axillary mem- brane; 11, longitudinal stripes on hindlimbs of tadpoles; 12, one ventral row of large labial papillae in tadpoles; 13, tadpole body violin-shaped in dorsal view; 14, body of tadpole depressed; 15, labial papillae absent in tadpoles; 16, internal surface of the arytenoids with a small medial depression.

Peixoto and Gomes (1999) noticed in the H. the tadpoles drop into the water where they marmorata group the presence of one labial complete development. Hyla ruschii ovipos- tooth row in the larvae of H. nahdereri, H. its on leaves overhanging streams (Weygoldt senicula, and H. soaresi. Based on these and Peixoto, 1987). The oviposition on facts and similarities in tail depth, tail color, leaves occurs in most species of the H. leu- general body shape, and predatory habits, cophyllata group, whereas both reproductive they suggested that the H. marmorata group modes occur in the H. microcephala group. could instead be more closely related to H. Our results recover the 30-chromosome minuta than to the groups suggested by Hyla species as monophyletic; however, our Duellman and Trueb (1983). Gomes and topology differs from previous hypotheses. Peixoto (1991b) pointed out the presence of In our topology, the root is placed between a labial tooth row in the larva of H. elegans. the H. marmorata group and the other ex- Wild (1992) further noted the absence of emplars, instead of between the H. labialis marginal papillae (an apparent synapomor- group and the other exemplars, as was as- phy of the H. microcephala group) in the lar- sumed in previous analyses (Duellman and va of H. allenorum (a species of the H. parv- Trueb, 1983; Kaplan, 1991, 1994, 1999; iceps group). Chek et al., 2001). The reproductive modes of the different Topological differences from previous hy- species are also informative. According to potheses are not due merely to a re-rooting Duellman and Crump (1974), Hyla parviceps of the previously accepted tree; the relation- deposits its eggs directly in the water, as does ships obtained by our analysis are quite dif- H. microps (Bokermann, 1963), whereas H. ferent from previous proposals. Our analysis bokermanni and H. brevifrons oviposit on does not recover as monophyletic the ex- leaves overhanging ponds; upon hatching, emplars of the three species groups once 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 65 thought to be monophyletic on the basis of orates early suggestions by Lutz (1948, lacking labial tooth rows, that is, the Hyla 1973) that these could be related on the basis leucophyllata, H. microcephala, and H. of sharing a large axilar membrane and ¯ash parviceps groups. Instead, the H. microce- coloration. phala group (including the taxa imbedded While we could not test the monophyly of within it) is the sister taxon of a clade com- the Hyla minima and H. minuta groups, our posed of H. anceps and the exemplars of the exemplars of these groups are sister taxa, and H. leucophyllata group. The exemplars of the they are only distantly related with the ex- H. parviceps group are the sister taxon of a emplars of the H. parviceps group. This po- clade composed of the exemplars of the H. sition does not support Duellman's (2001) columbiana and H. labialis groups. This tentative suggestion that the species of the H. shows that the scenario of labial tooth row minima group should be included in the H. evolution is more complex than previously parviceps group. thought, because it implies several transfor- The paraphyly of the Hyla microcephala mations in both directions between presence group with respect to the H. rubicundula and absence of labial teeth within the clade. group is an expected result, as historically its Observations by Wassersug (1980), Spi- species were associated with H. nana and H. randeli Cruz (1991), and Kaplan and Ruiz- sanborni (Lutz, 1973). Nevertheless, the as- Carranza (1997) on the internal oral features sociation of the H. microcephala and H. rub- of larvae of representatives of the Hyla leu- icundula groups were reinforced by Pugliese cophyllata (H. ebraccata and H. sarayacuen- et al. (2001), who described the larva of H. sis), H. microcephala (H. microcephala, H. rubicundula and noted similarities (like the nana, H. phlebodes, and H. sanborni), and lack of marginal papillae) with the larvae of H. garagoensis (H. padreluna and H. viro- members of the H. microcephala group. In linensis) groups revealed a reduction of in- particular, these authors noticed similarities ternal oral structures (including reduction of with H. nana and H. sanborni, with the latter most internal papillation, reduction of bran- being the sister taxon of H. rubicundula in chial baskets, reduction or absence of secre- our analysis. tory ridges and secretory pits) that is most Carvalho e Silva et al. (2003) segregated extreme in the representatives of the H. mi- the Hyla decipiens group from the H. micro- crocephala group. Hyla minuta does not cephala group on the basis that the larvae of show the reductions seen in these species these species lack the possible morphological groups (Spirandeli Cruz, 1991). This species synapomorphies currently diagnostic of the also shares with representatives of the H. leu- H. microcephala group (body of tadpole de- cophyllata group described by Wassersug pressed, labial papillae absent in tadpoles) (1980) a reduction in the density of the ®lter and the putative clade composed of the H. mesh of the branchial baskets in comparison leucophyllata, H. microcephala, and H. with other hylid tadpoles. It is clear that the parviceps groups (absence of labial tooth study of internal oral features will provide rows). However, as mentioned above, our re- several additional characters relevant for the sults imply a complex scenario for labial study of the 30-chromosome species of Hyla. tooth row transformations and place the H. The exemplars of the Hyla parviceps decipiens group within the H. microcephala group obtain as monophyletic. However, we group. The available taxon sampling did not included only 3 of the 15 species currently allow testing the monophyly of the H. deci- included in this problematic group. We are piens group. The fact that its known species not con®dent that the monophyly of the H. share the oviposition on leaves above the wa- parviceps group will be maintained as more ter, and the reversals in larval morphology taxa are added. Regarding the exemplars of that led Carvalho e Silva et al. (2003) to con- the H. leucophyllata group, their relation- sider them unrelated to the H. microcephala ships are equivalent to those obtained by group, probably indicates that, even if nested Chek et al. (2001). inside this group, the species assigned to the The sister-group relationship of Hyla an- H. decipiens group could be a monophyletic ceps and the H. leucophyllata group corrob- unit. 66 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

The relationships of the Hyla garagoensis imia, H. miotympanum, H. tuberculosa, and group, from which no exemplar was avail- H. versicolor groups, are not monophyletic. able for this study, were discussed by Kaplan The H. miotympanum group is polyphyletic; and Ruiz-Carranza (1997). Based on the ab- its exemplars split among three different sence of labial tooth rows, they placed the H. clades: H. miotympanum is the sister taxon garagoensis group in a polytomy together of one of the exemplars of the H. tuberculosa with the H. marmorata group and the clade group, H. miliaria; H. arborescandens and composed of the H. microcephala, H. parv- H. cyclada are related to an undescribed spe- iceps, and H. leucophyllata groups. Duell- cies close to H. thorectes, and together are man et al. (1997) presented a cladogram for related to exemplars of the H. bistincta most of the 30-chromosome Hyla groups, group; H. melanomma and H. perkinsi are at where the H. garagoensis and H. marmorata the base of the H. sumichrasti group. Smilis- groups appear together as a clade supported ca is not monophyletic, having Pternohyla by the presence of one ventral row of small fodiens nested within it. Ptychohyla is para- marginal papillae in larvae. This character phyletic with respect to H. dendrophasma state needs further assessment, as indicated (H. tuberculosa group). The H. arborea by Gomes and Peixoto (1991a) and Peixoto group is polyphyletic, with H. japonica nest- and Gomes (1999), because tadpoles of the ed within the H. eximia group. The H. ci- H. marmorata group have either one (H. nerea group is not monophyletic, with H. fe- nahdereri) or two rows of marginal papillae moralis being more closely related to mem- (H. senicula; H. soaresi); the tadpoles of H. bers of the H. eximia and H. versicolor padreluna, a species of the H. garagoensis groups than to H. cinerea, H. gratiosa, and group, also has a double row (Kaplan and H. squirella. The H. versicolor group is not Ruiz-Carranza, 1997). Considering this and monophyletic because H. andersonii is more earlier comments, we do not see evidence closely related to the H. eximia group. that associates the H. garagoensis group with The monophyly of all genera and species the H. marmorata group more than with any groups of Hyla contained in this clade was other group within the 30-chromosome Hyla maintained by Duellman (1970, 2001) based clade. mostly on biogeographic grounds, because morphological evidence of monophyly was MIDDLE AMERICAN/HOLARCTIC CLADE lacking. Duellman (2001) further presented a diagram depicting ``suggested possible evo- This clade is composed of most of the lutionary relationships'' among Middle and Middle American/Holarctic genera and spe- North American Hylinae, using as terminals cies groups of treefrogs (®g. 5). For the pur- the species groups of Hyla and the different poses of discussion, we divide it into four genera (redrawn here as ®g. 7). Duellman large clades. The ®rst of these includes Acris (2001) envisioned a North American basal and Pseudacris. The second includes Plec- lineage being the sister taxon of what he trohyla, the Hyla bistincta group, the H. sum- called the Middle American basal lineage. ichrasti group, and various elements of the This Middle American basal lineage is fur- H. miotympanum group. The third clade in- ther divided into a lower Central American cludes Duellmanohyla, Ptychohyla, H. mili- lineage (itself divided into an isthmian high- aria, H. bromeliacia (the sole exemplar of land lineage and a lowland lineage) and the the H. bromeliacia group), and one element Mexican-Nuclear Central American lineage of the H. miotympanum group. The fourth (in turn divided into a Mexican-Nuclear Cen- clade includes Smilisca, Triprion, Anotheca, tral American highland lineage and a low- and the exemplars of the H. arborea, H. ci- lands lineage). nerea, H. eximia, H. godmani, H. mixoma- While the basal position of Acris and culata, H. pictipes, H. pseudopuma, H. tae- Pseudacris in this clade is consistent with niopus, and H. versicolor groups. Duellman's (2001) intuitive suggestion of a Within the Middle American/Holarctic North American basal lineage, it differs in clade, the genera Ptychohyla and Smilisca,as that the Holarctic species groups of Hyla are well as the Hyla arborea, H. cinerea, H. ex- only distantly related to them. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 67

Fig. 7. Relationships of Middle American and North American Hylinae as envisioned by Duellman (2001). Broken lines are tentative placements.

We found no evidence supporting Duell- Hylinae does not agree with previous anal- man's (2001) exclusively Mexican-Nuclear yses (Hedges, 1986; Cocroft, 1994; da Silva, Central American lineage, nor of his Mexi- 1997; Moriarty and Cannatella, 2004) be- can-Nuclear Central American highland lin- cause those analyses assumed implicitly that eage. The latter has nested within it the Mex- Acris, the Holarctic Hyla, and Pseudacris are ican-Nuclear Central American lowland monophyletic. In spite of this, the internal clade (the H. godmani group), a clade remi- relationships of Pseudacris recovered in this niscent of Duellman's (2001) isthmian high- analysis are consistent to those obtained by land-lowlands lineage, and also all species Moriarty and Cannatella (2004). groups of Holarctic Hyla. Biogeographic im- Previous analyses either did not ®nd evi- plications of the discordant nature of our re- dence that Acris was particularly close to any sults with Duellman's suggested relationships group of North American hylids (Cocroft, between Middle- and North American Hyli- 1994), or else suggested relationships with nae will be dealt with from a biogeographic different species groups of North American perspective later in this paper. Hyla (Hedges, 1986; da Silva, 1997). Two The nonmonophyly of North American morphological synapomorphies of this Acris 68 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

ϩ Pseudacris clade could be the spherical or oral disc occur in all known larvae of the ovoid testes (as opposed to elongate testes) clade containing Plectrohyla, and the H. bis- and the presence of dark pigmentation in the tincta, H. sumichrasti, and fragments of the peritoneum surrounding the testes (Ralin, H. miotympanum group, as well as in larvae 1970, as cited by Hedges, 1986). of several other nearby clades (Ptychohyla, The nonmonophyly of the Hyla miotym- Duellmanohyla, the H. mixomaculata, and H. panum group is not surprising because, as taeniopus groups; see Duellman 1970, 2001). discussed in the section on taxon sampling, Furthermore, the row of submarginal papillae it did not appear that any of its putative syn- in the larval oral disc presents a fair amount apomorphies could withstand a test with a of variation in the extent and distribution of broader taxon sampling. Duellman (2001) the papillae, within which could probably be merged the formerly recognized H. pinorum subsumed the morphology seen in all known group (Duellman, 1970) with the H. miotym- larvae of the clade mentioned above (see il- panum group. With the notable exception of lustrations of all these oral discs in Duell- H. miotympanum, our results are close to re- man, 1970, 2001). Besides discussions pro- covering both groups as originally envi- vided by Mendelson and Toal (1995) and sioned by Duellman (1970), because H. cy- Duellman (2001) regarding the de®nition of clada and H. arborescandens (H. miotym- the character state ``thick skin'', it does not panum group) are recovered as monophylet- occur in the following species currently as- ic, and the former H. pinorum group is signed to the H. bistincta group: H. calvi- recovered as a paraphyletic assemblage that collina, H. charadricola, H. chryses, H. la- includes the H. sumichrasti group nested bedactyla, and H. sabrina (Duellman, 2001). within it. In his analysis (Duellman, 2001: Considering that 15 of 17 species currently 912), the two species included by Duellman included in the H. bistincta group and 15 of (1970) in the H. pinorum group (H. melan- 18 included in Plectrohyla could not be in- omma and H. pinorum), plus the two species cluded in the analysis, we do not consider that were later associated with this group (H. our results a strong test of their intrarelation- perkinsi and H. juanitae), form a monophy- ships, particularly when several species of letic group supported by a single synapo- the H. bistincta group that present suspicious morphy, the presence of an extensive (equal character state combinations, like the ones to or more than one-half length of upper arm) mentioned above, were not available. Our re- axillary membrane. sults relating H. arborescandens with species The dubious monophyly of the 17 species of the H. bistincta group corroborate earlier assigned to the Hyla bistincta group was not suggestions by Caldwell (1974) that relate seriously tested in our analysis, because only this species to species currently placed in the 2 species were available. These two exem- H. bistincta group (H. mykter, H. robertso- plars form the sister group of two taxa pre- rum, and H. siopela.). Mendelson and Toal viously associated with the H. miotympanum (1996) also suggested af®nities of H. arbo- group, and together they form the sister tax- rescandens and H. hazalae with the H. bis- on of Plectrohyla. According to Duellman tincta group on the basis of unpublished os- and Campbell (1992), character states sup- teological data. porting a monophyletic H. bistincta group Duellman (2001) noted the lack of evi- plus Plectrohyla are: medial ramus of pter- dence for the monophyly of the Hyla tuber- ygoid long, in contact with otic capsule; dor- culosa group. Although poor, our taxon sam- sal skin thick (but see Mendelson and Toal pling does not recover it as monophyletic, [1995] and Duellman [2001] for discussions because H. dendrophasma is nested within of this character); complete marginal papillae Ptychohyla, and H. miliaria is the sister tax- of the oral disc; and presence of at least one on of H. miotympanum. Duellman (2001) row of submarginal papillae (called by these also referred to the possibility advanced by authors accessory labial papillae) on the pos- da Silva (1997) of a relationship of the H. terior labium (but see Wilson et al. [1994a] tuberculosa group with the Gladiator Frogs; for discussion of this character state). From at this point the evidence presented herein these, the complete marginal papillae of the does not support this idea, but in case a dens- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 69 er sampling of the group still corroborates its us to better understand its relationships with- polyphyly, we would not be surprised if in Ptychohyla. some of its elements (particularly H. tuber- Campbell and Smith (1992) and Duellman culosa26) are shown to be related with the (2001) suggested ®ve morphological syna- TGF clade. pomorphies for Ptychohyla. One of these is Hyla miotympanum has repeatedly been apparently unique to Ptychohyla (pars pala- considered a generalized Middle American tina of the premaxilla with well-developed hyline (Duellman, 1963, 1970; Campbell and lingual ¯ange), while the other four show a Smith, 1992; Duellman, 2001), largely be- more extensive taxonomic distribution. (1) cause the larva of H. miotympanum exhibits The cluster of ventrolateral mucous glands in a labial tooth row formula of 2/3 and a rel- breeding males is present in Duellmanohyla atively small oral disc with an anterior gap chamulae, D. ignicolor, and D. schmidtorum in the marginal papillae. We are not aware of (Campbell and Smith, 1992; see also Thomas any morphological synapomorphy support- et al., 1993). (2) The presence in the ventro- ing its relationship with H. miliaria, although lateral edge of forearm of tubercles coalesced our molecular data ®rmly place it there. Ac- into a ridge (as opposed to the absence of cording with our results, there is a morpho- tubercles) was reported for D. lythrodes, D. logical synapomorphy supporting the mono- salvavida, D. schmidtorum, and D. soralia phyly of the clade composed of these two (Duellman, 1970; 2001); H. bromeliacia has species plus Duellmanohyla, the H. brome- an indistinct row of tubercles that do not co- liacia group, and Ptychohyla (including H. alesce into a ridge (absent in H. dendroscar- dendrophasma): the tendo super®cialis hal- ta) (Duellman, 1970). (3) The double row of lucis that tapers from an expanded corner of marginal papillae is present as well in larvae the aponeurosis plantaris, with ®bers of the of the H. bromeliacia group (Duellman, m. transversus plantae distalis originating on 1970). Finally, (4) larvae of the H. bromelia- distal tarsal 2±3 that insert on the lateral side cia group have a labial tooth row formula of of the tendon. 2/4 or 2/5, and all known larvae of Duell- Considering its overall external appear- manohyla have a labial tooth row formula of ance, we are surprised by the position of the 3/3; the minimum known for a species of poorly known Hyla dendrophasma. This spe- Ptychohyla is 3/5 (P. legleri and P. salva- cies was originally considered to be a mem- dorensis) (Duellman, 1970, 2001; Campbell ber of the H. tuberculosa group (Campbell and Smith, 1992). et al., 2000) based on its large snout±vent The monophyly of the group composed of length and extensive hand webbing, although Ptychohyla euthysanota, P. hypomykter, P. with the caveat that it lacks dermal fringes, leonhardschultzei, and P. zophodes is con- the only character state shared by all other gruent with the results of Duellman (2001), species placed in the H. tuberculosa group. who supported the monophyly of these taxa DNA was isolated and sequenced twice from based on the presence of a thick, rounded tissues of the female holotype, the only tarsal fold. These species further share the known specimen (Campbell et al., 2000). In- presence of hypertrophied ventrolateral asmuch as most previous notions of relation- glands in breeding males with two species ships among species of Ptychohyla derive we could not include in our analysis: P. ma- from adult male morphology and tadpoles, crotympanum and P. panchoi. Furthermore, the discovery of at least one male specimen all these species also share with P. spinipol- of H. dendrophasma could hopefully allow lex the presence of the nuptial excrescences composed of enlarged individual spines. The 26 The other South American species of the Hyla tu- states of these characters are unknown in berculosa group, H. phantasmagoria, is known only Ptychohyla sp. and Hyla dendrophasma be- from the holotype. It was considered a junior synonym cause the only available specimens are fe- of H. miliaria by Duellman (1970), who later resurrected males. The nonmonophyly of P. hypomykter it (Duellman, 2001). Besides a few comments by this author, no morphological comparisons with other species plus P. spinipollex is most surprising, con- of the group are available. sidering that both were considered to be a 70 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 single species (Wilson and McCranie, 1989; plus the clade composed of the Holarctic see also McCranie and Wilson, 1993). Hyla groups, the H. godmani, H. pictipes, Although we included several species of and H. pseudopuma groups, and Anotheca, Ptychohyla in our analysis, we do not think Smilisca (including Pternohyla), and Tri- that we have apprehended a good represen- prion. Furthermore, in the context of our re- tation of the morphological diversity of the sults, the ventral oral disc with complete group, and the absence of species like P. er- marginal papillae seems to be a synapomor- ythromma, P. legleri, and P. sanctaecrucis phy of the whole Middle American clade, certainly weakens the test of monophyly of with subsequent transformations in the clade Ptychohyla. This is more so considering the just mentioned and in other points of the tree. fact that several of the putative morphologi- We were unable to test the monophyly of cal synapomorphies of Ptychohyla are actu- the Hyla mixomaculata group, because H. ally shared with some species of its sister mixe was the only taxon available. Regard- taxon, as discussed earlier, and that the less, and until a rigorous test is possible, the monophyly of our exemplars of Ptychohyla monophyly of this group could be reasonably is weakly supported. The low Bremer sup- assumed based on the presence of the en- port (3) for Ptychohyla also suggests that the larged oral disc with 7/10 or 11 labial tooth evidence for its monophyly deserves further rows. At this point it should be stressed that attention. the sequenced sample comes from a tadpole The Hyla bromeliacia group was tenta- that was assigned to the H. mixomaculata tively associated with the polyphyletic H. group based that on that characteristic, and miotympanum group by Duellman (2001: that it was tentatively assigned to H. mixe for 779). Other than this, we are not aware of it being the only species of the group known being associated with any other group. Be- from the region where the larva was collect- sides the molecular evidence, we are aware ed; thus, considering the uncertainty in its of at least one likely morphological synapo- determination, its position in the tree should morphy supporting the monophyly of Duell- be viewed cautiously. manohyla plus the Hyla bromeliacia group: Duellman (2001) included the species of the presence of pointed serrations of the lar- the former Hyla picta group in the H. god- val jaw sheaths (Campbell and Smith, 1992; mani group. Unfortunately, the two exem- Duellman, 1970; 2001). These are apparently plars available to us for this analysis are only longer in some species of Duellmanohyla the two members of the former H. picta than in the H. bromeliacia group, but both group and none of the restricted H. godmani seem to be notably more pointed than in Pty- group; therefore, this is not a satisfactory test chohyla (see descriptions and illustrations in of the monophyly of the H. godmani group Duellman, 1970). (sensu lato). We share with Duellman (2001) and Men- delson and Campbell (1999) doubts regard- The Lower Central American Lineage ing the monophyly of the Hyla taeniopus group. Nevertheless, our two exemplars are The monophyly of the included exemplars recovered as monophyletic in the analysis. of the Hyla pictipes and H. pseudopuma Duellman (2001) examined the possibility of groups, and its relationship with a clade com- a relationship between this group and the H. posed of Anotheca, Smilisca, Triprion, and bistincta group, based on the fact that both Pternohyla, is quite consistent (in the sense have large stream-adapted tadpoles with that it contains almost the same groups) with small, ventral oral discs with complete mar- Duellman's intuitive proposal of a lower ginal papillae and bear a labial tooth row for- Central American clade that contains an Isth- mula of 2/3 (but noting that the tooth-row mian Highland lineage and a Lowland line- formula is slightly higher for H. nephila and age (®g. 7), with the only exception being H. trux). Our results suggest instead that the that he tentatively considered the H. miliaria H. taeniopus group is the sister taxon of a group related to Anotheca. clade composed of H. mixe (the only avail- The monophyly of a group composed of able exemplar of the H. mixomaculata group) Hyla pseudopuma and H. rivularis, the only 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 71 two exemplars available from the H. pseu- lationship of H. calypsa, H. insolita, and H. dopuma and H. pictipes groups, could be thorectes. suggestive of a lineage of highland isthmian In order to better understand the relation- Hylinae as suggested by Duellman (2001). ships of the Hyla pictipes group, it would be Although the monophyly of each of these important to add to this analysis exemplars two groups has not been tested here, the po- of the former H. zeteki and H. lancasteri sition of the undescribed Mexican species groups, because together with the original H. Hyla sp. 5 (aff. H. thorectes) deserves some pictipes and H. rivularis groups (as de®ned comments. by Duellman, 1970) they represent the three Duellman (1970) recognized the Hyla ha- main morphological extremes of the group. zelae group in which he included the nomi- The fact that so few exemplars of these two nal species and H. thorectes. Reasons for rec- groups were available is one of the weaker ognizing this group were ``the combination points of our analysis. of large hands with vestigial webbing, half The paraphyly of Smilisca is partly con- webbed feet . . . and presence of a tympa- sistent with Duellman's (2001) phylogenetic num are external features which separate analysis of this genus in that Pternohyla is these species from other small stream-breed- nested within it. However, we did not recover ing Mexican Hyla. Furthermore both species Triprion nested within Smilisca, as did have small, relatively narrow tongues and Duellman (2001). large tubercles below the anal opening. The A possible relationship between Triprion nature of the nasals and sphenethmoid are and Anotheca was ®rst advanced by Lutz unique among northern Middle American (1968) because she considered them to be the hylids'' (Duellman, 1970: 384). It is unclear extreme of one specialization consisting ``in if any of these character states could have excessive ossi®cation of the head, accompa- been considered as evidence of monophyly nied at some stages by extra dentition'' of the group. It is also unclear on what basis (Lutz, 1968: 10). Within this same line, she included all casque-headed frogs, including Duellman (2001) dismantled the group and together South American and Middle Amer- placed H. hazelae in the H. miotympanum ican forms. Duellman and Trueb (1976) sug- group, while H. thorectes was transferred to gested a possible link of Anotheca with Nyc- the H. pictipes group. Wilson et al. (1994b) timantis (discussed below). Duellman (2001: suggested that H. thorectes could be related 332) proposed a tentative relation of Anoth- to H. insolita and H. calypsa (under the name eca with the Hyla miliaria group based on H. lancasteri; see Lips, 1996) because they the oophagous tadpoles that develop in bro- share oviposition on leaves overhanging meliads or tree-holes (known for the only streams and have dark ventral pigmentation; species of the H. tuberculosa group with a these character states were not included in known tadpole, H. salvaje; see Wilson et al., Duellman's (2001) analysis of the group. Al- 1985). While our results support a sister- though we do not have data to take a position group relationship of Anotheca and Triprion regarding these actions, the fact that Hyla sp. as suggested by Lutz (1968), it occurs within 5 (aff. H. thorectes) is unrelated to H. rivu- the Holarctic/Middle American clade and not laris is here taken as evidence that H. tho- within a group composed of all casque-head- rectes should not be included in the H. pic- ed frogs as she suggested. In the context of tipes group. Furthermore, all character states this analysis, both Triprion and Anotheca advanced by Duellman (2001) as shared by share the posterior expansion of the fronto- H. thorectes and the species of the H. picti- parietals that cover almost all the otoccipital pes group are also shared by H. thorectes and dorsally (see ®gures in Duellman, 1970). the taxa to which Hyla sp. 5 (aff. H. thorec- Our analysis indicates that the insertion of tes) appears to be closely related in our anal- m. extensor digitorum comunis longus on ysis. Because we were unable to include H. metatarsal II is a synapomorphy of a group calypsa, H. insolita,orH. lancasteri,wedo composed of Anotheca, Triprion, and the not have elements to test the hypothesis of paraphyletic Smilisca. Furthermore, Smilisca Wilson et al. (1994b) regarding the close re- (including Pternohyla) and Triprion share 72 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 the type I septomaxillary (see Trueb, 1970a) teopilus are monophyletic, and Osteocephal- and bifurcated cavum principale of the olfac- us, Phrynohyas, and Trachycephalus are not tory capsule (Trueb, 1970a); the distribution monophyletic. Osteocephalus is not mono- of these character states should be studied in phyletic because O. langsdorf®i (the only Anotheca and nearby groups to determine the species of the genus distributed in the Atlan- level of inclusiveness of these possible syn- tic forest) is not related to the remaining ex- apomorphies. emplars of Osteocephalus, which form a monophyletic group that is the sister taxon Real Hyla of Tepuihyla. Phrynohyas is not monophy- letic, having Trachycephalus nigromaculatus Our results concerning the relationships nested within it, and Trachycephalus is not between the North American and Eurasiatic monophyletic, with T. jordani forming the species groups of Hyla differ from previous sister taxon of ``Phrynohyas'' ϩ T. nigro- analyses, in part likely because of the pre- maculatus. vious assumption of monophyly of North With respect to Phyllodytes, we were un- American/Holarctic Hylinae. In the ®rst able to ®nd any published hypothesis regard- place, the molecular evidence supports a ing its relationships, and considering the clade containing all North American and Eu- scant information available on its morphol- rasiatic species groups of Hyla, a result that ogy, we had no previous clue as to other differs from previous analyses where rela- groups of Hylidae with which it might be tionships either were unresolved (Cocroft, related. The only morphological character 1994) or were paraphyletic with respect to state of which we are aware that Phyllodytes Acris and/or Pseudacris (Hedges, 1986; da shares with several members of the South Silva, 1997). The polyphyly of the Hyla ar- American/West Indian Casque-headed Frogs borea group and the paraphyly of the H. ex- clade is the presence of at least four posterior imia group corroborate previous ideas by labial tooth rows in the tadpole oral disc (see Anderson (1991) and Borkin (1999) regard- below, ``Taxonomic Conclusions: A New ing their nonmonophyly and the closer rela- Taxonomy of Hylinae and Phyllomedusi- tionship of H. japonica with the H. eximia nae'', for further details). and H. versicolor groups. A likely synapo- The polyphyly of Osteocephalus was not morphy of the H. eximia and H. versicolor unexpected considering the lack of any evi- groups, including H. japonica and H. ander- dence of its monophyly. This polyphyly re- sonii, is the nucleolar organizer region sults because of the position of O. langs- (NOR) present in chromosome 6 instead of dorf®i. This is the only species of the genus chromosome 10 (Anderson, 1991). present in the Atlantic forest and a species that had been particularly poorly discussed in SOUTH AMERICAN/WEST INDIAN CASQUE- the context of the systematics of Osteoce- HEADED FROGS phalus (Duellman, 1974). While we do not This clade (®g. 5) is composed of Phyl- test the monophyly of the bromeliad-breed- lodytes, Phrynohyas, Nyctimantis, and all ing/single vocal sac species (here represented South American/West Indian casque-headed by a O. oophagus), our results show that our frogs: Argenteohyla, Aparasphenodon, Cor- exemplars with lateral vocal sacs are para- ythomantis, Osteopilus, Osteocephalus, Tra- phyletic with respect to O. oophagus. chycephalus, and Tepuihyla. It is divided ba- The monophyly of Tepuihyla was not test- sally in a group composed of the two ex- ed in this analysis. Its sister-group relation- emplars of Phyllodytes, and another group ship with Osteocephalus (excluding O. composed of all casque-headed frog genera, langsdorf®i) is supported by our data, instead including Phrynohyas and Nyctimantis. of with Scinax as ®rst suggested (Ayarza- Within this clade, other than those genera guÈena et al., ``1992'' [1993b]; see earlier dis- that are not monotypic (Argenteohyla, Nyc- cussion on the relationships of Scinax). This timantis, Corythomantis) or represented in situation requires changes in the original in- this analysis by a single species (Aparas- terpretation of two character states that pro- phenodon, Tepuihyla), Phyllodytes and Os- vided evidence of the relationships of Te- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 73 puihyla with other hylids. The presence of aphyletic, with all of the genera of casque- spicules in the dorsum of males is more par- headed frogs that have a single subgular sac simoniously interpreted as a putative syna- being nested within them. pomorphy of Tepuihyla plus Osteocephalus, Duellman and Trueb (1976) suggested that instead of a homoplasy, as advanced by Ay- Nyctimantis was related to Anotheca, be- arzaguÈena et al. (``1992'' [1993b]). Similarly, cause both share the medial ramus of the the reduction of webbing between toes I and pterygoid being juxtaposed squarely against II is more parsimoniously interpreted as a pu- the anterolateral corner of the ventral ledge tative synapomorphy of Tepuihyla (homo- of the otic capsule. Also, frogs of both gen- plastic with Scinax) instead of a synapomor- era are known (Anotheca; Taylor, 1954; phy of Scinax ϩ Tepuihyla. Jungfer, 1996) or suspected (Nyctimantis; The monophyly of the four exemplars of Duellman and Trueb, 1976) to deposit their Osteopilus corroborates in a much broader eggs in water-®lled tree cavities. Our results taxonomic context the results of Maxson suggest a radically different picture, with (1992), Hedges (1996), and Hass et al. Nyctimantis nested within the South Ameri- (2001), based on albumin immunological can/West Indian Casque-headed Frogs, while distances and still unpublished sequence data Anotheca is nested within the Middle Amer- regarding its monophyly, and the recent tax- ican/Holarctic clade, being the sister taxon of onomic changes summarized by Powell and Triprion. Henderson (2003b). Unfortunately, we could The topology has some discrepancies with not include in our analysis O. marianae, O. previous suggestions as to the relationships pulchrilineatus, and O. wilderi, and we are of Argenteohyla, Aparasphenodon, and Cor- not aware of any possible morphological ythomantis (for the latter two genera, see also synapomorphy supporting their monophyly. comments for Scinax above). Argenteohyla In the absence of other evidence, it could be siemersi was segregated by Trueb (1970b) suggested that the oviposition and develop- from Trachycephalus, where it had been ment in bromeliads, which occurs in these placed by Klappenbach (1961), because it three species and O. brunneus, is a possible lacks the diagnostic character states of Tra- synapomorphy uniting these with O. cruci- chycephalus established by Trueb (1970a). alis, which apparently also has this repro- Further, she suggested that Argenteohyla is a ductive mode (Hedges, 1987). close ally of Osteocephalus based on the The presence of paired lateral vocal sacs presence of paired lateral vocal sacs. Al- and biogeographic considerations led Trueb though Trueb (1970a) suggested that Apar- (1970b) and Trueb and Duellman (1971) to asphenodon and Corythomantis are sister suggest the collective monophyly of Argen- taxa, our evidence suggests that both Argen- teohyla, Osteocephalus, Phrynohyas, and teohyla and Nyctimantis are closer to Apar- Trachycephalus (at that time the species of asphenodon than to Corythomantis. Osteocephalus having a single subgular vo- Most species in the South American/West cal sac were still unknown). Furthermore, Indies Casque-headed Frog clade frequently these authors considered Trachycephalus and live in or seek refuge in bromeliads or tree- Phrynohyas to be a monophyletic group on holes. This has been reported for Aparas- the basis of sharing vocal sacs that are more phenodon (Paolillo and Cerda, 1981; Teix- lateral and protrude posteriorly to the angles eira et al., 2002), Argenteohyla (Barrio and of the jaws when in¯ated. Trueb and Tyler Lutz, 1966; Cespedez, 2000), Corythomantis (1974) suggested that the West Indian Osteo- (Jared et al., 1999), Nyctimantis (Duellman pilus and the former Calyptahyla crucialis and Trueb, 1976), Osteocephalus langsdorf®i (now Osteopilus crucialis) were also related (Haddad, personal obs.), Phrynohyas (Goel- to this clade, although they exhibit a single, di, 1907; Prado et al., 2003), Tepuihyla (Ay- subgular vocal sac. Our results corroborate arzaguÈena et al., ``1992'' [1993b]), and Tra- the monophyly of Phrynohyas plus Trachy- chycephalus (Lutz, 1954; Bokermann, cephalus (see below), but they also suggest 1966c). Furthermore, all species of Phyllod- a more complex situation where the casque- ytes (Peixoto et al., 2003), some species of headed frogs with double vocal sacs are par- Osteocephalus (Jungfer and Schiesari, 1995; 74 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Jungfer and Weygoldt, 1999; Jungfer and based on the results discussed above. While Lehr, 2001), some species of Osteopilus our data clearly point to the fact that we (Hedges, 1987; Lannoo et al., 1987), and at could hardly have a more paraphyletic and least two species of Phrynohyas (Goeldi, uninformative hylid taxonomy as the current 1907; Lescure and Marty, 2000) even lay one, we foresee some resistance to this new their eggs in phytotelmata or treeholes where monophyletic taxonomy, due mostly to the their exotrophic larvae develop. While bro- lack of morphological evidence in the anal- meliads and treeholes are used as refuges or ysis with consequent few morphological syn- for reproduction in other groups of hylids apomorphies in the diagnoses (for many of (e.g., Anotheca spinosa, the Hyla bromelia- the groups, only the molecular evidence pre- cia group, the two bromeliad breeding frogs sented here provides the evidence of mono- of the H. pictipes group, H. astartea, the H. phyly) or to insuf®cient numbers of exem- tuberculosa group, , the Scinax plars. The lack of a complete, well-re- perpusillus group of the S. catharinae clade), searched nonmolecular data set is admittedly the South American/West Indian Casque- a weakness of this project. However, our headed Frog clade seems to be the largest study represents the largest amount of evi- clade of hylids that consistently makes use dence for the largest number of terminals of bromeliads or treeholes. ever put together and analyzed in a consistent The phylogenetic structure of the South way to address the phylogenetic relationships American/West Indies Casque-headed Frog of hylids. Until a nonmolecular data set is clade implies a minimum of one instance of assembled, we are left only with the evidence reversal from presence of heavily exostosed provided by our analysis. The alternatives are and co-ossi®ed skulls to normal looking, al- evident: either we ignore the present results beit heavily built skulls (the case of Phry- and stick to the traditional, grossly uninfor- nohyas), and at least a possible second and mative taxonomy, or we dare to present a third instance involving reversals from ex- new monophyletic taxonomy based on the ostosed skulls (the cases of Tepuihyla and evidence provided here. The latter option is Osteopilus vastus). far closer to the goals of phylogenetic sys- From a morphological perspective, the tematics than is the former one. The new tax- paraphyly of Phrynohyas with respect to onomy is the result of our attempt to recon- Trachycephalus nigromaculatus and the con- comitant nonmonophyly of Trachycephalus cile the need to recognize only monophyletic are most interesting and surprising. Herpe- groups and to minimize changes to the ex- tologists have been noticing for years that T. isting taxonomy while keeping it informative nigromaculatus and Phrynohyas mesophaea (e.g.: we could have included all currently produce hybrids throughout their overlapping recognized genera of Hylinae in the synon- ranges of distribution (Haddad, personal ymy of Hyla; this would have resulted in a obs.; Pombal, personal commun.; Ramos and perfectly monophyletic though utterly unin- Gasparini, 2004). The possibility of hybrid- formative taxonomy). ization leads us to think that perhaps the in- We have not tested the monophyly of sev- trogression of P. mesophaea mitochondria eral genera and species groups either because could actually be the reason for the recovered we could not sample them at all (e. g. the paraphyly of Trachycephalus. However, phy- cases of Phrynomedusa and the Hyla clare- logenetic analyses using either tyrosinase or signata and H. garagoensis group) or be- rhodopsin alone (the only two nuclear genes cause of insuf®ciency in sampling (e.g., the that were successfully sequenced in T. nigro- H. pictipes, H. pseudopuma, and H. mixo- maculatus) still recover a paraphyletic Tra- maculata groups). There are, as well, seven chycephalus (results not shown). species that we could not associate with any group (see ``Incertae Sedis and Nomina Du- TAXONOMIC CONCLUSIONS: A NEW bia'' below and appendix 4). Nevertheless, TAXONOMY OF HYLINAE AND we are being bold in the recognition of PHYLLOMEDUSINAE groups. We recognize all groups that were Below we present a new taxonomic ar- previously recognized but for which we have rangement of Hylinae and Phyllomedusinae, not sampled suf®ciently to test their mono- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 75 phyly (i.e., only one species was available). proteins and ribosomal genes. See appendix These are noted in text. We also assume that 5 for a complete list of these transformations. the transformation series supporting the Possible morphological synapomorphies in- monophyly of the exemplars of any given clude a ventral oral disc, and complete mar- clade are correctly extrapolated as being ev- ginal papillae in larvae, (these character idence of the monophyly of the whole group. states subsequently transform in more inclu- In the worse case scenario, we will be shown sive groups within this clade). to be wrong; in the best case our hypotheses COMMENTS: This tribe includes the genera will withstand further testing. By default, we Aplastodiscus, Bokermannohyla new genus, hope our arrangement will stimulate further Hyloscirtus, Hypsiboas, and Myersiohyla research. new genus. The former subfamily Hemiphractinae is The increase in the number of labial tooth now tentatively considered to be part of the rows is likely another synapomorphy of Co- paraphyletic Leptodactylidae, pending fur- phomantini, because all known larvae of Hy- ther research on this vast nonmonophyletic loscirtus and Myersiohyla new genus colec- conglomerate of hyloids. tively have a minimum of 6/7 labial tooth The total number of DNA transformations rows. However, at this time the minimum supporting the monophyly of each relevant number of labial tooth rows that is synapo- clade is informed in the respective diagnoses, morphic for Cophomantini is ambiguous, be- with the exception of species groups whose cause the tadpole is still unknown in H. kan- monophyly has not been tested in our anal- aima. ysis. See ®gure 8 for a summary of the new An enlarged prepollex is present in all taxonomy and ®gures 9±12 for the strict con- species of Hyloscirtus and in most species sensus of our analysis updated with the new of Myersiohyla, new genus. (Unlike species taxonomy. See appendix 5 for details regard- of the H. aromatica group, in H. kanaima, ing the number of transitions, transversions, the prepollex is not enlarged.) This charac- and inferred insertion/deletion events as well teristic could be a synapomorphy of Co- as the speci®c positions involved for each phomantini as an intermediate state leading gene. to the enlarged prepollex with a projecting spine, as proposed by Duellman et al. HYLINAE RAFINESQUE, 1815 (1997). In order to understand whether this character state is a synapomorphy of Copho- SYNONYMS: See sections for tribes. mantini, further research is required, includ- DIAGNOSIS: This subfamily is diagnosed by 32 transformations in nuclear and mitochon- ing (1) more osteological work to de®ne the drial proteins and ribosomal genes. See ap- character states involved, and (2) additional pendix 5 for a complete list of these trans- studies on the phylogenetic relationships formations. Possible morphological synapo- within Myersiohyla, new genus, to under- morphies are the tendo super®cialis digiti V stand whether the character state present in (manus) with an additional tendon that arises the former H. kanaima could be interpreted ventrally from m. palmaris longus (da Silva, as a reversal. 1998, as cited by Duellman, 2001). Burton (2004) suggested that the tendo su- per®cialis hallucis tapering from an expand- COMMENTS: The 2n ϭ 24 chromosomes may be another putative synapomorphy of ed corner of the aponeurosis plantaris, with this clade, but it will be necessary to better ®bers of the m. transversus plantae distalis understand its distribution in the more basal originating on distal tarsal 2±3 inserting on members of the different tribes. the lateral side of the tendon, provides evi- dence of monophyly of a group composed of COPHOMANTINI HOFFMANN, 1878 the H. albomarginata, H. albopunctata, H. boans, H. geographica, and H. pulchella Cophomantina Hoffmann, 1878. Type genus: Co- groups. The lack of information on the tax- phomantis Peters, 1870. onomic distribution of this character state DIAGNOSIS: This tribe is diagnosed by 65 within several terminals of Cophomantini transformations in nuclear and mitochondrial renders its optimization ambiguous in all our 76 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 most parsimonious trees. While it is clear jares-Urrutia, 1992b) ¯eshy projections of that it is a synapomorphy of some compo- variable shape (triangular, round, or elliptic; nent of Cophomantini, at this point we do not sometimes called papillae) in the inner mar- know its level of inclusiveness. (Burton gin of the nostrils of the larvae, which vari- points out its presence in H. phyllognatha, ous authors (Kenny, 1969; Peixoto, 1981; the only member of the H. bogotensis group Peixoto and Cruz, 1983; Lavilla, 1984; Mi- that he studied.) The same point holds for the jares-Urrutia, 1992b; Wild, 1992; Ayarza- presence of an accessory tendon of the m. guÈena and SenÄaris, ``1993'' [1994]; de SaÂ, lumbricalis longus digiti III, which Burton 1995, 1996; Duellman et al., 1997; Faivov- (2004) considered characteristic of those ich, 2002; Gomes and Peixoto, 2002; Fai- same species groups. vovich, personal obs.) noticed in several spe- There are other character states that were cies: Aplastodiscus perviridis, Hyla albofren- observed in exemplars of this tribe whose ata, H. albomarginata, H. albopunctata, H. taxonomic distribution needs to be assessed albosignata, H. alemani, H. andina, H. aro- in its most basal taxa in order to know with matica, H. charazani, H. balzani, H. carval- more precision the limits of the clade or hoi, H. circumdata, H. faber, H. fasciata, H. clades they diagnose. One of these is the granosa, H. inparquesi, H. jahni, H. leuco- point of insertion of the tendon of the m. pygia, H. multifasciata, H. palaestes, H. pla- extensor brevis medius digiti IV that Fai- tydactyla, H. punctata, H. raniceps, H. sib- vovich (2002) found to insert in the medial leszi, and an undescribed species of the H. proximal margin of phalanx 2 in the ex- aromatica group. Although not explicitly emplars of this tribe that he studied (Aplas- mentioned in the descriptions, this character todiscus perviridis, Hyla albopunctata, H. state seems evident in illustrations of other faber, and H. raniceps). In other hyloids larvae: H. goiana, H. joaquini, H. marginata, this tendon is known to insert in the ante- H. polytaenia, and H. pulchella (Eterovick et rior medial margin of metacarpal IV al., 2002; Gallardo, 1964; Garcia et al., (Burton, 1996, 1998b; Faivovich, 2002). 2001b, 2003). Subsequently, this character state was ob- served in other species available for studies Aplastodiscus A. Lutz in B. Lutz, 1950 (H. albomarginata, H. andina, H. circum- data, H. clepsydra, H. geographica, H. TYPE SPECIES: Aplastodiscus perviridis A. granosa, H. multifasciata, and H. polytaen- Lutz in B. Lutz, 1950, by original designa- ia; Faivovich, personal obs.). tion. There are at least two other character DIAGNOSIS: This genus is diagnosed by 72 states whose taxonomic distribution within transformations in nuclear and mitochondrial this tribe deserve further scrutiny. The ®rst proteins and ribosomal genes. See appendix of these is the presence in the dorsal surface 5 for a complete list of these molecular syn- of the larval oral cavity of an anteromedial apomorphies. Other apparent synapomor- loop of the prenarial wall into the prenarial phies of this clade are the particular repro- arena. Wassersug (1980) described and re- ductive modes, where the male constructs a ported it in Hyla ru®tela, Spirandeli Cruz subterranean nest in the muddy side of (1991) in Aplastodiscus perviridis, H. faber, streams and ponds, and where larvae spend H. lundii, and H. prasina, and D'Heursel and early stages of development; subsequent to de Sa (1999) in H. geographica and H. semi- ¯ooding, the exotrophic larvae live in ponds lineata. The second character state is the or streams (Haddad and Sawaya, 2000; Hart- presence of one (most frequently) or more (a mann et al., 2004, Haddad et al., 2005). The few species of the H. bogotensis group; Mi- presence of proportionally very developed

→ Fig. 8. A schematic summary of the new taxonomy of Hylidae proposed here, as indicated by the phylogenetic relationships of the genera of Hylinae, Pelodryadinae, and Phyllomedusinae. The genus Phrynomedusa was unavailable for this study and is not included. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 77 78 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Fig. 9. A partial view of the strict consensus, updated with the new taxonomy for Phyllomedusinae proposed here. metacarpal and metatarsal tubercles is a pos- pomorphic only of this group, not of Aplas- sible morphological synapomorphy of the todiscus as rede®ned here. The very devel- genus (Garcia et al., 2001). oped inner metacarpal and metatarsal tuber- COMMENTS: Our results imply a clade com- cles are also present in all species of the Hyla posed of Aplastodiscus and two complexes albofrenata and H. albosignata complexes of the former Hyla albomarginata group, as (Cruz and Peixoto ``1984'' [1985], ``1985'' de®ned by Cruz and Peixoto (``1985'' [1987]; Cruz et al., 2003), and we consider [1987]): the H. albofrenata and H. albosig- this feature as a putative synapomorphy of nata complexes, which are here included in Aplastodiscus as rede®ned here. The pres- Aplastodiscus. ence of unpigmented eggs is known to occur Garcia et al. (2001) suggested four syna- in all species of the former H. albofrenata pomorphies for Aplastodiscus as then under- and H. albosignata complexes with known stood (that is, containing only A. cochranae eggs (Haddad and Sawaya, 2000; Garcia et and A. perviridis): (1) lack of webbing be- al., 2001; Hartmann et al., 2004; Haddad et tween toes I and II, and very reduced web- al., 2005). However, the taxonomic distribu- bing in the remaining toes, (2) bicolored iris, tion of egg pigmentation within Cophoman- (3) females with unpigmented eggs, and (4) tini is not well known. It is possible that un- highly developed inner metacarpal and meta- pigmented eggs are actually a synapomorphy tarsal tubercles. The lack of webbing be- of a more inclusive clade, as they are known tween toes I and II, the reduction of webbing to occur in at least some species of Hylo- among the remaining toes, and the bicolored scirtus (H. jahni, H. larinopygion, H. pal- iris occur only in the two species originally meri, and H. platydactyla; La Marca, 1985, contained in Aplastodiscus. These species, A. and Faivovich, personal obs.), Hypsiboas (H. cochranae and A. perviridis, are here includ- lemai, Duellman [1997], and the undescribed ed in the A. perviridis group, and therefore species here called Hyla sp. 2), and Myers- these two character states are possibly syna- iohyla new genus (Hyla inparquesi; Faivo- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 79

Fig. 10. A partial view of the strict consensus, updated with the new taxonomy for the tribe Co- phomantini. 80 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Fig. 11. A partial view of the strict consensus, updated with the new taxonomy for the tribe Den- dropsophini. vich, Myers, and McDiarmid, in prep.; eggs taxonomic distribution of this character state of M. kanaima are pigmented, Duellman and is still poorly known in various components Hoogmoed, 1992); the only known eggs of of the Cophomantini, so we prefer to await species of Bokermannohyla, new genus have further research on the issue, before hypoth- a pigmented pole (Sazima and Bok- esizing polarities. ermann, 1977; Eterovick and BrandaÄo, Bokermann (1967c) pointed out the over- 2001). all similarity among advertisement calls of Most species of Aplastodiscus, as rede- the Hyla albofrenata and H. albosignata ®ned here, possess a white parietal perito- complexes and Aplastodiscus perviridis. Fu- neum (Garcia and Faivovich, personal obs.), ture research will de®ne whether any char- as it occurs in some other Cophomantini acter state related to the advertisement calls (Hyla bogotensis, H. granosa, and H. punc- could be considered as a synapomorphy of tata groups, H. marginata; Ruiz-Carranza Aplastodiscus as rede®ned here, or of any of and Lynch [1991: 4]; Garcia [2003]; Faivo- its internal clades. vich, personal obs.). While this could be a CONTENTS: Fourteen species included in possible synapomorphy of Aplastodiscus, the three species groups. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 81

Fig. 12. A partial view of the strict consensus, updated with the new taxonomy for the tribes Hylini and Lophiohylini. 82 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Aplastodiscus albofrenatus Group some Scinax and in various groups of Lo- phiohylini) and reduction of webbing be- DIAGNOSIS: This species group is diag- tween the other toes (Garcia et al., 2001). nosed by 114 transformations in nuclear and CONTENTS: Two species. Aplastodiscus mitochondrial proteins and ribosomal genes. cochranae (Mertens, 1952); Aplastodiscus See appendix 5 for a complete list of these perviridis A. Lutz in B. Lutz, 1950. transformations. We are not aware of any morphological synapomorphies for this Bokermannohyla, new genus group. CONTENTS: Six species. Aplastodiscus al- TYPE SPECIES: Hyla circumdata Cope, bofrenatus (A. Lutz, 1924), new comb.; ``1870'' [1871]. (Cruz and Peixoto, DIAGNOSIS: This genus is diagnosed by 65 ``1985'' [1987]), new comb.; Aplastodiscus transformations in nuclear and mitochondrial ehrhardti (MuÈller, 1924), new comb.; Aplas- protein and ribosomal genes. See appendix 5 todiscus musicus (B. Lutz, 1948), new for a complete list of these molecular syna- comb.; Aplastodiscus weygoldti (Cruz and pomorphies. We are not aware of any mor- Peixoto, ``1985'' [1987]), new comb. phological synapomorphy. ETYMOLOGY: This genus is dedicated to Aplastodiscus albosignatus Group Werner Carlos Augusto Bokermann (1929± 1995), as homage to his contribution to the DIAGNOSIS: This species group is diag- knowledge of Brazilian anurans. He also de- nosed by 42 transformations in nuclear and scribed several species now included in the mitochondrial proteins and ribosomal genes. new genus. The name derives from Boker- See appendix 5 for a complete list of these mann ϩ connecting -o ϩ Hyla. We are adopt- molecular synapomorphies. A possible mor- ing the ending -hyla for several of the new phological synapomorphy of this group is the genera described here, most of which contain presence of elaborate tubercles and ornamen- species groups formerly placed in Hyla. The tation around the cloacal region (Cruz and gender is feminine. Peixoto, ``1985'' [1987]). COMMENTS: Bokermannohyla includes all CONTENTS: Seven species. Aplastodiscus species previously allocated in the Hyla cir- albosignatus (A. Lutz and B. Lutz, 1938), cumdata, H. martinsi, and H. pseudopseudis new comb.; Aplastodiscus callipygius (Cruz groups. We include tentatively the H. clare- and Peixoto, ``1984'' [1985]), new comb.; signata group pending the inclusion of its Aplastodiscus cavicola (Cruz and Peixoto, species in the analysis, because it was asso- ``1984'' [1985]), new comb.; Aplastodiscus ciated to the H. circumdata group by Bok- ¯umineus (Cruz and Peixoto, ``1984'' ermann (1972) and Jim and Caramaschi [1985]), new comb.; Aplastodiscus ibirapi- (1979). Hyla alvarengai is also included be- tanga (Cruz, Pimenta, and Silvano, 2003), cause our analysis shows that Hyla sp. 9 (aff. new comb.; Aplastodiscus leucopygius (Cruz H. alvarengai) is nested within this new ge- and Peixoto, ``1984'' [1985]), new comb.; nus. These species groups should be main- Aplastodiscus sibilatus (Cruz, Pimenta, and tained within Bokermannohyla until their Silvano, 2003), new comb. monophyly is rigorously tested. CONTENTS: Twenty-three species, placed in Aplastodiscus perviridis Group four species groups.

DIAGNOSIS: This species group is diag- Bokermannohyla circumdata Group nosed by 58 transformations in nuclear and mitochondrial proteins and ribosomal genes. DIAGNOSIS: This species group is diag- See appendix 5 for a complete list of these nosed by 52 transformations in nuclear and molecular synapomorphies. Apparent mor- mitochondrial protein and ribosomal genes. phological synapomorphies of this group in- See appendix 5 for a complete list of these clude the bicolored iris and the absence of molecular synapomorphies. A putative mor- webbing between toes I and II (known in- phological synapomorphy of this group is the stances of homoplasy within hylids occur in presence of (usually thin) dark vertical 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 83 stripes on the posterior surface of the thigh be considered at this stage to support the (Heyer, 1985). monophyly of the B. claresignata group, CONTENTS: Fifteen species. Bokermanno- considering that its two species are barely hyla ahenea (Napoli and Caramaschi, 2004), distinguishable from each other, we think its new comb.; (Bok- nonmonophyly is unlikely and we continue ermann, 1967), new comb.; Bokermannohyla to recognize the group as a hypothesis to be caramaschii (Napoli, 2005) new comb.; Bok- tested. ermannohyla carvalhoi (Peixoto, 1981), new CONTENTS: Two species. Bokermannohyla comb.; Bokermannohyla circumdata (Cope, claresignata (A. Lutz and B. Lutz, 1939), ``1870'' [1871]), new comb.; Bokermanno- new comb.; Bokermannohyla clepsydra (A. hyla feioi (Napoli and Caramaschi, 2004), Lutz, 1925), new comb. new comb.; Bokermannohyla gouveai (Peix- oto and Cruz, 1992), new comb.; Bokerman- Bokermannohyla martinsi Group nohyla hylax (Heyer, 1985), new comb.; Bok- DIAGNOSIS: Apparent morphological syna- ermannohyla ibitipoca (Caramaschi and pomorphies of this group are the develop- Feio, 1990), new comb.; Bokermannohyla iz- ment of the humeral crest into a hook-like eckshoni (Jim and Caramaschi, 1979), new projection, and a bi®d prepollex (Boker- comb.; Bokermannohyla lucianae (Napoli mann, 1965b). and Pimenta, 2003), new comb.; Bokerman- COMMENTS: We included a single exemplar nohyla luctuosa (Pombal and Haddad, 1993), of this group, and as such we did not test its new comb.; (Bok- monophyly. We continue recognizing it on ermann and Sazima, 1973), new comb.; Bok- the basis of the morphological evidence not- ermannohyla ravida (Caramaschi, Napoli ed above. and Bernardes, 2001), new comb.; Boker- CONTENTS: Two species. Bokermannohyla mannohyla sazimai (Cardoso and Andrade, langei (Bokermann, 1965), new comb.; Bok- ``1982'' [1983]), new comb. ermannohyla martinsi (Bokermann, 1964), new comb. Bokermannohyla claresignata Group Bokermannohyla pseudopseudis Group DIAGNOSIS: We are not aware of any syn- apomorphy supporting the monophyly of this DIAGNOSIS: This group is diagnosed by 48 group; see below. transformations in nuclear and mitochondrial COMMENTS: We did not include any ex- protein and ribosomal genes. See appendix 5 emplar of this group, and as such we did not for a complete list of these molecular syna- test its monophyly. See the earlier discussion pomorphies. We are not aware of any mor- regarding its position in the South American phological synapomorphy for this group. I clade. Considering the topology of Co- COMMENTS: Considering our results, which phomantini, synapomorphies suggested for show the undescribed species of the Hyla the Bokermannohyla claresignata group can pseudopseudis group (Hyla sp. 6) to be the only be maintained if assumed to be reversals sister taxon of an undescribed species similar (i.e., a enlarged larval oral disc, complete with H. alvarengai (Hyla sp. 9), we are ten- marginal papillae, and large number of labial tatively including the H. alvarengai in this tooth rows are also present in Myersiohyla species group. Eterovick and BrandaÄo (2001) new genus and the Hyloscirtus armatus characterized this group on the basis of the group; complete marginal papillae and large presence of short, lateral irregular tooth rows number of labial tooth rows are also present and for having more tooth rows (between six in the H. bogotensis and H. larinopygion and eight rows) in the oral discs of the larvae groups; the marginal papillae are also com- than do those of the Bokermannohyla cir- plete or with an extremely reduced gap in cumdata group. However, the tadpole of H. other species of Bokermannohyla). This ibitiguara, included in this group by Cara- would be unproblematic if it were a result of maschi et al. (2001), has a labial tooth for- the analysis, but we prefer not to assume it mula of 2/4 (Cardoso, 1983) and seems to a priori. While these character states cannot lack the short, lateral irregular tooth rows, as 84 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 do tadpoles of H. alvarengai (Sazima and H. armatus group: the presence of keratin- Bokermann, 1977). covered bony spines on the proximal ventral CONTENTS: Four species. Bokermannohyla surface of the humerus, on the expanded dis- alvarengai (Bokermann, 1956), new comb.; tal element of the prepollex, and on the ®rst Bokermannohyla ibitiguara (Cardoso, 1983), metacarpal; forearms hypertrophied; tadpole new comb.; Bokermannohyla pseudopseudis tail long with low ®ns and bluntly rounded (Miranda-Ribeiro, 1937), new comb.; Bok- tip; and the presence of a ``shelf'' on the lar- ermannohyla saxicola (Bokermann, 1964), val upper jaw sheath. new comb. COMMENTS: Our observations of breeding males of the two species of this group indi- Hyloscirtus Peters, 1882 cate the presence of darkly pigmented, ke- ratinized spicules in the dorsum, head (par- TYPE SPECIES: Hyloscirtus bogotensis Pe- ticularly lips), forelimbs, undersides of fore- ters, 1882. limbs, and pectoral and abdominal region. As Peters, 1882. Type species: Hylono- the breeding biology of this and the other mus bogotensis Peters, 1882, by monotypy. Pri- two species groups of the genus becomes mary homonym of Hylonomus Dawson, 1860. better known, it will be possible to under- stand if the presence of these spicules are a DIAGNOSIS: This genus is diagnosed by 56 transformations in nuclear and mitochondrial putative synapomorphy of the H. armatus protein and ribosomal genes. See appendix 5 group. for a complete list of these molecular syna- CONTENTS: Two species. Hyloscirtus ar- pomorphies. The only putative morphologi- matus (Boulenger, 1902), new comb.; Hylos- cal synapomorphy that we are aware of for cirtus charazani (Vellard, 1970), new comb. this genus is the wide dermal fringes on ®n- gers and toes. Hyloscirtus bogotensis Group COMMENTS: This genus contains all species included in the Hyla armata, H. bogotensis, DIAGNOSIS: This species group is diag- and H. larinopygion species groups. The nosed by 95 transformations in nuclear and groups are maintained unchanged within Hy- mitochondrial protein and ribosomal genes. loscirtus until the monophyly of each of See appendix 5 for a complete list of these them is properly tested with denser taxon transformations. The only morphological sampling. synapomorphy that has been proposed for While the wide dermal fringes in ®ngers this group is the presence of a mental gland and toes are present in the three species in adult males (Duellman, 1972b). See ap- groups, in the H. armatus group they are pendix 4 for a justi®cation of the inclusion more obvious in the ®rst manual digit. In the of ``Hyalinobatrachium'' estevesi (Rivero, H. bogotensis and H. larinopygion groups 1968) in this species group. the fringes look even wider, apparently due COMMENTS: Species of the Hyloscirtus bo- to a combination of proportionally smaller gotensis group have a white parietal perito- discs and wider fringe, which gives the ®nger neum (Ruiz-Carranza and Lynch, 1991: 4), or toe the appearance of being almost as as do some other Cophomantini (see com- wide as the disc. ments for Aplastodiscus). Further research on the taxonomic distribution of this character CONTENTS: Twenty-eight species placed in three species groups. state in the other species groups of Hyloscir- tus, and in the other genera of Cophomantini, Hyloscirtus armatus Group would clarify which group or groups are di- agnosed by this synapomorphy. DIAGNOSIS: This species group is diag- CONTENTS: Sixteen species. Hyloscirtus al- nosed by 103 transformations in nuclear and bopunctulatus (Boulenger, 1882), new mitochondrial protein and ribosomal genes. comb.; Hyloscirtus alytolylax (Duellman, See appendix 5 for a complete list of these 1972), new comb.; Hyloscirtus bogotensis molecular synapomorphies. Duellman et al. Peters, 1882; Hyloscirtus callipeza (Duell- (1997) suggested four synapomorphies of the man, 1989), new comb.; Hyloscirtus colymba 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 85

(Dunn, 1931), new comb.; Hyloscirtus den- Auletris Wagler, 1830. Type species: Rana boans ticulentus (Duellman, 1972), new comb.; Hy- Linnaeus, 1758, by subsequent designation of loscirtus estevesi (Rivero, 1968), new comb.; Stejneger (1907). Lobipes Fitzinger, 1843. Type species: Hyla pal- Hyloscirtus jahni (Rivero, 1961), new comb.; ϭ Hyloscirtus lascinius (Rivero, 1969), new mata Daudin, 1801 ( Rana boans Linnaeus, 1758), by original designation. comb.; Hyloscirtus lynchi (Ruiz-Carranza Phyllobius Fitzinger, 1843. Type species: Hyla al- and Ardila-Robayo, 1991), new comb.; Hy- bomarginata Spix, 1824, by original designa- loscirtus palmeri (Boulenger, 1908), new tion. Primary homonym of Phyllobius Schoen- comb.; Hyloscirtus phyllognathus (Melin, herr, 1824. 1941), new comb.; Hyloscirtus piceigularis Centrotelma Burmeister, 1856. Type species: Hyla (Ruiz-Carranza and Lynch, 1982), new infulata Wied-Neuwied, 1824 (ϭ H. albomar- comb.; Hyloscirtus platydactylus (Boulenger, ginata Spix, 1824), by subsequent implication 1905), new comb.; Hyloscirtus simmonsi by Duellman (1977) (not monotypy as stated by (Duellman, 1989), new comb.; Hyloscirtus Duellman, 1977: 24). torrenticola (Duellman and Altig, 1978), Hylomedusa Burmeister, 1856. Type species: Hyla crepitans Wied-Neuwied, 1825, by subsequent new comb. designation by implication of Duellman (1977) (not monotypy as stated by Duellman, 1977: Hyloscirtus larinopygion Group 24). Cinclidium Cope, 1867. Type species: Cinclidium DIAGNOSIS: This species group is diag- ϭ nosed by 32 transformations in mitochondri- granulatum Cope, 1867 ( Rana boans Lin- naeus, 1758), by monotypy. Primary homonym al protein and ribosomal genes. See appendix of Cinclidium Blyth, 1842. 5 for a complete list of these molecular syn- Cophomantis Peters, 1870. Type species: Co- apomorphies. We are not aware of any mor- phomantis punctillata Peters, 1870 (ϭ Hyla phological synapomorphy for this group. semilineata Spix, 1824) by monotypy. CONTENTS: Ten species. Hyloscirtus cau- Cincliscopus Cope, ``1870'' [1871]. Replacement canus (Ardila-Robayo, Ruiz-Carranza, and name for Cinclidium Cope, 1867. Roa-Trujillo, 1993), new comb.; Hyloscirtus DIAGNOSIS: This genus is diagnosed by 33 larinopygion (Duellman, 1973), new comb.; transformations in nuclear and mitochondrial Hyloscirtus lindae (Duellman and Altig, protein and ribosomal genes. See appendix 5 1978), new comb.; Hyloscirtus pacha (Duell- for a complete list of these molecular syna- man and Hillis, 1990), new comb.; Hyloscir- pomorphies. We are not aware of any mor- tus pantostictus (Duellman and Berger, phological synapomorphy for this genus. 1982), new comb.; Hyloscirtus psarolaimus COMMENTS: This genus is resurrected for (Duellman and Hillis, 1990), new comb.; Hy- all species formerly included in the Hyla al- loscirtus ptychodactylus (Duellman and Hil- bopunctata, H. boans, H. geographica, H. lis, 1990) new comb.; Hyloscirtus saram- granosa, H. pulchella, and H. punctata spe- piona (Ruiz-Carranza and Lynch, 1982) new cies groups, the H. albomarginata complex, comb.; Hyloscirtus staufferorum (Duellman and several species previously unassigned to and Coloma, 1993), new comb.; Hyloscirtus any group. Most of the former species groups tapichalaca (Kizirian, Coloma, and Paredes- are retained using the new combinations and Recalde, 2003), new comb. its contents are rede®ned in accordance with Hypsiboas Wagler, 1830 our results to avoid paraphyly. It is tempting to suggest that the presence TYPE SPECIES: Hyla palmata Daudin, 1802 of a prepollical spine is a possible synapo- (ϭ Rana boans Linnaeus, 1758), by subse- morphy of this group. However, as discussed quent designation by implication of Duell- earlier, further anatomical studies are neces- man, 1977 (not monotypy as stated by Duell- sary to determine whether this character state man, 1977: 24). is homologous with that present in Boker- Gray, 1825. Type species: Rana boans Lin- mannohyla. naeus, 1758, by monotypy. Coined as a syno- Duellman (2001) and Savage (2002b) sug- nym of Hyla and never subsequently validated gested that the name Boana Gray, 1825 as available under article 11.6.1 (ICZN, 1999). could be applied to a clade of Gladiator 86 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Frogs. Gray (1825) suggested the name peculiar character state are needed to know Boana as a synonym of Hyla, and Stejneger the limits of the clade or clades it diagnoses. (1907) subsequently designated Hyla boans Wild (1992) noticed that larvae of H. cal- as its type species. Unfortunately, as far as carata, H. fasciata, and H. lanciformis share we can determine from literature research, the presence of pigmented caudal vertical the name Boana has never been used in com- bands that interconnect laterally along the bination with an active species name, there- musculature, with this pattern occurring as fore failing to ful®ll the criterion established well in H. raniceps (Faivovich, personal by article 11.6.1 (ICZN, 1999) for the avail- obs.). ability of names originally proposed as syn- Hyla dentei was originally associated with onyms. Duellman (2001) further stated that both H. raniceps and the former H. geogra- if Hyla punctata were included within this phica group. We are tentatively including it group, ``the generic Hylaplesia Boie would in the Hypsiboas albopunctatus group in be included in the synonymy of Boana.'' view of its overall similarities with Hyla cal- However, this is not the case since, as dis- carata and H. fasciata. cussed by Dubois (1982), the type species of CONTENTS: Nine species. Hypsiboas albo- Hylaplesia is Rana tinctoria Cuvier, 1797 (ϭ punctatus (Spix, 1824), new comb.; Hypsi- Dendrobates tinctorius), by subsequent des- boas calcaratus (Troschel, 1848), new ignation of DumeÂril and Bibron (1841). comb.; Hypsiboas dentei (Bokermann, Wagler (1830) did not combine Hypsiboas 1967), new comb.; Hypsiboas fasciatus with any of the species included in this ge- (GuÈnther, 1858), new comb.; Hypsiboas heil- nus. Subsequent authors (e.g., Tschudi, 1838; prini (Noble, 1923), new comb.; Hypsiboas Fitzinger, 1843, Cope, 1862) considered it lanciformis Cope, 1871; Hypsiboas leucoch- masculine, as we are doing here. eilus (Caramaschi and Niemeyer, 2003), new CONTENTS: Seventy species placed in sev- comb.; Hypsiboas multifasciatus (GuÈnther, en species groups, plus two species unas- 1859), new comb.; Hypsiboas raniceps signed to group. Cope, 1862.

Hypsiboas albopunctatus Group Hypsiboas benitezi Group

DIAGNOSIS: This species group is diag- DIAGNOSIS: This species group is diag- nosed by 43 transformations in nuclear and nosed by 30 transformations in nuclear and mitochondrial protein and ribosomal genes. mitochondrial protein and ribosomal genes. See appendix 5 for a complete list of these See appendix 5 for a complete list of these molecular synapomorphies. We are not aware molecular synapomorphies. A putative syn- of any morphological synapomorphy. apomorphy of this group is the presence of COMMENTS: To avoid paraphyly, we in- a ¯at mental gland in males (Faivovich et al., clude Hyla fasciata and H. calcarata in the in prep.) (known instance of homoplasy in group, and to avoid the creation of a species Hyla granosa). group for a single species, we also include COMMENTS: This new species group in- the sister taxon of the former H. albopunc- cludes the clade composed of three species tata group, H. heilprini. Larvae so far known from the Guayana Highlands and three spe- of the group (H. albopunctata, H. calcarata, cies from the northwestern Amazon Basin. H. fasciata, H. multifasciata, H. raniceps), Because one of the Guayanan and one of the with the exception of H. heilprini and H. lan- Amazonian species are still undescribed, ciformis are reported to have the mediodistal they are not further considered. Two species, portion of the internal wall of the spiracle Hyla microderma and H. roraima, are a frag- separated from the body wall (de SaÂ, 1995; ment of the former H. geographica group. 1996; Faivovich, 2002, personal obs.; Peix- We are also including tentatively H. hutch- oto and Cruz, 1983; Wild, 1992). Peixoto and insi and H. rhythmicus, based on their overall Cruz (1983) reported the same character state similarity with H. benitezi. See appendix 4 for larvae of H. albomarginata. Additional for a justi®cation of the inclusion of Hyla studies on the taxonomic distribution of this pulidoi (Rivero, 1968) in this species group. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 87

CONTENTS: Seven species. Hypsiboas ben- siboas crepitans (Wied-Neuwied, 1824), new itezi (Rivero, 1961), new comb.; Hypsiboas comb.; Hypsiboas exastis (Caramaschi and hutchinsi (Pyburn and Hall, 1984), new Rodrigues, 2003), new comb.; Hypsiboas fa- comb.; Hypsiboas lemai (Rivero, 1971), new ber (Wied-Neuwied, 1821), new comb.; Hyp- comb.; Hypsiboas microderma (Pyburn, siboas lundii (Burmeister, 1856), new comb.; 1977), new comb.; Hypsiboas pulidoi (Riv- Hypsiboas pardalis (Spix, 1824), new comb.; ero, 1968), new comb.; Hypsiboas rhythmi- Hypsiboas pugnax (O. Schmidt, 1857), new cus (SenÄaris and AyarzaguÈena. 2002), new comb.; Hypsiboas rosenbergi (Boulenger, comb.; Hypsiboas roraima (Duellman and 1898), new comb. Hoogmoed, 1992), new comb. Hypsiboas pellucens Group

Hypsiboas faber Group DIAGNOSIS: This species group is diag- nosed by 115 transformations in mitochon- DIAGNOSIS: This species group is diag- drial ribosomal genes. See appendix 5 for a nosed by 28 transformations in nuclear and complete list of these transformations. We mitochondrial proteins and ribosomal genes. are not aware of any morphological syna- See appendix 5 for a complete list of these pomorphy for the group. molecular synapomorphies. We are not aware COMMENTS: We recognize this new species of any morphological synapomorphy for this group to include the clade composed of the group. fragment of the former Hyla albomarginata COMMENTS: We are including in this group complex that includes H. pellucens and H. a clade of some species resulting from the ru®tela. The inclusion of H. rubracyla is ten- fragmentation of the Hyla boans group. Our tative, based on its previous association with results indicate that H. crepitans, H. faber, H. pellucens. H. lundii, and H. pardalis form, together CONTENTS: Three species. Hypsiboas pel- with H. albomarginata (a component of the lucens (Werner, 1901), new comb.; Hypsi- Hyla albomarginata group), a monophyletic boas rubracylus (Cochran and Goin, 1970), group only distantly related to H. boans, the new comb.; Hypsiboas ru®telus (Fouquette, species that gives the name to the former 1958), new comb. group. For this reason, we recognize this clade as the Hypsiboas faber species group. Hypsiboas pulchellus Group We tentatively include Hyla exastis in this group because Caramaschi and Rodrigues DIAGNOSIS: This species group is diag- (2003) related it to H. lundii and H. pardalis nosed by 55 transformations in nuclear and on the basis of the lichenous color pattern mitochondrial proteins and ribosomal genes. and the rugose dorsal skin texture. See appendix 5 for a complete list of these A likely behavioral synapomorphy of most molecular synapomorphies. Observations by species of this group, with the exception of Faivovich and Garcia (unpubl.) suggest that Hyla albomarginata, is the construction of the absence of the slip of the m. depressor nests by males (with two instances of ho- mandibulae that originates on the dorsal fas- moplasy within Hylinae, some species of the cia at the level of the m. dorsalis scapularis now called Hypsiboas semilineatus group (present in all other exemplars so far studied (see p. 88), and the Bokermannohyla circum- of Hypsiboas, and also of Aplastodiscus, Hy- data group.) The inclusion of Hyla pugnax loscirtus, and Bokermannohyla) is a possible and H. rosenbergi is tentative, based on the synapomorphy of the group. fact that males construct nests, but they lack COMMENTS: We continue to recognize the reticulated palpebral membrane, a likely within this species group a Hypsiboas poly- synapomorphy present in most species of the taenius clade that includes Hyla beckeri, H. now called Hypsiboas semilineatus group buriti, H. cipoensis, H. goiana, H. latistriata, (see below). Future research will test this H. leptolineata, H. phaeopleura, H. poly- bold hypothesis. taenia, and H. stenocephala. Besides molec- CONTENTS: Eight species. Hypsiboas al- ular data, a likely morphological synapomor- bomarginatus (Spix, 1824), new comb.; Hyp- phy that supports this clade is the dorsally 88 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 striped pattern (homoplastic in Hyla bischof® keep the former Hyla granosa and H. punc- where a striped pattern occurs on some in- tata groups separated, as our analysis shows dividuals). that the two nominal species form a mono- CONTENTS: Thirty species. Hypsiboas al- phyletic group and they are phenotypically boniger (Nieden, 1923), new comb.; Hypsi- similar, so we include all the species in the boas andinus (MuÈller, 1926), new comb.; Hypsiboas punctatus group. The inclusion of Hypsiboas balzani (Boulenger, 1898), new Hyla alemani, H. atlantica, H. hobbsi, and comb.; Hypsiboas beckeri (Caramaschi and H. ornatissima is tentative, based on their Cruz, 2004), new comb.; Hypsiboas bischof® previous association with the former H. gra- (Boulenger, 1887), new comb.; Hypsiboas nosa and H. punctata groups. The inclusion buriti (Caramaschi and Cruz, 1999), new of Hyla picturata is based on our analysis. comb.; Hypsiboas caingua (Carrizo, ``1990'' CONTENTS: Eight species. Hypsiboas ale- [1991]), new comb.; Hypsiboas callipleura mani (Rivero, 1964), new comb.; Hypsiboas (Boulenger, 1902), new comb.; Hypsiboas ci- atlanticus (Caramaschi and Velosa, 1996), poensis (B. Lutz, 1968), new comb.; Hypsi- new comb.; Hypsiboas granosus (Boulenger, boas cordobae (Barrio, 1965), new comb.; 1882), new comb.; Hypsiboas hobbsi (Coch- Hypsiboas cymbalum (Bokermann, 1963), ran and Goin, 1970), new comb.; Hypsiboas new comb.; Hypsiboas ericae (Caramaschi ornatissimus (Noble, 1923), new comb.; and Cruz, 2000), new comb.; Hypsiboas frei- Hypsiboas picturatus (Boulenger, 1882), new canecae (Carnaval and Peixoto, 2004), new comb.; Hypsiboas punctatus (Schneider, comb.; Hypsiboas goianus (B. Lutz, 1968), 1799), new comb.; Hypsiboas sibleszi (Riv- new comb.; Hypsiboas guentheri (Boulenger, ero, 1971), new comb. 1886), new comb.; Hypsiboas joaquini (B. Lutz, 1968), new comb.; Hypsiboas latistria- Hypsiboas semilineatus Group tus (Caramaschi and Cruz, 2004), new comb.; Hypsiboas leptolineatus (P. Braun DIAGNOSIS: This species group is diag- and C. Braun, 1977), new comb.; Hypsiboas nosed by 128 transformations in nuclear and marginatus (Boulenger, 1887), new comb.; mitochondrial protein and ribosomal genes. Hypsiboas marianitae (Carrizo, 1992), new See appendix 5 for a complete list of these comb.; Hypsiboas melanopleura (Boulenger, molecular synapomorphies. A possible mor- 1912), new comb.; Hypsiboas palaestes phological synapomorphy of this species (Duellman, De la Riva, and Wild, 1997), new group is the presence of a reticulated palpe- comb.; Hypsiboas phaeopleura (Caramaschi bral membrane (with instances of homoplasy and Cruz, 2000), new comb.; Hypsiboas po- in other species of Hypsiboas: H. hutchinsi lytaenius (Cope, 1870), new comb.; Hypsi- and H. microderma). boas prasinus (Burmeister, 1856), new COMMENTS: We include in this group the comb.; Hypsiboas pulchellus (DumeÂril and fragments of the former Hyla boans and H. Bibron, 1841), new comb.; Hypsiboas rio- geographica groups that form a monophy- janus (Koslowsky, 1895), new comb.; Hyp- letic group. We prefer to call it the Hypsiboas siboas secedens (B. Lutz, 1963), new comb.; semilineatus group because the use of either Hypsiboas semiguttatus (A. Lutz, 1925), new the H. boans or H. geographicus groups comb.; Hypsiboas stenocephalus (Caramas- would only cause confusion regarding its chi and Cruz, 1999), new comb. contents. The inclusion of Hyla wavrini is based on the combination of the same repro- Hypsiboas punctatus Group ductive mode of H. boans (eggs deposited in a basin built by the male) and a reticulated DIAGNOSIS: This species group is diag- palpebral membrane (Hoogmoed, 1990). nosed by 30 transformations in mitochondri- Hyla pombali is tentatively included based al protein and ribosomal genes. See appendix on comments by Caramaschi et al (2004a) 5 for a complete list of these molecular syn- stressing its similarities with H. semilineata, apomorphies. We are not aware of any mor- but with the caveat that it lacks the reticu- phological synapomorphy for the group. lated palpebral membrane. Schooling behav- COMMENTS: We do not see any reason to ior has been reported for tadpoles of H. geo- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 89 graphica (Caldwell, 1989) and H. semilinea- matica (AyarzaguÈena and SenÄaris, ``1993'' ta (D'Heursel and Haddad, 2002), and this [1994]), new comb.; Myersiohyla inparquesi may be a synapomorphy for at least these (AyarzaguÈena and SenÄaris, ``1993'' [1994]), two species. new comb.; Myersiohyla loveridgei (Rivero, CONTENTS: Six species. Hypsiboas boans 1961), new comb.; Myersiohyla kanaima (Linnaeus, 1758), new comb.; Hypsiboas (Goin and Wodley, 1961), new comb. geographicus (Spix, 1824), new comb.; Hyp- siboas pombali (Caramaschi, Silva, and Feio, DENDROPSOPHINI FITZINGER, 1843 2004); Hypsiboas semilineatus (Spix, 1824), new comb.; Hypsiboas wavrini (Parker, Dendropsophi Fitzinger, 1843. Type genus: Den- 1936), new comb. dropsophus Fitzinger, 1843.

DIAGNOSIS: This tribe is diagnosed by 23 Species of Hypsiboas Unassigned to Group transformations in nuclear and mitochondrial There are two species of Hypsiboas that protein and ribosomal genes. See appendix 5 we do not assign to any group because we for a complete list of these molecular syna- do not have evidence favoring a relationship pomorphies. Apparent morphological syna- with any of the species groups that we are pomorphies of this tribe are the absence of recognizing for the genus. These species are lingual papillae in the larvae (known instanc- Hypsiboas fuentei (Goin and Goin, 1968), es of reversal in Lysapsus and Pseudis) and new comb., and Hypsiboas varelae (Carrizo, the absence of nuptial excrescences (with in- 1992), new comb. stances of homoplasy in some species of Sphaenorhynchus and several Cophomanti- Myersiohyla, new genus ni). COMMENTS: This tribe contains the genera TYPE SPECIES: Hyla inparquesi Ayarza- guÈena and SenÄaris (``1993'' [1994]). Dendropsophus, Lysapsus, Pseudis, Scarthy- DIAGNOSIS: This genus is diagnosed by 48 la, Scinax, Sphaenorhynchus, and Xenohyla. transformations in mitochondrial protein and The absence of lingual papillae in the larvae ribosomal genes. See appendix 5 for com- is the condition reported in all species of plete list of these molecular synapomorphies. Dendropsophus, Scarthyla, and Scinax, We are not aware of any morphological syn- whose larvae have been studied (Wassersug, apomorphy for this group. 1980; Duellman and de SaÂ, 1988; Echeverria, ETYMOLOGY: Dedicated to Charles W. My- 1997; Faivovich, 2002; Vera Candioti et al., ers in recognition of his contributions to her- 2004); a reversal occurs in Lysapsus and petology, particularly to the herpetofauna of Pseudis (de Sa and Lavilla, 1997; Vera Can- the Guayana Highlands. The name derives dioti, 2004). This character state is still un- from Myersius (latinized Myers) ϩ connect- known in Sphaenorhynchus and Xenohyla. ing -o ϩ Hyla. The gender is feminine (My- Another possible morphological synapomor- ers and Stothers, MS). phy is the absence of keratinized nuptial ex- COMMENTS: This new genus includes the crescences. Duellman et al. (1997) and species of Hyla aromatica group and H. kan- Duellman (2001) suggested that the absence aima, a former member of the H. geogra- of nuptial excrescences was a synapomorphy phica group. AyarzaguÈena and SenÄaris of the 30-chromosome Hyla. Nuptial excres- (``1993'' [1994]) included the presence of a cences are also absent in Lysapsus, Pseudis, strong odor in the de®nition of the Hyla aro- Scarthyla, Scinax, some species of Sphae- matica group; this could be a possible syn- norhynchus, and Xenohyla (Caramaschi, apomorphy of Myersiohyla. The presence of 1989; Duellman and Wiens, 1992; Faivovich, a strong odor has yet to be recorded in H. personal obs.; Rodriguez and Duellman, kanaima. It should be noted that the sample 1994). Note that, while pigmented kerati- we included of H. inparquesi was not col- nized structures are absent in all these lected in the type locality, but in Cerro de la groups, nuptial pads are present at least in Neblina, ca. 300 km southward. some species of Dendropsophus, Scarthyla, CONTENTS: Four species. Myersiohyla aro- and Scinax (Faivovich, personal obs.). 90 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Dendropsophus Fitzinger, 1843 reduced as well in Sphaenorhynchus and Xe- nohyla (Caramaschi, 1989; Duellman and TYPE SPECIES: Hyla frontalis Daudin, 1800 Wiens, 1992; Izecksohn, 1996), although ap- (ϭ Rana leucophyllata Beireis, 1783), by parently not to the level seen in Dendrop- original designation. sophus. Lophopus Tschudi, 1838. Type species: Hyla mar- Bogart (1973), Gruber (2002), Skuk and morata Daudin (ϭ Bufo marmoratus Laurenti, Langone (1991), and Kaiser et al. (1996) de- 1768), by monotypy. Primary homonym of Lo- scribed variation in chromosome morpholo- phopus DumeÂril, 1837. gy for several species of Dendropsophus. Hylella Reinhardt and LuÈtken, ``1861'' [1862]. CONTENTS: Eighty-eight species, most of Type species: Hylella tenera Reinhardt and LuÈt- ϭ them placed in nine species groups, and sev- ken, 1862 ( Hyla bipunctata Spix, 1824), by en unassigned to group. subsequent designation of Smith and Taylor (1948). GuÈntheria Miranda-Ribeiro, 1926. Type species: Dendropsophus columbianus Group Hyla dasynota GuÈnther, 1869 (ϭ Hyla senicula Cope, 1868), by monotypy. DIAGNOSIS: The only morphological syna- pomorphy suggested for this group is the DIAGNOSIS: This genus is diagnosed by 33 presence of two close, triangular lateral spac- transformations in nuclear and mitochondrial es between the cricoid and arytenoids at the protein and ribosomal genes. See appendix 5 posterior part of the larynx (Kaplan, 1999). for a complete list of these molecular syna- COMMENTS: We included a single exemplar pomorphies. Karyological evidence is the of this group, and as such we did not test its presence of 30 chromosomes. Morphological monophyly, but following Kaplan (1999) we synapomorphies of this clade are possibly the recognize it on the basis of the evidence extreme reduction in the quadratojugal (also mentioned above. occurs in some Cophomantini and Hylini) CONTENTS: Three species. Dendropsophus and a 1/2 labial tooth row formula (known bogerti (Cochran and Goin, 1970), new instance of homoplasy in Hyla anceps; sub- comb.; Dendropsophus carnifex (Duellman, sequent reductions in the formula in some 1969), new comb.; Dendropsophus colum- clades) (Duellman and Trueb, 1983; Wogel bianus (Boettger, 1892), new comb. et al., 2000). COMMENTS: This genus contains all species Dendropsophus garagoensis Group formerly placed in Hyla that are known or suspected to have 30 chromosomes. How- DIAGNOSIS: A possible morphological syn- ever, the fact that the karyotype of its sister apomorphy of this group is the internal sur- taxon, Xenohyla, is still unknown, precludes face of the arytenoids with a small medial the 30-chromosome condition to be consid- depression (Kaplan, 1999). ered a synapomorphy of Dendropsophus, be- COMMENTS: We did not include any ex- cause it could be a synapomorphy of Den- emplar of this group in the analysis. We rec- dropsophus ϩ Xenohyla. A similar situation ognize it following Kaplan (1999), who con- occurs with two muscle characters. Burton sidered Hyla praestans to be the sister taxon (2004) suggested that the m. contrahentis of the H. garagoensis group on the basis of hallucis reduced or absent and the presence them sharing the aforementioned putative of m. ¯exor teres hallucis are synapomor- synapomorphy. We ®nd it more informative phies of this group. Unfortunately, both at this stage to include it in the group than transformations optimize ambiguously be- to consider it as a species unassigned to any cause corresponding character states are still group. unknown in Xenohyla. CONTENTS: Four species. Dendropsophus While we consider the extreme reduction garagoensis (Kaplan, 1991), new comb.; of the quadratojugal to be a possible mor- Dendropsophus padreluna (Kaplan and phological synapomorphy of Dendropso- Ruiz-Carranza, 1997), new comb.; Dendrop- phus, we warn that the condition requires sophus praestans (Duellman and Trueb, further study, because the quadratojugal is 1983), new comb.; Dendropsophus viroli- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 91 nensis (Kaplan and Ruiz-Carranza, 1997), er lip, the crenulated margin of limbs, and new comb. the dorsal marbled pattern (Bokermann, 1964b) (instances of homoplasy in other Hy- Dendropsophus labialis Group linae). Furthermore, as it is discernible from the illustrations presented by Gomes and DIAGNOSIS: We are not aware of any syn- Peixoto (1991b) and Peixoto and Gomes apomorphy for this group. (1999), and con®rmed by Peixoto (personal COMMENTS: We included a single exemplar commun. cited in Altig and McDiarmid, of this group in the analysis, and as such we 1999a), known larvae of this species group did not test its monophyly. Following Duell- share the presence of a thick sheath of tissue man and Trueb (1983) and Duellman (1989), in the basal portion of the tail muscle and we continue to recognize the group pending adjacent ®ns, another likely morphological a rigorous test of its monophyly. synapomorphy. CONTENTS: Three species. Dendropsophus COMMENTS: Bokermann (1964b) diag- labialis (Peters, 1863), new comb.; Dendrop- nosed this group as having large vocal sacs. sophus meridensis (Rivero, 1961) new While this could be a synapomorphy, we are comb.; Dendropsophus pelidna (Duellman, hesitant to consider it as such until more an- 1989), new comb. atomical and comparative studies are done in Dendropsophus. In connection with the large Dendropsophus leucophyllatus Group vocal sacs of the species of this group, Tyler DIAGNOSIS: This species group is diag- (1971) mentioned that in Hyla marmorata nosed by 35 transformations in mitochondri- the pectoral lymphatic septum is modi®ed in al ribosomal genes. See appendix 5 for a a way that permits the in¯ated sac to intrude complete list of these molecular synapomor- into sub-humeral spaces. phies. CONTENTS: Eight species. Dendropsophus COMMENTS: On the basis of our molecular acreanus (Bokermann, 1964), new comb.; results, we are including Hyla anceps in this Dendropsophus dutrai (Gomes and Peixoto, group. With the exception of this species, all 1996), new comb.; Dendropsophus marmor- other members of the group share the pres- atus (Laurenti, 1768), new comb.; Dendrop- ence of pectoral glands in males and females sophus melanargyreus (Cope, 1887), new (Duellman, 1970). comb.; Dendropsophus nahdereri (B. Lutz CONTENTS: Eight species. Dendropsophus and Bokermann, 1963), new comb.; Den- anceps (A. Lutz, 1929), new comb.; Den- dropsophus novaisi (Bokermann, 1968) new dropsophus bifurcus (Andersson, 1945), new comb.; (Cope, comb.; (Cope, 1868), new comb.; 1874), new comb.; (Caramaschi and Jim, 1983), new comb. (Wied-Neuwied, 1824), new comb.; Den- dropsophus leucophyllatus (Beireis, 1783), Dendropsophus microcephalus Group new comb.; Dendropsophus rossalleni (Goin, 1959), new comb.; Dendropsophus DIAGNOSIS: This species group is diag- sarayacuensis (Shreve, 1935), new comb.; nosed by 42 transformations in nuclear and (GuÈnther, mitochondrial protein and ribosomal genes. ``1868'' [1869]), new comb. See appendix 5 for a complete list of these molecular synapomorphies. Morphological Dendropsophus marmoratus Group synapomorphies include the lack of labial tooth rows and marginal papillae (Duellman DIAGNOSIS: This species group is diag- and Trueb, 1983) (a reversal occurs in the nosed by 73 transformations in nuclear and clade). mitochondrial protein and ribosomal genes. COMMENTS: This group now includes all See appendix 5 for a complete list of these species from the Hyla decipiens, H. micro- molecular synapomorphies. Possible mor- cephala, and H. rubicundula groups. We did phological synapomorphies of this group are not test the monophyly of the H. decipiens the warty skin around the margin of the low- or H. rubicundula groups. We continue rec- 92 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 ognition of the Dendropsophus microcepha- 2001), new comb.; lus group and within it, pending a rigorous (Bokermann, 1964), new comb.; Dendrop- test, a D. decipiens clade (including H. ber- sophus mathiassoni (Cochran and Goin, thalutzae, H. decipiens, H. haddadi, and H. 1970), new comb.; Dendropsophus meridi- oliveirai), and a D. rubicundulus clade (in- anus (B. Lutz, 1954), new comb.; Dendrop- cluding H. anataliasiasi, H. araguaya, H. sophus microcephalus (Cope, 1886), new cachimbo, H. cerradensis, H. elianeae, H. comb.; (Rivero, jimi, H. rhea, H. rubicundula, and H. tri- 1971), new comb.; taeniata). Putative synapomorphies of the D. (Boulenger, 1889), new comb.; Dendropso- decipiens clade are the oviposition on leaves phus oliveirai (Bokermann, 1963), new overhanging water (homoplastic with the D. comb.; Dendropsophus phlebodes (Stejneger, leucophyllatus group and some species of the 1906), new comb.; Dendropsophus pseudom- now D. parviceps group) and the presence of eridianus (Cruz et al., 2000), new comb.; a posterior row of marginal papillae (a re- Dendropsophus rhea (Napoli and Caramas- versal). A putative synapomorphy of the D. chi, 1999), new comb.; Dendropsophus rho- rubicundulus clade is the green dorsum in dopeplus (GuÈnther, 1858), new comb.; Den- life that changes to pinkish or violet when dropsophus robertmertensi (Taylor, 1937), preserved (Napoli and Caramaschi, 1998). new comb.; Dendropsophus rubicundulus It seems likely that additional synapomor- (Reinhardt and LuÈtken, ``1861'' [1862]), new phies for at least some species of Dendrop- comb.; (Schmidt, sophus microcephalus group will be hy- 1944), new comb.; Dendropsophus sartori pothesized as larval anatomy is carefully (Smith, 1951), new comb.; Dendropsophus studied. For example, the four species of the studerae (Carvalho e Silva, Carvalho e Silva, group studied by Spirandeli Cruz (1991) and and Izecksohn, 2003), new comb.; Dendrop- Wassersug (1980) (H. microcephala, H. sophus tritaeniatus (Bokermann, 1965), new nana, H. phlebodes, H. sanborni) show comb.; Dendropsophus walfordi (Boker- knob-like vestiges of the ®lter rows in larvae. mann, 1962), new comb.; Dendropsophus It also remains to be seen whether the pe- werneri (Cochran, 1952), new comb. culiarities of the mannicoto glandulare de- scribed by Lajmanovich et al. (2000) for H. Dendropsophus minimus Group nana are common to other larvae of the DIAGNOSIS: No synapomorphy is known group. for this group. CONTENTS: Thirty-three species. Dendrop- COMMENTS: We included a single species sophus anataliasiasi (Bokermann, 1972), of this group in the analisis, and as such we new comb.; Dendropsophus araguaya (Na- did not test its monophyly and we are not poli and Caramaschi, 1998), new comb.; aware of any evidence supporting it. Follow- Dendropsophus berthalutzae (Bokermann, ing Duellman (1982), we continue to recog- 1962), new comb.; Dendropsophus bipunc- nize it pending a rigorous test of its mono- tatus (Spix, 1824), new comb.; Dendropso- phyly. phus branneri (Cochran, 1948), new comb.; CONTENTS: Four species. Dendropsophus Dendropsophus decipiens (A. Lutz, 1925), aperomeus (Duellman, 1982), new comb.; new comb.; Dendropsophus cachimbo (Na- Dendropsophus minimus (Ahl, 1933), new poli and Caramaschi, 1999), new comb.; comb.; Dendropsophus miyatai (Vigle and Dendropsophus cerradensis (Napoli and Goberdhan-Vigle, 1990), new comb.; Den- Caramaschi, 1998) new comb.; Dendropso- dropsophus riveroi (Cochran and Goin, phus cruzi (Pombal and Bastos, 1998), new 1970), new comb. comb.; (Napoli and Caramaschi, 2000), new comb.; Dendropso- Dendropsophus minutus Group phus gryllatus (Duellman, 1973), new comb.; (Bastos and Pom- DIAGNOSIS: No synapomorphy is known bal, 1996), new comb.; for this group (Napoli and Caramaschi, 1999), new comb.; COMMENTS: We included a single species Dendropsophus joannae (KoÈhler and LoÈtters, of this group in the analysis, and as such we 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 93 did not test its monophyly. Following Mar- Species of Dendropsophus Unassigned to tins and Cardoso (1987), we continue to rec- Group ognize the species group pending a rigorous There are several species of Dendropso- test of its monophyly. Considering similari- phus that have not been associated with any ties between Hyla minuta and H. limai (Had- group. These are: Dendropsophus amicorum dad, personal obs.), we tentatively include (Mijares-Urrutia, 1998), new comb.; Den- the latter in the group. dropsophus battersbyi (Rivero, 1961), new CONTENTS: Four species. Dendropsophus comb.; Dendropsophus haraldschultzi (Bok- delarivai (KoÈhler and LoÈtters, 2001), new ermann, 1962), new comb.; Dendropsophus comb.; Dendropsophus limai (Bokermann, stingi (Kaplan, 1994), new comb.; Dendrop- 1962), new comb.; Dendropsophus minutus sophus tintinnabulum (Melin, 1941), new (Peters, 1872), new comb.; Dendropsophus comb.; Dendropsophus yaracuyanus (Mija- xapuriensis (Martins and Cardoso, 1987), res-Urrutia and Rivero, 2000), new comb. new comb. Lysapsus Cope, 1862

Dendropsophus parviceps Group TYPE SPECIES: Cope, 1862, by monotypy. DIAGNOSIS: This species group is diag- nosed by 27 transformations in nuclear and Podonectes Steindachner, 1864. Type species: Po- donectes palmatus Fitzinger, 1864 (ϭ Lysapsus mitochondrial protein and ribosomal genes. limellum Cope, 1862), by monotypy. See appendix 5 for a complete list of these molecular synapomorphies. We are not aware DIAGNOSIS: This genus is diagnosed by 47 of any morphological synapomorphy sup- transformations in nuclear and mitochondrial porting the monophyly of this group. proteins and ribosomal genes. See appendix COMMENTS: We expressed our scepticism 5 for a complete list of these transformations. regarding the monophyly of this group, as A possible morphological synapomorphy of currently de®ned, but found no evidence to this genus is the near absence of subacroso- reject monophyly. We recognize the group mal cone in the sperm (Garda et al., 2004). pending a rigorous test of its monophyly. CONTENTS: Three species. Gallardo, 1964; Lysapsus laevis Parker, CONTENTS: Fifteen species. Dendropso- 1935; Lysapsus limellum Cope, 1862. phus allenorum (Duellman and Trueb, 1989), new comb.; Dendropsophus bokermanni Pseudis Wagler, 1830 (Goin, 1960), new comb.; (Duellman and Crump, 1974), TYPE SPECIES: Rana paradoxa Linnaeus, new comb.; Dendropsophus gaucheri (Les- 1758, by monotypy. cure and Marty, 2001), new comb.; Den- Batrachychthys Pizarro, 1876. Type species: not dropsophus giesleri (Mertens, 1950), new designated; based on larvae of Pseudis para- comb.; Dendropsophus grandisonae (Goin, doxa (Linnaeus, 1758), according to Caramas- 1966), new comb.; Dendropsophus koechlini chi and Cruz (1998). (Duellman and Trueb, 1989), new comb.; DIAGNOSIS: This genus is diagnosed by 28 Dendropsophus luteoocellatus (Roux, 1927), transformations in nuclear and mitochondrial new comb.; (Peters, proteins and ribosomal genes. See appendix 1872), new comb.; Dendropsophus parviceps 5 for a complete list of these transformations. (Boulenger, 1882), new comb.; Dendropso- We are not aware of any morphological syn- phus pauiniensis (Heyer, 1977), new comb.; apomorphy for this genus. Dendropsophus ruschii (Weygoldt and Peix- COMMENTS: Garda et al. (2004) distin- oto, 1987), new comb.; Dendropsophus guished Lysapsus and Pseudis on the basis schubarti (Bokermann, 1963), new comb.; of the ultrastructure of the sperm acrosome Dendropsophus subocularis (Dunn, 1934), complex, but they stated that the morphology new comb.; Dendropsophus timbeba (Mar- present in Lysapsus (near absence of suba- tins and Cardoso, 1987), new comb. crosomal cone) is the apomorphic condition, 94 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 with only the plesiomorphic condition being protein and ribosomal genes. See appendix 5 found in Pseudis and therefore not providing for a complete list of these molecular syna- evidence of its monophyly. pomorphies. Morphological synapomorphies CONTENTS: Six species. Pseudis bolbod- include webbing between toes I and II that actyla A. Lutz, 1925; does not extend beyond the subarticular tu- Kwet, 2000; Garman, 1883; bercle of toe I, ability to bend ®nger I and GuÈnther, 1858; Pseudis par- toe I, origin of the m. pectoralis abdominalis adoxa (Linnaeus, 1758); through well-de®ned tendons, and m. pecto- Caramaschi and Cruz, 1998. ralis abdominalis overlapping m. obliquus externus (da Silva, 1998; Faivovich, 2002). Scarthyla Duellman and de SaÂ, 1988 COMMENTS: Besides the ®rst ®ve character states mentioned above, Faivovich (2002) ϭ TYPE SPECIES: Scarthyla ostinodactyla ( considered as synapomorphies of Scinax the Hyla goinorum Bokermann, 1962), by orig- round or poorly expanded sacral diapophy- inal designation. ses, the occluded frontoparietal fontanelle, DIAGNOSIS: Molecular autapomorphies in- single origin of the m. extensor brevis su- clude 227 transformations in nuclear and mi- per®cialis digiti III from the ulnare, and the tochondrial protein and ribosomal genes. See presence of the m. lumbricalis longus digiti appendix 5 for a complete list of these mo- V that originates from the lateral corner of lecular autapomorphies. Apparent morpho- the aponeurosis palmaris. As mentioned ear- logical autapomorphies include the ability of lier, the position of Scinax within Hylinae its tadpoles to propel themselves out of the suggests that outgroups employed by Faivo- water, elongated tadpoles (Duellman and vich (2002) are phylogenetically distant from Wiens, 1992) and the presence of a labial Scinax. Because of this, we contend that the arm on the oral disc (McDiarmid and Altig, taxonomic distribution of the aforementioned 1990). character states needs to be reassessed, at COMMENTS: The oral structure known as least among the other Dendropsophini, be- the labial arm has also been reported for the fore considering them synapomorphies of group (McDiarmid and Al- Scinax. For example, it seems evident that tig, 1990; Faivovich, 2002) and for four oth- the round or poorly expanded sacral diapoph- er species of Scinax (Heyer et al., 1990; Al- yses are not a synapomorphy of Scinax, but ves and Carvalho e Silva, 2002; Alves et al., of a more inclusive group (also present, at 2004). Suarez Mayorga and Lynch (2001b) least, in Scarthyla and Sphaenorhynchus; recently reported a similar structure in the Duellman and Wiens, 1992), whose limits larvae of , adding are still unclear. In the same way, the absence that as yet unpublished studies suggest that of the lingual papillae, as mentioned earlier, the structures present in Scinax, Scarthyla, might be a synapomorphy of Dendropsophi- and Sphaenorhynchus are not homologs. ni. The truncated discs of the digits were CONTENTS: Monotypic. Scarthyla goino- considered a synapomorphy of Scinax by rum (Bokermann, 1962) Duellman and Wiens (1992) and Faivovich (2002). The phylogenetic position of the sin- Scinax Wagler, 1830 gle exemplar of the H. uruguaya group in the analysis, as sister group of the S. ruber clade, TYPE SPECIES: Hyla aurata Wied-Neuwied 1821, by subsequent designation of Stejneger complicates this interpretation. Discs in the (1907). two species of the group, H. uruguaya and H. pinima, are proportionally reduced in size Ololygon Fitzinger, 1843. Type species: Hyla stri- with respect to most species of Scinax, can- gilata, Spix, 1824, by original designation. not be considered truncated, and therefore Garbeana Miranda-Ribeiro, 1926. Type species: determine an ambiguous optimization of this Garbeana garbei Miranda-Ribeiro, 1926, by monotypy. character state. Burton (2004) considered that m. ¯exor DIAGNOSIS: This genus is diagnosed by 83 ossis metatarsus IV with insertions on both transformations in nuclear and mitochondrial metatarsi IV and V was a synapomorphy of 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 95

Scinax. Because this character state is still of the possible synapomorphies of Scinax re- unknown in our two exemplars of the S. ca- sulting from Faivovich's (2002) analysis, the tharinae clade, and in the exemplar of Hyla sparse available knowledge on the taxonomic uruguaya group, it optimizes ambiguously in distribution of the transformations supporting our analysis; it is unclear if it is a synapo- the monophyly of the very distinctive S. ca- morphy of Scinax or of a more exclusive tharinae clade suggests that most of them clade. still hold in the present analysis. An excep- The Hyla uruguaya group is being includ- tion is the m. depressor mandibulae without ed in Scinax to avoid rendering Scinax para- an origin from the dorsal fascia at the level phyletic. Larvae of the two species of the H. of the m. dorsalis scapulae, which also oc- uruguaya group share with members of the curs in Hyla uruguaya, rendering its opti- S. ruber clade some synapomorphies (the mization ambiguous in our analysis. proctodeal tube not reaching the free margin of the lower ®n, and the presence of kerati- Scinax catharinae Group nized spurs behind the lower jaw sheath and over the infralabial papillae [Kolenc et al., DIAGNOSIS: Because we only included two ``2003'' [2004]]). However, preliminary ob- species of the Scinax catharinae group as ex- servations on H. uruguaya indicate that emplars of the S. catharinae clade, the mo- adults show at least one con¯icting character lecular transformations that diagnose this state, the m. depressor mandibulae without group are redundant with those diagnosing an origin from the dorsal fascia at the level the S. catharinae clade. Presumed morpho- of the m. dorsalis scapulae (Faivovich, per- logical synapomorphies of this group include sonal obs.)Ða character state that optimized the posterior part of the cricoid ring exten- as a synapomorphy of the S. catharinae clade sively elongated and curved, the partial min- in the analysis of Faivovich (2002). This eralization of intercalary elements between controversy may be resolved when all the ultimate and penultimate phalanges, and the con¯icting evidence is analyzed, including a laterodistal origin of the m. extensor brevis much denser sampling of Scinax. In the distalis digiti III (Faivovich, 2002). meantime, since the molecular evidence in- CONTENTS: Twenty-seven species. Scinax dicates af®nities with the S. ruber clade, we agilis (Cruz and Peixoto, 1983); Scinax al- tentatively include the two species of the H. bicans (Bokermann, 1967); Scinax angrensis uruguaya group in this clade, where they are (B. Lutz, 1973); Scinax argyreornatus (Mi- recognized as a separate group. randa-Ribeiro, 1926); Scinax ariadne (Bok- CONTENTS: Eighty-eight species placed in ermann, 1967); Scinax aromothyella Faivov- two major clades. ich, 2005; Scinax berthae (Barrio, 1962); Scinax brieni (De Witte, 1927); Scinax can- Scinax catharinae Clade astrensis (Cardoso and Haddad, 1982); Sci- nax carnevalli (Caramaschi and Kisteumach- DIAGNOSIS: This clade is diagnosed by 90 er, 1989); Scinax catharinae (Boulenger, transformations in nuclear and mitochondrial 1888); Scinax centralis (Pombal and Bastos, proteins and ribosomal genes. See appendix 1996); Scinax ¯avoguttatus (A. Lutz and B. 5 for a complete list of these molecular syn- Lutz, 1939); Scinax heyeri (Peixoto and apomorphies. Morphological synapomor- Weygoldt, 1986); Scinax hiemalis (Haddad phies suggested for this clade by Faivovich and Pombal, 1987); (B. Lutz, (2002) are absence of the anterior process of 1954); Scinax jureia (Pombal and Gordo, the suprascapula, internal vocal sac, distal di- 1991); Scinax kautskyi (Carvalho e Silva and vision of the middle branch of the m. exten- Peixoto, 1991); Scinax littoralis (Pombal and sor digitorum comunis longus, and insertion Gordo, 1991); Scinax longilineus (B. Lutz, of the medial side of this branch on the ten- 1968); Scinax luizotavioi (Caramaschi and don of the m. extensor brevis medius digiti Kisteumacher, 1989); Scinax machadoi IV. (Bokermann and Sazima, 1973); Scinax ob- COMMENTS: Regardless of problems im- triangulatus (B. Lutz, 1973); Scinax ranki posed by the present results to interpretation (Andrade and Cardoso, 1987); Scinax rizi- 96 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 bilis (Bokermann, 1964); Scinax strigilatus the lateral m. extensor brevis distalis digiti V (Spix, 1824); and Scinax trapicheiroi (B. (pes). Preliminary observation on the larvae Lutz, 1954). of some species of Sphaenorhynchus (Sphae- norhynchus bromelicola, S. orophilus, S. Scinax perpusillus Group pauloalvini, and S. prasinus; Faivovich, per- sonal obs.) indicate that their proctodeal DIAGNOSIS: Presumed synapomorphies of tubes are attached to the free margin of the this group are the oviposition in bromeliads lower ®n, similar to the S. catharinae clade, and the extreme reduction of webbing be- instead of having the characteristic position tween toes II and III (Peixoto, 1987; Faivov- seen in larvae of the S. ruber clade. ich, 2002). Scinax megapodius and S. trachythorax COMMENTS: The monophyly of this group are considered here to be junior synonyms of was not tested by Faivovich (2002) because S. fuscovarius for reasons discussed in ap- only one species of the group was available pendix 4. There are two species, Hyla dolloi for his analysis, where it obtained as the sis- and H. karenanneae, that upon examination ter taxon of all exemplars of the S. cathari- of their type series we consider to be species nae clade. For these two reasons, we contin- of Scinax (see appendix 4 for further com- ue recognizing this group until its monophy- ments on them). ly is rigorously tested. CONTENTS: Fifty-six species. Eleven as- CONTENTS: Seven species. Scinax alcatraz signed to two groups, 43 unassigned to any (B. Lutz, 1973); Scinax arduous Peixoto, group. 2002; Scinax atratus (Peixoto, 1989); Scinax littoreus (Peixoto, 1988); Scinax melloi Scinax rostratus Group (Peixoto, 1989); Scinax perpusillus (A. Lutz and B. Lutz, 1939); Scinax v-signatus (B. DIAGNOSIS: Putative morphological syna- Lutz, 1968). pomorphies of this group include the juxta- posed inner margins of the vomers; overlap Scinax ruber Clade of the otic plate of the crista parotica due to a broad otic plate; nonfenestration of the car- DIAGNOSIS: This clade is supported by 53 tilaginous plate of the squamosal with the transformations in nuclear and mitochondrial oblique cartilage; pointed tubercle on heel; protein and ribosomal genes. See appendix 5 absence of the m. extensor brevis distalis for a complete list of these molecular syna- digiti II; presence of m. extensor brevis dis- pomorphies. A morphological synapomorphy talis digiti I (pes); discontinuity of lateral suggested for this clade by Faivovich (2002) margins with the posterior portion of the oral is the proctodeal tube positioned above the disc; third posterior labial tooth row placed margin of the lower ®n. on a labial arm; reduction of the third pos- COMMENTS: Faivovich (2002) was skepti- terior labial tooth to one-quarter the length cal about the monophyly of the S. ruber of the second row; absence of keratinized clade; however, the present analysis recovers spurs behind the lower jaw sheath; and head- it as monophyletic, with a considerable num- down calling position (Faivovich, 2002). ber of transformations supporting its mono- CONTENTS: Nine species. Scinax boulen- phyly. geri (Cope, 1887); (Miranda- As in the case of several of the synapo- Ribeiro, 1926); Scinax jolyi (Lescure and morphies suggested by Faivovich's (2002) Marty, 2001); Scinax kennedyi (Pyburn, analysis for Scinax, we are unsure as to 1973); (Spix, 1824); Scinax whether the suggested morphological syna- pedromedinae (Henle, 1991); Scinax probos- pomorphies are optimized identically in our cideus (Brongersma, 1933); Scinax rostratus analysis. In particular, we do not know the (Peters, 1870); Scinax sugillatus (Duellman, taxonomic distribution within Dendropsophi- 1973). ni for two other synapomorphies proposed for this clade (Faivovich, 2002): the aryte- Scinax uruguayus Group noids with a dorsal prominence developed DIAGNOSIS: Putative morphological syna- over the pharyngeal margin, and absence of pomorphies of this group include the bicol- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 97 ored iris and the presence of two keratinized 1980); (Cope, 1862); Scinax and pigmented plates on the sides of the low- oreites Duellman and Wiens, 1993; Scinax er jaw sheath (Kolenc et al., ``2003'' [2004]). pachycrus (Miranda-Ribeiro, 1937); Scinax COMMENTS: The marginal papillae of the parkeri (Gaige, 1926); Pom- posterior margin of the oral disc being larger bal, Haddad, and Kasahara, 1995; Scinax than those of the lateral margins (Kolenc et quinquefasciatus (Fowler, 1913); Scinax rub- al., ``2003'' [2004]) and the reduction in toe er (Laurenti, 1768); (Cochran, webbing could be other synapomorphies of 1952); (A. Lutz, 1925); the group. (Cope, 1865); Scinax trili- CONTENTS: Two species. Scinax pinima neatus (Hoogmoed and Gorzula, 1977); Sci- (Bokermann and Sazima, 1973) new comb.; nax wandae (Pyburn and Fouquette, 1971); Scinax uruguayus (Schmidt, 1944) new Scinax x-signatus (Spix, 1824). comb. Sphaenorhynchus Tschudi, 1838 Species of the Scinax ruber Clade Unas- signed to a Species Group TYPE SPECIES: Hyla lactea Daudin, 1801, by original designation. We follow Faivovich (2002) in not rec- Dryomelictes Fitzinger, 1843. Type species: Hyla ognizing the former Scinax ruber and S. lactea Daudin, 1802, by original designation. staufferi groups, as both were not monophy- Dryomelictes Cope, 1865. Type species: Hyla au- letic on his analysis. We are considering all rantiaca Daudin, 1802, by original designation. species formerly included in these groups as Junior homonym of Dryomelictes Fitzinger, members of the S. ruber clade, although we 1843. consider them as unassigned to any group. Hylopsis Werner, 1894. Type species: Hylopsis These species are (Cope, platycephalus Werner, 1894, by monotypy. 1862); Scinax altae (Dunn, 1933); Scinax al- Sphoenohyla Lutz and Lutz, 1938. Substitute ter (B. Lutz, 1973); (Wied- name (explicit subgenus of Hyla) for Sphae- norhynchus thought erroneously to be preoc- Neuwied, 1821); Scinax baumgardneri (Riv- cupied by Sphenorhynchus Lichtenstein, 1823. ero, 1961); Scinax blairi (Fouquette and Py- burn, 1972); (Goin, 1966); DIAGNOSIS: This genus is diagnosed by Scinax caldarum (B. Lutz, 1968); Scinax 157 transformations in nuclear and mito- cardosoi (Carvalho e Silva and Peixoto, chondrial protein and ribosomal genes. See 1991); Scinax castroviejoi De la Riva, 1993; appendix 5 for a complete list of these mo- Scinax chiquitanus (De la Riva, 1990); Sci- lecular synapomorphies. Duellman and nax crospedospilus (A. Lutz, 1925); Scinax Wiens (1992) proposed the following syna- cruentommus (Duellman, 1972); Scinax cur- pomorphies for Sphaenorhynchus: posterior icica Pugliese, Pombal, and Sazima, 2004; ramus of pterygoid absent; zygomatic ramus (A. Lutz, 1925); Scinax of squamosal absent or reduced to a small danae (Duellman, 1986); Scinax dolloi (Wer- knob; pars facialis of maxilla and alary pro- ner, 1898) new comb.; (B. cess of premaxilla reduced; postorbital pro- Lutz, 1951); Scinax elaeochrous (Cope, cess of maxilla reduced, not in contact with 1875); (Bokermann, 1964); quadratojugal; neopalatine reduced to a sliver Scinax exiguus (Duellman, 1986); Scinax or absent; pars externa plectri entering tym- ¯avidus La Marca, 2004; panic ring posteriorly (rather than dorsally); (Cope, 1874); (A. pars externa plectri round; hyale curved me- Lutz, 1925); (A. Lutz, dially; coracoids and clavicle elongated; and 1925); (Peters, 1871); Sci- prepollex ossi®ed, bladelike. Other likely nax hayii (Barbour, 1909); synapomorphies include the differentiation Duellman and Wiens, 1993; Scinax karen- of the m. intermandibularis into a small api- anneae (Pyburn, 1992) comb. nov.; Scinax cal supplementary element, and the extreme lindsayi Pyburn, 1992; Scinax manriquei development of the m. interhyoideus (Tyler, Barrio-AmoroÂs, Orellana, and Chacon, 2004; 1971). Scinax maracaya (Cardoso and Sazima, COMMENTS: Duellman and Wiens (1992) 98 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 considered that the transverse process of pre- pomorphies. Although species of Xenohyla sacral vertebra IV elongate, oriented poste- are very distinctive, we are aware of only riorly is a synapomorphy of Sphaenorhyn- three putative morphological synapomor- chus. The presence of this character state in phies: the retention in adults of the scars of Xenohyla (Izecksohn, 1996) suggests that in the windows of forelimbs emergence (but see the context of our topology, its optimization Comments below); the presence of a small, is ambiguous. There are also some larval fea- transverse process in the urostyle; and fru- tures that could be considered synapomor- givorous habits (reported for X. truncata by phies of at least some species of Sphaeno- da Silva et al. [1989] and Izecksohn [1996]; rhynchus, such as the morphology and po- unknown in X. eugenioi). sition of the nostrils and the presence of COMMENTS: We included a single species some notably large marginal papillae (see of this genus in the analysis, and as such we Kenny, 1969; Bokermann, 1973; Cruz, 1973; did not test its monophyly, but consider it Cruz and Peixoto, 1980; Suarez-Mayorga very likely on the basis of the evidence noted and Lynch, 2001b). The presence of a white above and its unique external aspect. Izeck- peritoneum in ®ve species (S. carneus, S. sohn (1996) and Caramaschi (1998) noticed lacteus, S. planicola, S. prasinus, and S. sur- that adults of Xenohyla retain scars of the dus; Haddad and Faivovich, personal obs.) large windows of forelimb emergence that may be another synapomorphy of this genus are evident in recently metamorphosed indi- (with several instances of homoplasy within viduals. Each of these scars actually corre- Hylinae). Observations on six species (S. sponds to a thick pectoral patch of glands carneus, S. dorisae, S. lacteus, S. planicola, that is macroscopically evident upon super- S. prasinus, and S. surdus) suggest that they ®cial dissection (Faivovich, personal obs.). are ant specialists (Duellman, 1978; Rodri- CONTENTS: Two species. Xenohyla eugen- guez and Duellman, 1994; Parmalee, 1999; ioi Caramaschi, 2001; (Iz- Haddad, personal obs.), another likely syna- ecksohn, 1959). pomorphy whose taxonomic distribution within the group deserves additional study. HYLINI RAFINESQUE, 1815 CONTENTS: Eleven species. Sphaenorhyn- Hylarinia Ra®nesque, 1815. Type genus: Hylaria chus bromelicola Bokermann, 1966; Sphae- Ra®nesque, 1814 (an unjusti®ed emendation of norhynchus carneus (Cope, 1868); Sphae- Hyla Laurenti, 1768). norhynchus dorisae (Goin, 1967); Sphaeno- Hylina Gray, 1825. Type genus: Hyla Laurenti, rhynchus lacteus (Daudin, 1801); Sphaeno- 1768. rhynchus orophilus (A. Lutz and B. Lutz, Dryophytae Fitzinger, 1843. Type genus: Dry- 1938); Sphaenorhynchus palustris Boker- ophytes Fitzinger, 1843. mann, 1966; Sphaenorhynchus pauloalvini Acridina Mivart, 1869. Type genus: Acris Du- Bokermann, 1973; Sphaenorhynchus plani- meÂril and Bibron, 1841. cola (A. Lutz and B. Lutz, 1938); Sphaeno- Triprioninae Miranda-Ribeiro, 1926. Type genus: Triprion Cope, 1866. rhynchus platycephalus (Werner, 1894); Sphaenorhynchus prasinus Bokermann, DIAGNOSIS: This tribe is diagnosed by 107 1973; (Cochran, transformations in nuclear and mitochondrial 1953). protein and ribosomal genes. See appendix 5 for a complete list of these molecular syna- Xenohyla Izecksohn, 1996 pomorphies. The only known morphological synapomorphy is the undivided tendon of the TYPE SPECIES: Hyla truncata Izecksohn, m. ¯exor digitorum brevis super®cialis (there 1959, by original designation. are several instances of homoplasy within DIAGNOSIS: For the purposes of this paper, Hylidae including at least Scinax, Scarthyla we consider that the 128 transformations in ϩ Pseudis, and a reversal within Hylini). mitochondrial protein and ribosomal genes COMMENTS: The tribe Hylini is proposed autapomorphic of Xenohyla truncata are syn- for the clade of Middle American/Holarctic apomorphies of this genus. See appendix 5 hylids. It includes Acris, Anotheca, Duell- for a complete list of these molecular syna- manohyla, Exerodonta, Hyla, Pseudacris, 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 99

Ptychohyla, Smilisca (including Pternohyla), CONTENTS: Monotypic. Anotheca spinosa Triprion, and six new genera, Bromeliohyla (Steindachner, 1864). new gen., Charadrahyla new gen., Ecnom- iohyla new gen., Isthmohyla new gen., Me- Bromeliohyla, new genus gastomatohyla new gen., and Tlalocohyla TYPE SPECIES: Hyla bromeliacia Schmidt, new gen. Morescalchi (1973) recognized the 1933. tribe Hylini in which he included most gen- DIAGNOSIS: For the purposes of this paper era currently placed in Hylinae. Subsequent we consider that the 141 transformations in authors have not used Hylini in the sense that nuclear and mitochondrial protein and ribo- Morescalchi (1973) used it. somal genes autapomorphic of Bromeliohyla bromeliacia are synapomorphies of this ge- Acris DumeÂril and Bibron, 1841 nus. See appendix 5 for a complete list of these molecular synapomorphies. Possible TYPE SPECIES: Rana gryllus LeConte, nonmolecular synapomorphies of this genus 1825, by subsequent designation of Fitzinger are the reproductive mode, where eggs are (1843). laid in water accumulated in bromeliads DIAGNOSIS: This genus is diagnosed by (several instances of homoplasy, e.g., two 138 transformations in nuclear and mito- species of Isthmohyla, Phyllodytes, some chondrial proteins and ribosomal genes. See species Osteopilus, and the Scinax perpusil- appendix 5 for a complete list of these mo- lus group), and tadpoles with dorsoventrally lecular synapomorphies. Other apparent syn- ¯attened bodies and elongated tails. apomorphies include the differentiation of ETYMOLOGY: From Bromelia ϩ Hyla,in the m. intermandibularis into an apical sup- reference to the bromeliad breeding habits of plementary element (Tyler, 1971), and dip- its species. The gender is feminine. loid chromosome number of 22 (Bushnell et COMMENTS: We included a single species al., 1939; Cole, 1966; Duellman, 1970). of this genus, and as such we did not test its CONTENTS: Two species. Acris crepitans monophyly. We consider it likely based on Baird, 1854; Acris gryllus (LeConte, 1825). the evidence noted above. CONTENTS: Two species. Bromeliohyla Anotheca Smith, 1939 bromeliacia (Schmidt, 1933), new comb.; Bromeliohyla dendroscarta (Taylor, 1940), TYPE SPECIES: Gastrotheca coronata Ste- new comb. jneger, 1911 (ϭ Hyla spinosa Steindachner, 1864), by original designation. Charadrahyla, new genus DIAGNOSIS: This monotypic genus is di- agnosed by 219 transformations of nuclear TYPE SPECIES: Hyla taeniopus GuÈnther, and mitochondrial protein and ribosomal 1901. genes. See appendix 5 for a complete list of DIAGNOSIS: This genus is diagnosed by 56 these transformations. Morphological auta- transformations in nuclear and mitochondrial pomorphies include the tendo super®cialis proteins and ribosomal genes. See appendix hallucis that tapers from an expanded corner 5 for a complete list of these molecular syn- of the aponeurosis plantaris; with ®bers of apomorphies. We are not aware of any mor- the m. transversus plantae distalis originating phological synapomorphy supporting this ge- on distal tarsal 2±3 inserting on the lateral nus. side of the tendon (several of homoplasy, see ETYMOLOGY: Derived from the Greek word appendix 1); the unique skull ornamentation charadra- (ravine) ϩ Hyla. In reference to composed of sharp, dorsally pointed spines the habits of these frogs. The gender is fem- in the margins of frontoparietal, maxilla, na- inine. sal (including canthal ridge), and squamosal, COMMENTS: This new genus includes the and character states that result in its repro- species formerly placed in the Hyla taenio- ductive mode, including maternal provision- pus group. ing of trophic eggs to tadpoles (see Jungfer, CONTENTS: Five species. Charadrahyla al- 1996). tipotens (Duellman, 1968), new comb.; 100 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Charadrahyla chaneque (Duellman, 1961), being consistent with the new monophyletic new comb.; Charadrahyla nephila (Mendel- taxonomy that is proposed for hylids. Al- son and Campbell, 1999), new comb.; Char- though naming the former H. tuberculosa adrahyla taeniopus (GuÈnther, 1901), new group as a genus constitutes a testable claim comb.; Charadrahyla trux (Adler and Denis, of monophyly, we expect that it will ulti- 1972), new comb. mately be found to be two or three different clades, with one of these being the one Duellmanohyla Campbell and Smith, 1992 named here. CONTENTS: Ten species. Ecnomiohyla TYPE SPECIES: Hyla uranochroa Cope, echinata (Duellman, 1962), new comb.; Ec- 1876, by original designation. nomiohyla ®mbrimembra (Taylor, 1948), new DIAGNOSIS: This genus is diagnosed by 48 comb.; Ecnomiohyla miliaria (Cope, 1886), transformations in nuclear and mitochondrial new comb.; Ecnomiohyla minera (Wilson, protein and ribosomal genes. See appendix 5 McCranie, and Williams, 1985), new comb.; for a complete list of these molecular syna- Ecnomiohyla miotympanum (Cope, 1863), pomorphies. Likely morphological synapo- new comb.; Ecnomiohyla phantasmagoria morphies of this group are the red iris, the (Dunn, 1943); Ecnomiohyla salvaje (Wilson, labial stripe expanded below orbit, the lack McCranie, and Williams, 1985), new comb.; of nuptial excrescences, the ventrally orient- Ecnomiohyla thysanota (Duellman, 1966), ed funnel-shaped oral disc in larvae, labial new comb.; Ecnomiohyla tuberculosa (Bou- tooth rows reduced in length, and absence of lenger, 1882), new comb.; Ecnomiohyla va- lateral processes on upper jaw sheath (Duell- lancifer (Firschein and Smith, 1956), new man, 2001). comb. CONTENTS: Eight species. Duellmanohyla chamulae (Duellman, 1961); Duellmanohyla ignicolor (Duellman, 1961); Duellmanohyla Exerodonta Brocchi, 1879 lythrodes (Savage, 1968); Duellmanohyla ru- TYPE SPECIES: Exerodonta sumichrasti ®oculis (Taylor, 1952); Duellmanohyla sal- Brocchi, 1879, by monotypy. vavida (McCranie and Wilson, 1986); Duell- DIAGNOSIS: This genus is diagnosed by 80 manohyla schmidtorum (Stuart, 1954); transformations in nuclear and mitochondrial Duellmanohyla soralia (Wilson and Mc- proteins and ribosomal genes. See appendix Cranie, 1985); Duellmanohyla uranochroa 5 for a complete list of these molecular syn- (Cope, 1876). apomorphies. We are not aware of any mor- phological synapomorphy supporting this ge- Ecnomiohyla, new genus nus. TYPE SPECIES: Hypsiboas miliarius Cope, COMMENTS: Exerodonta is resurrected for 1886. the species previously placed in the Hyla DIAGNOSIS: This genus is diagnosed by 37 sumichrasti group and a fragment of the for- transformations in nuclear and mitochondrial mer H. miotympanum group as de®ned by protein and ribosomal genes. See appendix 5 Duellman (2001) that corresponds to the tra- for a complete list of these molecular syna- ditionally recognized H. pinorum group pomorphies. We are not aware of any mor- (Duellman 1970). Although we did not in- phological synapomorphy supporting this ge- clude the type species, E. sumichrasti, in the nus. analysis, but only H. chimalapa and H. xera, ETYMOLOGY: From the Greek, ecnomios, we consider that these two species and H. meaning marvelous, unusual; an obvious ref- sumichrasti and H. smaragdina are so similar erence to the incredible frogs of the Hyla that we are not hesitant to consider them tuberculosa group. The gender is feminine. closely related. Although we are not aware COMMENTS: This new genus contains the of any synapomorphy supporting the mono- Hyla tuberculosa group, excluding H. den- phyly of the former H. pinorum group drophasma, and including one species of the (Duellman, 1970), and our results suggest it H. miotympanum group as well. Erecting a is paraphyletic with respect to the H. sumi- new genus for this clade is the only way of chrasti group, we are tentatively including 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 101 the other species associated with it, H. ab- 1940), new comb.; Exerodonta perkinsi divita, H. bivocata, H. catracha, and H. (Campbell and Brodie, 1992), new comb.; juanitae by Snyder (1972), Porras and Wil- Exerodonta pinorum (Taylor, 1937), new son (1987), and Campbell and Duellman comb. (2000), in this resurrected genus. CONTENTS: Eleven species, four placed in Hyla Laurenti, 1768 one species group, seven unassigned to group. TYPE SPECIES: Hyla viridis Laurenti, 1768 (ϭ Rana arborea Linnaeus, 1758), by sub- Exerodonta sumichrasti Group sequent designation of Stejneger (1907). Calamita Schneider, 1799. Type species: Rana ar- DIAGNOSIS: This species group is diag- borea Linnaeus, 1758, by subsequent designa- nosed by 76 transformations in nuclear and tion of Stejneger (1907). mitochondrial proteins and ribosomal genes. Hylaria Ra®nesque, 1814. Unjusti®ed emendation See appendix 5 for a complete list of these for Hyla. molecular synapomorphies. Putative mor- Hyas Wagler, 1830. Type species: Rana arborea phological synapomorphies of this group are Linnaeus, 1758, by monotypy. Junior homonym the massive nasals (Duellman, 1970) and, in of Hyas Leach, 1815. the species with a known tadpole, the en- Dendrohyas Wagler, 1830. Substitute name for larged larval oral disc (homoplastic with the Hyas Wagler, 1830. former Hyla mixomaculata group), and the Fitzinger, 1843. Type species: Hyla versicolor LeConte, 1825, by original designa- 3/6 to 7 labial tooth row formula (Canseco- tion. MaÂrquez et al., 2003; Duellman, 1970). Epedaphus Cope, 1885. Type species: Hyla gra- COMMENTS: The illustrations of the oral tiosa LeConte, 1856, by monotypy. discs of Hyla smaragdina, H. sumichrasti (Duellman, 1970), and H. xera (Canseco- DIAGNOSIS: This genus is diagnosed by 25 MaÂrquez et al., 2003) show that they share transformations in nuclear and mitochondrial the multiple interruption of the last posterior protein and ribosomal genes. See appendix 5 labial tooth row into shorter rows, possibly for a complete list of these molecular syna- another synapomorphy. pomorphies. We are not aware of any mor- CONTENTS: Four species. Exerodonta chi- phological synapomorphy for the genus. malapa (Mendelson and Campbell, 1994), COMMENTS: Hyla is restricted to all species new comb.; Exerodonta smaragdina (Taylor, previously placed in the H. arborea, H. ci- 1940), new comb.; Exerodonta sumichrasti nerea, H. eximia, and H. versicolor groups, Brocchi, 1879; Exerodonta xera (Mendelson which are rede®ned herein. and Campbell, 1994), new comb. CONTENTS: Thirty-two species, with 31 placed in four species groups and one species Species of Exerodonta Unassigned to unassigned to group. Group Hyla arborea Group Considering that in our analysis Hyla me- lanomma and H. perkinsi are a grade leading DIAGNOSIS: This species group is diag- to the E. sumichrasti group, we are not as- nosed by 37 transformations in nuclear and signing to any group these and the other spe- mitochondrial proteins and ribosomal genes. cies associated with the former Hyla pinorum See appendix 5 for a complete list of these group (Duellman, 1970; Snyder, 1972; Porras molecular synapomorphies. We are not aware and Wilson, 1987; Campbell and Duellman, of any morphological synapomorphy sup- 2000). These species are: Exerodonta abdi- porting this group. vita (Campbell and Duellman, 2000), new COMMENTS: The contents of the Hyla ar- comb.; Exerodonta bivocata (Duellman and borea group are restricted to avoid its para- Hoyt, 1961), new comb.; Exerodonta catra- phyly. The inclusion of the species that were cha (Porras and Wilson, 1987), new comb.; not included in the present analysis and do Exerodonta juanitae (Snyder, 1972), new not show the NOR in chromosome 6 is ten- comb.; Exerodonta melanomma (Taylor, tative, because no evidence, other than the 102 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 molecular data presented here, is known to ramoto, 1980; Hyla walkeri Stuart, 1954; support its monophyly. Hyla wrightorum Taylor, 1939. CONTENTS: Fourteen species. Hyla annec- tans (Jerdon, 1870); Hyla arborea (Linnaeus, Hyla versicolor Group 1758); Hyla chinensis GuÈnther, 1858; Hyla DIAGNOSIS: This species group is diag- hallowellii Thomson, 1912; Hyla immacula- nosed by 51 transformations in nuclear and ta Boettger, 1888; Hyla intermedia Boulen- mitochondrial proteins and ribosomal genes. ger, 1882; Hyla meridionalis Boettger, 1874; See appendix 5 for a complete list of these Hyla sanchiangensis Pope, 1929; Hyla sarda molecular synapomorphies. We are not aware (De Betta, 1853); Audouin, of any morphological synapomorphy sup- 1827; Hyla simplex Boettger, 1901; Hyla porting this group. tsinlingensis Liu and Hu, 1966; Hyla ussur- COMMENTS: Hyla andersonii is transferred iensis Nikolsky, 1918; Hyla zhaopingensis to the H. eximia group to avoid the paraphyly Tang and Zhang, 1984. of the H. versicolor group. CONTENTS: Three species. Hyla avivoca Hyla cinerea Group Viosca, 1928; Hyla chrysoscelis Cope, 1880; Hyla versicolor LeConte, 1825. DIAGNOSIS: This species group is diag- nosed by 35 transformations in nuclear and Species of Hyla Unassigned to Group mitochondrial proteins and ribosomal genes. See appendix 5 for a complete list of these Considering that relationships of Hyla fe- molecular synapomorphies. We are not aware moralis Bosc, 1800 with the H. versicolor of any morphological synapomorphy sup- and H. eximia groups are unresolved, we pre- porting this group. fer to keep this species unassigned as a more COMMENTS: Hyla femoralis is excluded stable alternative to merging the H. versicol- from the H. cinerea group to avoid the par- or and the H. eximia groups into a single aphyly of the group. group. CONTENTS: Three species. Hyla cinerea (Schneider, 1799); Hyla gratiosa LeConte, Isthmohyla, new genus ``1856'' [1857]; Hyla squirella Bosc, 1800. TYPE SPECIES: Hyla pseudopuma GuÈnther, 1901. Hyla eximia Group DIAGNOSIS: This genus is diagnosed by 42 transformations in nuclear and mitochondrial DIAGNOSIS: This species group is diag- protein and ribosomal genes. See appendix 5 nosed by 17 transformations in mitochondri- for a complete list of these molecular syna- al proteins and ribosomal genes. See appen- pomorphies. We are not aware of any mor- dix 5 for a complete list of these molecular phological synapomorphy for the genus. synapomorphies. We are not aware of any ETYMOLOGY: From Isthmo, Greek, in ref- morphological synapomorphy supporting erence to the mostly isthmian distribution of this group. these frogs (the only exception is Hyla in- COMMENTS: The inclusion of Hyla suweo- solita) ϩ Hyla. The gender is feminine. nensis is tentative, based on the fact that An- COMMENTS: This new genus includes all derson (1991) reported a NOR in chromo- species of the Hyla pseudopuma and H. pic- some 6, a character state shared by H. fe- tipes groups, as de®ned by Duellman (2001), moralis and the H. eximia and H. versicolor with the exception of H. thorectes, which is groups. transferred to Plectrohyla. Our taxon sam- CONTENTS: Eleven species. Hyla anderson- pling of the relevant species groups was too ii Baird, 1854; Hyla arboricola Taylor, 1941; sparse to result in a test of their respective Hyla arenicolor Cope, 1886; Hyla bocourti monophyly. We tentatively recognize these (Mocquard, 1889); Hyla euphorbiacea GuÈn- species groups as reviewed by Duellman ther, 1859; Hyla eximia Baird, 1854; Hyla (2001), with the exception that H. thorectes japonica GuÈnther, ``1858'' [1859]; Hyla pli- is excluded from the former H. pictipes cata Brocchi, 1877; Hyla suweonensis Ku- group and not included in Isthmohyla. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 103

CONTENTS: Fourteen species placed in two new comb.; Isthmohyla zeteki (Gaige, 1929), species groups. new comb.

Isthmohyla pictipes Group Isthmohyla pseudopuma Group DIAGNOSIS: We are not aware of any syn- DIAGNOSIS: We are not aware of any syn- apomorphy supporting the monophyly of this apomorphy supporting the monophyly of this group. group. COMMENTS: We included a single exemplar COMMENTS: We included a single exemplar of this group, and as such we did not test its of this group, and as such we did not test its monophyly. It is being tentatively recognized monophyly. It is being tentatively recognized following Duellman (2001) until a rigorous following Duellman (2001) until a rigorous test is performed. This species group is test is performed. formed by the former Hyla lancasteri, H. CONTENTS: Four species. Isthmohyla an- pictipes, H. rivularis, and H. zeteki groups gustilineata (Taylor, 1952), new comb.; Isth- (Duellman, 1970, 2001). The monophyly of mohyla graceae (Myers and Duellman, the former H. zeteki group does not seem to 1982), new comb.; Isthmohyla infucata be controversial, as its two species share (Duellman, 1968), new comb.; Isthmohyla massive temporal musculature, bromeliad pseudopuma (GuÈnther, 1901), new comb. dwelling larvae, a terminal oral disc, and a labial tooth row formula of 1/1. The mono- Megastomatohyla, new genus phyly of the group composed of the former TYPE SPECIES: Hyla mixe Duellman, 1965. H. rivularis and H. pictipes groups (as de- DIAGNOSIS: For the purposes of this paper, ®ned by Duellman, 1970) is supported by the we consider that the 209 transformations in presence of an enlarged oral disc (Duellman, nuclear and mitochondrial protein and ribo- 2001) with a broad band of conic submar- somal genes autapomorphic of Hyla mixe are ginal papillae on the posterior part of the synapomorphies of this genus. See appendix disc, about three rows on the anterior part, 5 for a complete list of these molecular syn- and an M-shaped upper jaw sheath27 (Fai- apomorphies. A possible morphological syn- vovich, personal obs.; see also illustrations in apomorphy of this genus is the greatly en- Duellman, 2001). The monophyly of the for- larged oral disc of the known larvae bearing mer H. lancasteri group seems to be sup- 7±10 anterior rows and 10±11 posterior ported by the presence of granular dorsal rows. skin (Duellman, 2001; known homoplastic ETYMOLOGY: From the Greek, mega, large, instance in H. debilis), a short snout, and the plus the stem of the genitive stomatos, presence of dark ventral pigmentation (Wil- mouth, in reference to the enlarged oral disc son et al., 1994b, known homoplastic in- of the larvae ϩ Hyla. The gender is feminine. stance in H. thorectes.) COMMENTS: We included a single species CONTENTS: Ten species. Isthmohyla calyp- of this genus, and as such we did not test its sa (Lips, 1996), new comb.; Isthmohyla de- monophyly, but consider it very likely on the bilis (Taylor, 1952), new comb.; Isthmohyla basis of the evidence noted above. As men- insolita (McCranie, Wilson, and Williams, tioned earlier, the sequenced sample comes 1993), new comb.; Isthmohyla lancasteri from a tadpole that was assigned to the Hyla (Barbour, 1928), new comb.; Isthmohyla pi- mixomaculata group based on the enlarged cadoi (Dunn, 1937), new comb.; Isthmohyla oral disc and the labial tooth row formula pictipes (Cope, 1876), new comb.; Isthmo- and tentatively assigned to H. mixe for being hyla rivularis (Taylor, 1952), new comb.; the only species of the group known from Isthmohyla tica (Starret, 1966), new comb.; the region where it was collected. Consider- Isthmohyla xanthosticta (Duellman, 1968), ing the uncertainty in its determination, its position in the tree should be viewed cau- 27 The description and illustrations of the tadpole of tiously. This is not a situation we feel most Hyla debilis by Duellman (1970) do not show these comfortable with, but for a matter of being character states. consistent with the general approach of this 104 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 contribution, we consider that it is better to zelae is tentatively included because of its describe a new genus for the H. mixomacu- similarities with H. thorectes. Technically lata group than to leave it as incerta sedis. our results are certainly compatible with the Although we did not test the monophyly of recognition of a separate genus for the mem- the group, as stated earlier, we consider it bers of the H. bistincta group and the few based on the morphological synapomorphy species from other groups associated with for larvae mentioned above. Another possi- them. However, we are particularly con- ble synapomorphy of this group could be the cerned that the present, clean separation be- lack of vocal slits (Duellman, 1970), but this tween Plectrohyla and these exemplars prob- is contingent on the internal relationships of ably will not hold when more species of the the nearby Charadrahyla; C. chaneque is the two clades, particularly from the H. bistincta only species of that genus known to lack vo- group, are added. The facts that no apparent cal slits (Duellman, 2001). If future studies morphological synapomorphies are known show it to be the sister group of the remain- for the H. bistincta group and that some au- ing species of Charadrahyla, it could render thors raised doubts regarding the limits be- the optimization of the lack of vocal slits as tween it and Plectrohyla support the conser- ambiguous for both Charadrahyla and Me- vative stance of including all these species in gastomatohyla. Males of species included in Plectrohyla. We preserve a Plectrohyla gua- Megastomatohyla lack nuptial excrescences temalensis group for all the species of Plec- on the thumb (Duellman, 1970). The polarity trohyla as de®ned in the past and tentatively of this character state is unclear because it recognize a group that contains all members also occurs in Charadrahyla altipotens and of the H. bistincta group plus the species of in Hyla godmani and H. loquax (Duellman, other groups shown to be related with it in 1970). this analysis. CONTENTS: Four species. Megastomatohyla The reasons why we are not considering mixe (Duellman, 1965), new comb.; Megas- some of the characters states shared by Plec- tomatohyla mixomaculata (Taylor, 1950), trohyla and the Hyla bistincta group that new comb.; Megastomatohyla nubicola were advanced by Duellman (2001) as syn- (Duellman, 1964), new comb.; Megastoma- apomorphies of the rede®ned Plectrohyla tohyla pellita (Duellman, 1968), new comb. were discussed earlier in this paper (p. 68). The only character state that seems to be in- Plectrohyla Brocchi, 1877 clusive of Plectrohyla and the H. bistincta TYPE SPECIES: Plectrohyla guatemalensis group is the long medial ramus of the pter- Brocchi, 1877, by original designation. ygoid in contact with the otic capsule. How- ever, both H. arborescandens and H. cyclada Cauphias Brocchi, 1877. Replacement name for were reported by Duellman (2001) to have a Plectrohyla Brocchi, 1877. short medial ramus that does not contact the DIAGNOSIS: This genus is supported by 43 prootic. In a more densely sampled context, transformations in nuclear and mitochondrial this character state could probably be inter- protein and ribosomal genes. See appendix 5 preted as a reversal; however, in the present for a complete list of these molecular syna- context it optimized ambiguously, so we do pomorphies. We are not aware of any mor- not consider it a morphological synapomor- phological synapomorphy supporting this ge- phy of the rede®ned Plectrohyla. nus as rede®ned here. CONTENTS: Thirty-nine species placed in COMMENTS: We are including in Plectro- two species groups. hyla all species formerly placed in the Hyla bistincta group and some of the members of Plectrohyla bistincta Group the former H. miotympanum (H. cyclada and H. arborescandens) and H. pictipes (H. tho- DIAGNOSIS: Exemplars of this species rectes) groups. H. thorectes is being tenta- group in our analysis are diagnosed by 16 tively included because a still undescribed transformations in nuclear and mitochondrial species, very similar to H. thorectes (Hyla proteins and ribosomal genes. See appendix sp. 5) is nested within this clade. Hyla ha- 5 for a complete list of these transformations. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 105

We are not aware of any morphological syn- Plectrohyla avia Stuart, 1952; Plectrohyla apomorphy supporting this group. chrysopleura Wilson, McCranie, and Cruz- CONTENTS: Twenty-one species. Plectro- DõÂaz, 1994; McCranie hyla ameibothalame (Canseco-MaÂrquez, and Wilson, 1981; Plectrohyla exquisitia Mendelson, and GutieÂrrez-MayeÂn et al., McCranie and Wilson, 1998; Plectrohyla 2002), new comb.; Plectrohyla arborescan- glandulosa (Boulenger, 1883); Plectrohyla dens (Taylor, ``1938''[1939]), new comb.; guatemalensis Brocchi, 1877; Plectrohyla Plectrohyla bistincta (Cope, 1877), new hartwegi Duellman, 1968; Plectrohyla ixil comb.; Plectrohyla calthula (Ustach, Men- Stuart, 1942; Plectrohyla lacertosa Bumhan- delson, McDiarmid, and Campbell, 2000), zen and Smith, 1954; new comb.; Plectrohyla calvicollina (Toal, Hartweg, 1941; Plectrohyla pokomchi Duell- 1994), new comb.; Plectrohyla celata (Toal man and Campbell, 1984; Plectrohyla psi- and Mendelson, 1995), new comb.; Plectro- loderma McCranie and Wilson, 1992; Plec- hyla cembra (Caldwell, 1974), new comb.; trohyla pycnochila Rabb, 1959; Plectrohyla Plectrohyla charadricola (Duellman, 1964), quecchi Stuart, 1942; Plectrohyla sagorum new comb.; Plectrohyla chryses (Adler, Hartweg, 1941; Plectrohyla tecunumani 1965), new comb.; Plectrohyla crassa (Broc- Duellman and Campbell, 1984; Plectrohyla chi, 1877), new comb.; Plectrohyla cyanom- teuchestes Duellman and Campbell, 1992. ma (Caldwell, 1974), new comb.; Plectro- hyla cyclada (Campbell and Duellman, Pseudacris Fitzinger, 1843 2000) new comb.; Plectrohyla hazelae (Tay- lor, 1940), new comb.; Plectrohyla labedac- TYPE SPECIES: Rana nigrita LeConte, tyla (Mendelson and Toal, 1996), new comb.; 1825, by monotypy. Plectrohyla mykter (Adler and Dennis, Chorophilus Baird, 1854. Type species: Rana ni- 1972), new comb.; Plectrohyla pachyderma, grita LeConte, 1825, by original designation. (Taylor, 1942), new comb.; Plectrohyla pen- Helocaetes Baird, 1854. Type species: Hyla tris- theter (Adler, 1965), new comb.; Plectrohyla eriata Wied-Neuwied, 1839, by subsequent psarosema (Campbell and Duellman, 2000), designation of Schmidt (1953). new comb.; Plectrohyla robertsorum (Taylor, Hyliola Mocquard, 1899. Type species: Hyla re- gilla Baird and Girard, 1852, by subsequent 1940), new comb.; Plectrohyla sabrina designation of Stejneger (1907). (Caldwell, 1974), new comb.; Plectrohyla Limnaoedus Mittleman and List, 1953. Type spe- siopela, (Duellman, 1968), new comb.; Plec- cies: Hyla ocularis Bosc and Daudin, 1801, by trohyla thorectes (Adler, 1965), new comb. original designation. Parapseudacris Hardy and Borrough, 1986. Type Plectrohyla guatemalensis Group species: Hyla crucifer Wied-Neuwied, 1838, by original designation. DIAGNOSIS: This group is diagnosed by 34 DIAGNOSIS: This genus is diagnosed by 37 transformations in nuclear and mitochondrial transformations in nuclear and mitochondrial proteins and ribosomal genes. See appendix protein and ribosomal genes. See appendix 5 5 for a complete list of these transformations. for a complete list of these molecular syna- Possible morphological synapomorphies of pomorphies. The m. transversus metatarsus II this species group are bifurcate alary process broad, occupying the entire length of meta- of the premaxilla; sphenethmoid with ante- tarsus II optimizes in this analysis as a mor- rior part ossi®ed; frontoparietals abbuting phological synapomorphy of this genus. posteriorly, exposing only small part of the CONTENTS: Fourteen species placed in four frontoparietal fontanelle; humerus having clades. well-developed ¯anges; hypertrophied fore- arm; prepollex enlarged and ossi®ed in both Pseudacris crucifer Clade sexes; prepollex truncate; and absence of lat- eral labial folds in larvae (Duellman and DIAGNOSIS: This clade is diagnosed by mo- Campbell, 1992; Duellman, 2001). lecular data presented by Moriarty and Can- CONTENTS: Eighteen species. Plectrohyla natella (2004). acanthodes Duellman and Campbell, 1992; CONTENTS: Two species. Pseudacris cru- 106 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 cifer (Wied-Neuwied, 1838); Pseudacris synapomorphies of Ptychohyla proposed by ocularis (Bosc and Daudin, 1801). Campbell and Smith (1992) and Duellman (2001) are also present in some species of its Pseudacris ornata Clade sister taxon (Bromeliohyla ϩ Duellmanohy- la), so we do not recognize them as syna- DIAGNOSIS: This clade is diagnosed by mo- pomorphies until a phylogenetic analysis in- lecular data presented by Moriarty and Can- cluding that evidence is performed. Known natella (2004). males of the exemplars of Ptychohyla in- CONTENTS: Three species. Pseudacris illi- cluded in the analysis share the presence of noensis Smith, 1951; Pseudacris ornata enlarged individual nuptial spines and hy- (Holbrook, 1836); Pseudacris streckeri A.A. pertrophied ventrolateral glands (Duellman, Wright and A.H. Wright, 1933. 2001), as do males of P. macrotympanum and P. panchoi. Discovery of males of H. Pseudacris nigrita Clade dendrophasma will con®rm whether this DIAGNOSIS: This clade is diagnosed by mo- character state is an apparent synapomorphy lecular data presented by Moriarty and Can- of these species or of a less inclusive clade. natella (2004). CONTENTS: Thirteen species. Ptychohyla COMMENTS: According to Moriarty and acrochorda Campbell and Duellman, 2000; Cannatella (2004), this clade contains a more Ptychohyla dendrophasma (Campbell, exclusive clade that contains all species but Smith, and Acevedo, 2000), new comb.; Pty- P. brimleyi and P. brachyphona. chohyla erythromma (Taylor, 1937); Pty- CONTENTS: Seven species. Pseudacris bra- chohyla euthysanota Kellogg, 1928; Pty- chyphona (Cope, 1889); Pseudacris brimleyi chohyla hypomykter McCranie and Wilson, Brandt and Walker, 1933; Pseudacris clarkii 1993; Ptychohyla legleri (Taylor, 1958); Pty- (Baird, 1854); Pseudacris feriarum (Baird, chohyla leonhardschultzei (Ahl, 1934); Pty- 1854); Pseudacris maculata (Agassiz, 1850); chohyla macrotympanum (Tanner, 1957); Pseudacris nigrita (LeConte, 1825); Pseu- Ptychohyla panchoi Duellman and Camp- dacris triseriata (Wied-Neuwied, 1838). bell, 1982; Ptychohyla salvadorensis (Mer- tens, 1952); Ptychohyla sanctaecrucis Camp- Pseudacris regilla Clade bell and Smith, 1992; Ptychohyla spinipollex (Schmidt, 1936); Ptychohyla zophodes DIAGNOSIS: This clade is diagnosed by mo- Campbell and Duellman, 2000. lecular data presented by Moriarty and Can- natella (2004). Smilisca Cope, 1865 CONTENTS: Two species. Pseudacris ca- daverina (Cope, 1866); Pseudacris regilla TYPE SPECIES: Smilisca daulinia Cope, (Baird and Girard, 1852). 1865 (ϭ Hyla baudinii DumeÂril and Bibron, 1841), by monotypy. Ptychohyla Taylor, 1944 Pternohyla Boulenger, 1882. Type species Pter- TYPE SPECIES: Ptychohyla adipoventris nohyla fodiens Boulenger, 1882, by monotypy. Taylor, 1944 (ϭ Hyla leonhardschultzei Ahl, NEW SYNONYMY. 1934), by original designation. DIAGNOSIS: This genus is diagnosed by 38 DIAGNOSIS: This genus is diagnosed by 11 transformations in nuclear and mitochondrial transformations in nuclear and mitochondrial protein and ribosomal genes. See appendix 5 protein and ribosomal genes. See appendix 5 for a complete list of these molecular syna- for a complete list of these molecular syna- pomorphies. We are not aware of any mor- pomorphies. An apparent morphological syn- phological synapomorphy. apomorphy of this group is the well-devel- COMMENTS: Pternohyla is included in the oped lingual ¯ange of the pars palatina of synonymy of Smilisca to avoid paraphyly. premaxillar (Campbell and Smith, 1992). CONTENTS: Eight species. Smilisca baudi- COMMENTS: To avoid paraphyly, we are in- nii (DumeÂril and Bibron, 1841); Smilisca cy- cluding Hyla dendrophasma in Ptychohyla. anosticta (Smith, 1953); Smilisca dentata As mentioned earlier in the discussion, other (Smith, 1957), new comb.; Smilisca fodiens 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 107

(Boulenger, 1882), new comb.; Smilisca Smilisca, and Triprion, the monophyly of phaeota (Cope, 1862); Smilisca puma (Cope, Triprion is supported by three synapomor- 1885); Smilisca sila (Duellman and Trueb, phies28: maxilla greatly expanded laterally; 1966); Smilisca sordida (Peters, 1863). prenasal bone present (known homoplastic instance in Aparasphenodon); and presence Tlalocohyla, new genus of parasphenoid odontoids. COMMENTS: We included a single species TYPE SPECIES: Hyla smithii Boulenger, of this genus, and as such we did not test its 1902. monophyly, but we do not consider it con- DIAGNOSIS: This genus is diagnosed by 92 troversial on the basis of the morphological transformations in nuclear and mitochondrial evidence mentioned above. protein and ribosomal genes. See appendix 5 CONTENTS: Two species. Triprion petasa- for a complete list of these molecular syna- tus (Cope, 1865); Triprion spatulatus GuÈn- pomorphies. We are not aware of any mor- ther, 1882. phological synapomorphy. TYMOLOGY E : From Tlaloc, the Olmec God LOPHIOHYLINI MIRANDA-RIBEIRO, 1926 of the rain, ϩ connecting -o ϩ Hyla. The gender is feminine. Lophiohylinae Miranda-Ribeiro, 1926. COMMENTS: The inclusion of Hyla god- Type genus: Lophyohyla Miranda-Ribeiro, mani and H. loquax is tentative and based on 1926. its association with H. picta and H. smithii Trachycephalinae B. Lutz, 1969. Type genus: Tra- in the former H. godmani group by Duellman chycephalus Tschudi, 1838. (2001). The larvae of H. loquax and H. smi- thii share a reduction in the length of the DIAGNOSIS: This tribe is diagnosed by 63 third posterior tooth row (Caldwell, 1986; transformations in nuclear and mitochondrial Lee, 1996). This feature is not present in the protein and ribosomal genes. See appendix 5 larvae of H. godmani as described by Duell- for a complete list of these molecular syna- man (1970). pomorphies. A putative morphological syn- CONTENTS: Four species. Tlalocohyla god- apomorphy of this tribe is the presence of at mani (GuÈnther, 1901), new comb.; Tlalocoh- least four posterior labial tooth rows in the yla loquax (Gaige and Stuart, 1934), new larval oral disc (e.g., Bokermann, 1966b; comb.; Tlalocohyla picta (GuÈnther, 1901), Duellman, 1974; de SaÂ, 1983; Lannoo et al., new comb.; Tlalocohyla smithii (Boulenger, 1987; McDiarmid and Altig, 1990; Schiesari 1902), new comb. et al., 1996; da Silva in Altig and Mc- Diarmid, 1999b; Wogel et al., 2000) (rever- Triprion Cope, 1866 sals in Osteopilus marianae, O. crucialis, O. wilderi [Dunn, 1926] and in Osteocephalus TYPE SPECIES: Pharyngodon petasatus oophagus [Jungfer and Schiesari, 1995]). Cope, 1865, by monotypy. COMMENTS: This tribe contains all South Pharyngodon Cope, 1865. Junior homonym of American and West Indian casque-headed Pharyngodon Diesing, 1861. Type species: frogs and related groups. It includes Apar- Pharyngodon petasatus Cope, 1865, by mono- asphenodon, Argenteohyla, Corythomantis, typy. Osteopilus, Phyllodytes, Tepuihyla, a new Diaglena Cope, 1887. Type species: Triprion spa- monotypic genus, and the genera Osteoce- tulatus GuÈnther, 1882, by monotypy. phalus and Trachycephalus as rede®ned here. DIAGNOSIS: For the purposes of this paper we consider that the 125 transformations in Recently, Kasahara et al. (2003) noticed nuclear and mitochondrial protein and ribo- that Aparasphenodon brunoi, Corythomantis somal genes autapomorphic of Triprion pe- tasatus are synapomorphies of this genus. 28 Note that on his preferred tree (®g. 410) one of these character transformations is numbered 18, which See appendix 5 for a complete list of these seems to be a typographical error for 12, the only other molecular synapomorphies. In Duellman's character that supports this clade but that is not shown (2001) phylogenetic analysis of Pternohyla, in the tree. 108 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

greeningi, and Osteocephalus langsdorf®i DIAGNOSIS: For the purposes of this paper share similar chromosome morphology, we consider that the 83 transformations in where there is a clear discontinuity in the nuclear and mitochondrial protein and ribo- chromosome lengths of the ®rst ®ve pairs somal genes autapomorphic of Aparasphen- and the remaining seven pairs. Furthermore, odon brunoi are synapomorphies of this ge- they share the presence of a secondary con- nus. See appendix 5 for a complete list of striction in pair 10. Available information on these molecular synapomorphies. A possible karyotypes of other casque-headed frogs of morphological synapomorphy of this genus this clade suggests that the discontinuity in is the presence of a prenasal bone (Trueb, chromosome lengths occurs as well in Ar- 1970a.) genteohyla (apparent from plates published COMMENTS: We included a single species by Morand and Hernando, 1996), Phrynoh- of this genus, and as such we did not test its yas venulosa (apparent from plates published monophyly, but we consider it possible based by Bogart, 1973), and some species of Os- on the morphological evidence mentioned teopilus (O. brunneus, O. dominicensis, O. above. marianae, O. septentrionalis), but not in Os- CONTENTS: Three species. Aparaspheno- teocephalus taurinus, the only species of the don bokermanni Pombal, 1993; Aparasphen- genus Osteocephalus, as rede®ned here, odon brunoi Miranda-Ribeiro, 1920; Apara- whose karyotype was studied (Anderson, sphenodon venezolanus (Mertens, 1950). 1996). The position of the secondary con- striction also varies, having been observed in chromosome 4 in Argenteohyla (Morand and Argenteohyla Trueb, 1970 Hernando, 1996), chromosome 9 in Osteo- TYPE SPECIES: Hyla siemersi Mertens, pilus brunneus, O. dominicensis, O. septen- 1937, by original designation. trionalis, and O. wilderi (Anderson, 1996), DIAGNOSIS: Molecular autapomorphies in- chromosome 10 in Phrynohyas venulosa (ap- clude 102 transformations in nuclear and mi- parent from plates published by Bogart, tochondrial protein and ribosomal genes. See 1973), and in chromosome 12 in Osteoce- appendix 5 for a complete list of these mo- phalus taurinus. The taxonomic distribution lecular synapomorphies. Apparent morpho- of these character states needs further study logical autapomorphies of this taxon include to de®ne the inclusiveness of the clades they support. the articulation of the zygomatic ramus of the Del®no et al. (2002) noticed that serous squamosal with the pars fascialis of the max- skin glands of Osteopilus septentrionalis and illary, and the noticeable reduction in the size Phrynohyas venulosa produce secretory of discs of ®ngers and toes (Trueb, 1970b.) granules with a dense cortex and a pale me- CONTENTS: Monotypic. Argenteohyla sie- dulla; they observed the same in a photo- mersi (Mertens, 1937). graph of a section of skin of published by Toledo and Jared Corythomantis Boulenger, 1896 (1995). Very few hylid taxa were studied for serous gland histology, and these include a TYPE SPECIES: Corythomantis greeningi few species of Phyllomedusa, Holarctic Boulenger, 1896, by monotypy. Hyla, Scinax, and Pseudis paradoxa (see DIAGNOSIS: Molecular autapomorphies in- Del®no et al., 2001, 2002). The taxonomic clude 132 transformations in nuclear and mi- distribution of these peculiar secretory gran- tochondrial proteins and ribosomal genes. ules requires additional study to assess its See appendix 5 for a complete list of these level of generality and the clade or clades transformations. Morphological autapomor- that it diagnoses. phies of this monotypic genus include the ab- sence of palatines, and nasals that conceal the Aparasphenodon Miranda-Ribeiro, 1920 alary processes of premaxillaries (Trueb, 1970a). TYPE SPECIES: Aparasphenodon brunoi CONTENTS: Monotypic. Corythomantis Miranda-Ribeiro, 1920, by monotypy. greeningi Boulenger, 1896. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 109

Itapotihyla, new genus Jungfer, Ron, Seipp, and AlmendaÂriz, 2000; Osteocephalus elke- TYPE SPECIES: Hyla langsdorf®i DumeÂril jungingerae (Henle, 1981); Osteocephalus and Bibron, 1841. exophthalmus Smith and Noonan, 2001; Os- DIAGNOSIS: Molecular autapomorphies in- teocephalus fuscifacies Jungfer, Ron, Seipp, clude 122 transformations in nuclear and mi- and AlmendaÂriz, 2000; Osteocephalus heyeri tochondrial proteins and ribosomal genes. Lynch, 2002; Osteocephalus leoniae Jungfer See appendix 5 for a complete list of these and Lehr, 2001; Osteocephalus leprieurii transformations. A possible morphological (DumeÂril and Bibron, 1841); Osteocephalus autapomorphy is the presence of a prominent mutabor Jungfer and HoÈdl, 2002; Osteoce- subcloacal ¯ap. ϩ phalus oophagus Jungfer and Schiesari, ETYMOLOGY: From Itapoti -Hyla. The 1995; Osteocephalus pearsoni (Gaige, generic name is an allusion to the resem- 1929); Cope, 1874; blance of the unique known species of this Osteocephalus subtilis Martins and Cardoso, genus with lichens and mosses. Itapoti is a 1987; Osteocephalus taurinus Steindachner, Tupi-Guarani term, a composition of ``itaÂ'' ϭ ϭ 1862; Osteocephalus verruciger (Werner, ( rock) with ``poti'' ( ¯ower or to ¯our- 1901); Ron and Pra- ish), which means lichen or moss. muk, 1999. CONTENTS: Monotypic. Itapotihyla langs- dorf®i (DumeÂril and Bibron, 1841), new Osteopilus Fitzinger, 1843 comb. TYPE SPECIES: Trachycephalus marmora- Nyctimantis Boulenger, 1882 tus DumeÂril and Bibron, 1841 (ϭ Hyla sep- tentrionalis DumeÂril and Bibron, 1841). TYPE SPECIES: Nyctimantis rugiceps Bou- lenger, 1882, by monotypy. Calyptahyla Trueb and Tyler, 1974. Type species: Trachycephalus lichenatus Gosse, 1851 (ϭ DIAGNOSIS: Molecular autapomorphies in- clude 139 transformations in mitochondrial Hyla crucialis Harlan, 1826), by original des- ignation. protein and ribosomal genes. See appendix 5 for a complete list of these molecular syna- DIAGNOSIS: This genus is diagnosed by 43 pomorphies. Possible morphological autapo- transformations in nuclear and mitochondrial morphies are the development of an irregular protein and ribosomal genes. See appendix 5 orbital ¯ange in the frontoparietal, and the for a complete list of these molecular syna- sphenethmoid almost completely concealed pomorphies. No morphological synapomor- dorsally by the frontoparietals and nasals phies are known for this genus. (Duellman and Trueb, 1976). CONTENTS: Eight species. Osteopilus brun- CONTENTS: Monotypic. Nyctimantis rugi- neus (Gosse, 1851); Osteopilus crucialis ceps Boulenger, 1882. (Harlan, 1826); Osteopilus dominicensis (Tschudi, 1838); Osteopilus marianae Osteocephalus Steindachner, 1862 (Dunn, 1926); Osteopilus pulchrilineatus (Cope ``1869'' [1870]); Osteopilus septen- TYPE SPECIES: Osteocephalus taurinus trionalis (DumeÂril and Bibron, 1841); Osteo- Steindachner, 1862, by subsequent designa- pilus vastus (Cope, 1871); Osteopilus wilderi tion of Kellogg (1932). (Dunn, 1925). DIAGNOSIS: This genus is diagnosed by 34 transformations in nuclear and mitochondrial Phyllodytes Wagler, 1830 protein and ribosomal genes. See appendix 5 for a complete list of these molecular syna- TYPE SPECIES: Hyla luteola Wied-Neu- pomorphies. We are not aware of any mor- wied, 1824, by monotypy. phological synapomorphy supporting this ge- Amphodus Peters, ``1872'' [1873]. Type species: nus. Amphodus wuchereri Peters, ``1872'' [1873], CONTENTS: Seventeen species. Osteoce- by original designation. phalus buckleyi (Boulenger, 1882); Osteoce- Lophyohyla Miranda-Ribeiro, 1923. Type species: phalus cabrerai (Cochran and Goin, 1970); Lophyohyla piperata Miranda-Ribeiro, 1923 (ϭ 110 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Hyla luteola Wied-Neuwied, 1824), by original COMMENTS: We did not include any ex- designation. emplar of this group, but we continue to rec- DIAGNOSIS: This genus is diagnosed by ognize it following Caramaschi et al. (2004b) 174 transformations in nuclear and mito- pending a rigorous test. See comments for chondrial protein and ribosomal genes. See the P. auratus group. appendix 5 for a complete list of these mo- CONTENTS: Two species. Phyllodytes punc- lecular synapomorphies. Two morphological tatus Caramaschi and Peixoto, 2004; Phyl- synapomorphies of this taxon are the pres- lodytes tuberculosus Bokermann, 1966. ence of odontoids on the mandible and on the cultriform process of the parasphenoid Species of Phyllodytes Unassigned to (Noble, 1931). Group CONTENTS: Eleven species placed in four Peixoto et al. (2003) assigned Phyllodytes species groups (Caramaschi et al., 2004a), gyrinaethes Peixoto, Caramaschi, and Freire, one of which is monotypic. 2003 to its own species group. As stated ear- lier in this paper, we consider that monotypic Phyllodytes auratus Group species groups are not informative. DIAGNOSIS: We are not aware of any pos- sible synapomorphy for this group. Tepuihyla AyarzaguÈena and SenÄaris, ``1992'' [1993] COMMENTS: We did not include any ex- emplar of this group, but we continue to rec- TYPE SPECIES: Hyla rodriguezi Rivero, ognize it following Caramaschi et al. (2004b) 1968, by original designation. pending a rigorous test. Caramaschi et al. DIAGNOSIS: For the purposes of this paper (2004b) diagnosed the different species we consider that the 90 transformations in groups based on color patterns; it is unclear nuclear and mitochondrial protein and ribo- if any of these patterns could be considered somal genes autapomorphic of Tepuihyla synapomorphic. edelcae are synapomorphies of this genus. CONTENTS: Two species. Phyllodytes au- See appendix 5 for a complete list of these ratus (Boulenger, 1917); Phyllodytes wuch- molecular synapomorphies. In the context of ereri (Peters, ``1872'' [1873]). our results, the reduction of webbing be- tween toes I and II is a putative morpholog- Phyllodytes luteolus Group ical synapomorphy of this genus (Ayarza- guÈena et al., ``1992'' [1993b]; several in- DIAGNOSIS: We are not aware of any pos- sible synapomorphy for this group. stances of homoplasy within Lophiohylini, in Phyllodytes, and in the clade composed of COMMENTS: We included a single exemplar of this group and thus did not test its mono- Corythomantis, Argenteohyla, Aparaspheno- phyly, but we continue to recognize it fol- don, and Nyctimantis). lowing Caramaschi et al. (2004b) pending a COMMENTS: We included a single species rigorous test. See comments for the P. au- of Tepuihyla, and as such we did not test its ratus group. monophyly. We continue to recognize it fol- lowing AyarzaguÈena and SenÄaris (``1992'' CONTENTS: Six species. Phyllodytes acu- minatus Bokermann, 1966; Phyllodytes bre- [1993b]) until its monophyly is rigorously virostris Peixoto and Cruz, 1988; Phyllodytes tested. edelmoi Peixoto, Caramaschi, and Freire, CONTENTS: Eight species. Tepuihyla aecii 2003; Phyllodytes kautskyi Peixoto and Cruz, (AyarzaguÈena, SenÄaris, and Gorzula, ``1992'' 1988; Phyllodytes luteolus (Wied-Neuwied, [1993]); Tepuihyla celsae Mijares-Urrutia, 1824); Phyllodytes melanomystax Caramas- Manzanilla-Pupo, and La Marca, 1999; Te- chi, Silva, and Britto-Pereira, 1992. puihyla edelcae (AyarzaguÈena, SenÄaris, and Gorzula, ``1992'' [1993]); Tepuihyla galani (AyarzaguÈena, SenÄaris, and Gorzula, ``1992'' Phyllodytes tuberculosus Group [1993]); Tepuihyla luteolabris (AyarzaguÈena, DIAGNOSIS: We are not aware of any pos- SenÄaris, and Gorzula, ``1992'' [1993]); Te- sible synapomorphy for this group. puihyla rimarum (AyarzaguÈena, SenÄaris, and 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 111

Gorzula, ``1992'' [1993]); Tepuihyla rodri- Incertae Sedis and Nomina Dubia guezi (Rivero, 1968); Tepuihyla talbergae The taxonomic scheme introduced above Duellman and Yoshpa, 1996. comprises most of the valid species of Hy- linae. However, there are a number of species Trachycephalus Tschudi, 1838 of former Hyla whose position in this new TYPE SPECIES: Trachycephalus nigroma- taxonomy is uncertain. There are two likely culatus Tschudi, 1838, by monotypy. reasons for this. (1) The species have known type material and/or are known from multi- Phrynohyas Fitzinger, 1843. Type species: Hyla ϭ ple specimens, but the available information zonata Spix, 1824 ( Rana venulosa Laurenti, is not suf®cient to allow even the tentative 1768). NEW SYNONYMY. Acrodytes Fitzinger, 1843. Type species: Hyla assignment to any of the taxonomic groups, venulosa Daudin, 1802 (ϭ Rana venulosa Lau- so they are here considered as incerta sedis. renti, 1768), by original designation. (2) The species are known mostly from their Scytopis Cope, 1862. Type species: Scytopis hebes original descriptions or type materials are re- Cope, 1862, by monotypy. ported to be lost or lack clear locality data. Tetraprion Stejneger and Test, 1891. Type spe- These are considered nomina dubia. See ap- cies: Tetraprion jordani Stejneger and Test, pendix 4 for additional comments on some 1891, by original designation. of these species. Within the ®rst category fall Hyla alboguttata Boulenger, 1882, Hyla DIAGNOSIS: This genus is diagnosed by 37 chlorostea Reynolds and Foster, 1992, Hyla transformations in nuclear and mitochondrial helenae Ruthven, 1919, Hyla imitator (Bar- protein and ribosomal genes. See appendix 5 bour and Dunn, 1921), Hyla inframaculata for a complete list of these molecular syna- Boulenger, 1882, Hyla vigilans Solano, 1971, pomorphies. The only possible morphologi- and Hyla warreni Duellman and Hoogmoed, cal synapomorphy that we are aware of for 1992. In the second category we include this genus is the presence of paired vocal (those with extant type material are followed sacs protruding posterior to the angles of the by an asterisk) Calamita melanorabdotus jaws when in¯ated (Trueb and Duellman, Schneider, 1799, Calamita quadrilineatus 1971; see also Tyler, 1971). Schneider, 1799, Hyla auraria* Peters, 1873, COMMENTS: We are including Phrynohyas in the synonymy of Trachycephalus to avoid Hyla fusca Laurenti, 1768, Hypsiboas hyp- the nonmonophyly of the two genera. There selops Cope, 1871, Hyla molitor* Schmidt, are other alternatives to resolve this situation, 1857, Hyla palliata Cope, 1863, Hyla such as restricting Trachycephalus to the roeschmanni De Grys, 1938, Hyla surina- southeastern Brazilian taxa, including P. me- mensis Daudin, 1802, and Litoria ameri- sophaea, while retaining Phrynohyas for the cana* DumeÂril and Bibron, 1841. remaining species currently placed in that ge- È nus, and resurrecting Tetraprion to accom- PHYLLOMEDUSINAE GUNTHER, 1858 modate T. jordani. We consider that the ac- tion taken here is the most conservative. GuÈnther, 1858. Type genus: Phyllomedusa Wagler, 1830. CONTENTS: Ten species. Trachycephalus atlas Bokermann, 1966; Trachycephalus cor- Pithecopinae B. Lutz, 1969. Type genus: Pithe- copus Cope, 1866. iaceus (Peters, 1867), new comb.; Trachy- cephalus hadroceps (Duellman and Hoog- DIAGNOSIS: The monophyly of this sub- moed, 1992), new comb.; Trachycephalus family is supported by 95 transformations in imitatrix (Miranda-Ribeiro, 1926), new nuclear and mitochondrial protein and ribo- comb.; Trachycephalus lepidus (Pombal, somal genes. See appendix 5 for a complete Haddad, and Cruz, 2003), new comb.; Tra- list of these molecular synapomorphies. A chycephalus mesophaeus (Hensel, 1867), possible morphological synapomorphy is the new comb.; Trachycephalus nigromaculatus pupil constricting to vertical ellipse (Duell- Tschudi, 1838; Trachycephalus resini®ctrix man, 2001; known instance of homoplasy in (Goeldi, 1907), new comb.; Trachycephalus Nyctimystes). There are several larval char- venulosus (Laurenti, 1768), new comb. acter states that may be synapomorphies, 112 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 such as: the ventrolateral position of the spi- genus do not oviposit on leaves but on rock racle; arcus subocularis of larval chondrocra- crevices or fallen trunks) and on the topology nium with distinct lateral processes; ultralow of Pelodryadinae (however, only two species suspensorium; secondary fenestrae parieta- of Pelodryadinae, Litoria iris and L. longi- les; and absence of a passage between cera- rostris, are known to lay eggs out of water, tohyal and ceratobranchial I (Haas, 2003). and not necessarily on leaves; Tyler, 1963; COMMENTS: Duellman (2001) considered McDonald and Storch, 1993). the presence of a process on the medial sur- Several transformations that resulted as face of metacarpal II a synapomorphy of synapomorphies of Phyllomedusinae in Phyllomedusinae, with a known instance of Burton's (2004) analysis optimize ambigu- homoplasy in Centrolenidae. However, be- ously in our trees because their distribution cause Phyllomedusinae appears to be the sis- is unknown in Cruziohyla new genus. Con- ter taxon of Pelodryadinae, the situation is sequently, it is unclear which transformations more complex. As noticed by Tyler and Da- are synapomorphic of the subfamily and vies (1978b), this character state is also pre- which ones support the monophyly of inter- sent in some species groups of Litoria, so the nal clades. These transformations are: two in- internal topology of Pelodryadinae will de- sertions of the m. ¯exor digitorum brevis su- termine whether this character state is indeed per®cialis; the tendon of the m. ¯exor digi- a synapomorphy of Phyllomedusinae, with torum brevis super®cialis divided along its homoplastic instances in Pelodryadinae, or if length into a medial tendon, from which arise it is a synapomorphy of Phyllomedusinae ϩ tendo super®cialis IV and m. lumbricalis lon- Pelodryadinae, with subsequent reversals in gus digiti V, and a lateral tendon from which the latter taxon. The supplementary postero- arise tendo super®cialis V and m. lumbricalis lateral elements of the m. intermandibularis longus digiti IV; tendo super®cialis pro digiti have been considered a synapomorphy of II arising from a deep, triangular muscle, Phyllomedusinae (Duellman, 2001; Tyler, which originates on the distal tarsal 2±3; ten- 1971). As mentioned earlier, because it is do super®cialis pro digiti III arising entirely more parsimonious to interpret the sole pres- from the margin of the aponeurosis plantaris; ence of supplementary elements of the m. in- two tendons of insertion of m. lumbricalis termandibularis as a synapomorphy of Pelod- longus digiti V arising from two equal mus- ryadinae ϩ Phyllomedusinae, at this point it cle slips; pennate insertion of the lateral slip is ambiguous which of the positions (apical of the medial m. lumbricalis brevis digiti V; as present in Pelodryadinae or posterolateral m. transversus metatarsus II broad, occupy- as in Phyllomedusinae) is the plesiomorphic ing the entire length of metatarsal II; m. state of this clade. transversus metatarsus III broad, occupying The absence of the slip of the m. depressor more than 75% of the length of metatarsal mandibulae that originates from the dorsal III; m. extensor brevis super®cialis digiti III fascia at the level of the m. dorsalis scapulae with two insertions, a ¯at tendon onto basal (which subsequently reverses in Hylomantis phalanx III and a pennate insertion on meta- and Phyllomedusa, see below) could also be tarsus III; and ®nally the m. extensor brevis a synapomorphy of Phyllomedusinae; how- super®cialis digiti IV with a single origin ever, its taxonomic distribution among non- with belly undivided. The presence of m. phyllomedusines needs to be assessed. This ¯exor teres hallucis is shared with Pelodry- is most needed in Pelodryadinae, where as adinae; however, Burton (2004) stressed that far as we are aware, all observations on this in that subfamily, presence or absence of this muscle are limited to Starrett's (1968) un- muscle is subject to great intraspeci®c vari- published dissertation where she commented ation, without providing information as to on its morphology in 2 of the 172 known the states present in the particular specimens valid species of the subfamily. Oviposition he studied, so the character was scored as on leaves out of water could also be another missing data in our matrix. synapomorphy of Phyllomedusinae, but this There are several other character systems is dependent on the position of Phrynome- that will likely provide additional synapo- dusa within Phyllomedusinae (species of this morphies for this group of frogs. Manzano 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 113 and Lavilla (1995b) and Manzano (1997) de- mahyla, and Phyllomedusa. Also, with the scribed several unique character states from exception of A. annae, which has a yellow musculature, whose taxonomic distribution iris, the other species have either a red or a across all Phyllomedusinae needs to be as- dark red iris. sessed. Tyler and Davies (1978a) mentioned COMMENTS: Considering the lack of that Phyllomedusinae are the only hylids knowledge regarding the internal structure of where the mandibular branch of the trigem- Pelodryadinae, where some species have ex- inal nerve subdivides into two twigs after tra- tensive hand and foot webbing (e.g., Tyler, versing the mandible. Various authors (e.g., 1968), it is still unknown if these character Kenny; 1969; Cruz, 1982; Lescure et al., states are plesiomorphic for Phyllomedusi- 1995) noticed that larvae of several species nae. Consequently, at this stage we do not of Phyllomedusinae are usually suspended in know exactly in which point of the topology water in an oblique or even vertical position of Phyllomedusinae they are homoplastic relative to the water surface. Bagnara (1974) (both hands and foot webbing are developed observed a light-sensitive tail-darkening re- in Cruziohyla new genus and, somewhat less action in larvae of two phyllomedusines (Pa- extensively, in Phrynomedusa). chymedusa dacnicolor and Phyllomedusa CONTENTS: Six species. Agalychnis annae trinitatis), and we observed a similar reaction (Duellman, 1963); in tadpoles of Phyllomedusa tetraploidea Cope, 1862; Agalychnis litodryas (Duellman (Faivovich, pers. obs.). Further research will and Trueb, 1967); Agalychnis moreletii (Du- determine how inclusive is the clade or meÂril, 1853); Agalychnis saltator (Taylor, clades supported by these synapomorphies. 1955); Agalychnis spurrelli (Boulenger, The presence of multiple bioactive pep- ``1913'' [1914].) tides has been suggested as a distinctive character of Phyllomedusinae (Cei, 1985). Cruziohyla, new genus Since the beginning of the biochemical pros- pecting, it has become evident that Phyllo- TYPE SPECIES: Agalychnis calcarifer Bou- medusinae have several different classes of lenger, 1902. bioactive peptides (Erspamer, 1994), some DIAGNOSIS: For the purposes of this paper unique (e.g., sauvagine, deltorphins), some we consider that the 171 transformations in not (e.g., bombesins, caeruleins), as do the nuclear and mitochondrial protein and ribo- Pelodryadinae (Apponyi et al., 2004). Be- somal genes autapomorphic of Cruziohyla cause there are multiple bioactive peptides, calcarifer are synapomorphies of this genus. it seems reasonable to consider the different See appendix 5 for a complete list of these peptide families individually as potential molecular synapomorphies. Possible mor- synapomorphies of Phyllomedusinae, Pelod- phological synapomorphies include the ex- ryadinae, or Phyllomedusinae ϩ Pelodryadi- tensive hand and foot webbing (but see com- nae. More work needs to be done to better ments for Agalychnis) and the development understand the taxonomic distribution of the of tadpoles in water-®lled depressions on different classes of peptides. fallen trees. See comments below. ETYMOLOGY: The name comes from the Agalychnis Cope, 1864 Latinization of Cruz, Cruzius ϩ connecting -o ϩ Hyla. We dedicate this new genus to TYPE SPECIES: Agalychnis callidryas Cope, our colleague and friend Carlos Alberto Gon- 1862, by original designation. cËalves da Cruz, in recognition of his various DIAGNOSIS: The monophyly of this group contributions to our knowledge of Phyllo- is supported by 23 transformations in nuclear medusinae. and mitochondrial protein and ribosomal COMMENTS: Phrynomedusa, the only genus genes. See appendix 5 for a complete list of of Phyllomedusinae missing from our anal- these molecular synapomorphies. Agalychnis ysis, shares with Cruziohyla a bicolored iris, has extensively developed webbing on hands developed foot webbing (although more ex- and feet in relationship with Pachymedusa, tensively developed in Cruziohyla), and oral Hylomantis, Cruziohyla new genus, Phas- disc with complete marginal papillae in the 114 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 larvae. However, they differ in that eggs of ziohyla craspedopus (Funkhouser, 1957), Phrynomedusa are laid in rock crevices (A. new comb. Lutz and B. Lutz, 1939; Weygoldt, 1991) or fallen trunk cavities above streams, from Hylomantis Peters, ``1872'' [1873] where tadpoles drop and develop. The larvae of Cruziohyla, unlike those of most other TYPE SPECIES: Hylomantis aspera Peters, known Phyllomedusinae, develop in water- ``1872'' [1873], by monotypy. ®led depressions of fallen trees (Donnelly et DIAGNOSIS: The monophyly of this group al., 1987; Hoogmoed and Cadle, 1991; Cald- is supported by 38 transformations in mito- well, 1994; Block et al., 2003). Hoogmoed chondrial protein and ribosomal genes. See and Cadle (1991) reported two situations appendix 5 for a complete list of these mo- where tadpoles associated with Agalychnis lecular synapomorphies. We are not aware of craspedopus were found in small pools in the any morphological synapomorphy support- forest, without a clear indication of where the ing this genus. eggs were laid. This could be interpreted ei- COMMENTS: Only Phyllomedusa lemur of ther as a polymorphic reproductive trait or as the P. buckleyi group was included in the an indication that more than one species is analysis, and it obtains as the sister group of involved. our exemplar of Hylomantis, H. granulosa, The oral disc with marginal papillae as a but with a Bremer support value of 3. While morphological synapomorphy of Cruziohyla it is evident that this group should be ex- ϩ Phrynomedusa should be taken cautiously cluded from Phyllomedusa, the possible tax- because of our general ignorance of the in- onomic actions (whether to create a new ge- ternal topology of Pelodryadinae. Some Pe- nus or to include it in Hylomantis) deserve lodryadinae also have an oral disc with com- further discussion. From the de®nition of the plete marginal papillae (see Anstis, 2002), group given by Cannatella (1980), the only and further analysis could show that this is character state that could be considered a actually a plesiomorphy for Phyllomedusi- synapomorphy is the bright orange ¯anks in nae. The same problem holds for the pres- life. The other character states included by ence of foot webbing. Cannatella (1980) are either likely symple- Instead of creating Cruziohyla to include siomorphies (absence of the slip of the m. Agalychnis calcarifer and A. craspedopus, depressor mandibulae originating from the we could place both species in Phrynome- dorsal fascia at the level of the m. dorsalis dusa. Both alternatives imply taxonomic scapulae; hands and feet less than one-fourth risks (in particular, that Cruziohyla could be webbed; parotoid gland not differentiated; shown to be nested within Phrynomedusa). palpebrum unpigmented; frontoparietal fon- Taking into account our almost complete ig- tanelle exposed, large, and oval; oral discs of norance of the relationships of Pelodryadi- larvae lacking marginal papillae anteriorly) nae, and therefore character-state polarities at or character states whose taxonomic distri- its base, and that Phrynomedusa could not bution in Phyllomedusinae makes their po- be included in this analysis, we consider that larity unclear (lack of spots or pattern on at this stage it is more appropriate to create ¯anks; cream or white iris; size; dorsum uni- Cruziohyla than to enlarge Phrynomedusa, formly green by day; presence or absence of without being certain about character polar- calcars). Like the P. buckleyi group, the two ities at the base of Phyllomedusinae. species included in Hylomantis by Cruz Agalychnis craspedopus could not be in- (1990) also lack spots or pattern on ¯anks, cluded in the analysis, but the close relation- which are light yellow (instead of bright or- ship between A. craspedopus and A. calcar- ange). At this point, we have no evidence ifer seems uncontroversial, as both have been regarding the polarity of these two character repeatedly associated by some authors states; consequently, we consider that the (Duellman, 1970; Hoogmoed and Cadle, morphological evidence of monophyly of the 1991; Duellman, 2001). P. buckleyi group is weak. Considering that CONTENTS: Two species. Cruziohyla cal- we could not test the monophyly of the P. carifer (Boulenger, 1902), new comb., Cru- buckleyi group, and that available morpho- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 115 logical evidence for its monophyly is not lomantis, as rede®ned here). A difference is compelling, provisionally, and with the ca- the large snout±vent length (SVL) of P. dan- veat that the molecular support for this ieli compared with the species of Hylomantis grouping is rather weak, we prefer to include (the only reported specimen of P. danieli,a all species of this group in Hylomantis, female, is 81 mm SVL; females of the other where we recognize them as a separate spe- species reach a maximum of 57 mm, accord- cies group, pending a rigorous test of its ing to Cannatella [1980]). Phyllomedusa monophyly when a denser taxon sampling danieli shares with the Hylomantis buckleyi becomes available. group its only apparent morphological syn- CONTENTS: Eight species placed in two apomorphy (but see comments above), the species groups. bright orange ¯anks in life. Because of this, we tentatively include P. danieli in Hylo- Hylomantis aspera Group mantis. CONTENTS: Six species. Hylomantis buck- DIAGNOSIS: Possible morphological syna- leyi (Boulenger, 1882), new comb.; Hylo- pomorphies of this group are the lanceolate mantis danieli (Ruiz-Carranza, HernaÂndez- discs and presence of the slip of the m. de- Camacho, and Rueda-Almonacid, 1988), pressor mandibulae originating from the dor- new comb.; Hylomantis hulli (Duellman and sal fascia at the level of the m. dorsalis scap- Medelson, 1995), new comb.; Hylomantis le- ulae (known homoplastic instance in Phyl- mur (Boulenger, 1882), new comb.; Hylo- lomedusa and several other anurans). mantis medinai (Funkhouser, 1962), new COMMENTS: We included a single species comb.; Hylomantis psilopygion (Cannatella, of this group, and as such we did not we did 1980), new comb. not test its monophyly, but we recognize it based on the aforementioned evidence. Pachymedusa Duellman, 1968 CONTENTS: Two species. Hylomantis as- pera Peters, ``1872'' [1873]; Hylomantis TYPE SPECIES: Phyllomedusa dacnicolor granulosa (Cruz, ``1988'' [1989]). Cope, 1864. DIAGNOSIS: Molecular autapomorphies in- Hylomantis buckleyi Group clude 105 transformations in nuclear and mi- tochondrial proteins and ribosomal genes. DIAGNOSIS: The only apparent morpholog- See appendix 5 for a complete list of these ical synapomorphy of this group is the pos- transformations. Possible morphological au- session of bright orange ¯anks in life (Can- tapomorphies are the ®rst toe opposable to natella, 1980). others, reticulated palpebral membrane (ho- COMMENTS: We included a single species moplastic with some species of Phyllome- of this group, and as such we did not we did dusa; Duellman et al., 1988b), and the iris not test its monophyly. We recognize it fol- reticulation (Duellman, 2001). lowing Cannatella (1980), pending a rigorous COMMENTS: Duellman (2001) also includ- test of its monophyly. Ruiz-Carranza et al. ed the toes about one-fourth webbed as an (1988) tentatively included Phyllomedusa autapomorphy of Pachymedusa. In the con- danieli in the P. buckleyi group because of text of our results, this is probably not an the reduced webbing, absence of parotoid autapomorphy, as the webbing is also equally glands, toe I shorter than toe II, presence of or more reduced in Hylomantis (as rede®ned a calcar, and unpigmented palpebrum. As the here), Phasmahyla, and Phyllomedusa. authors noted, these characteristics are also CONTENTS: Monotypic. Pachymedusa dac- shared with Phasmahyla and Hylomantis nicolor (Cope, 1864). (they refer to these genera using the former species groups of Phyllomedusa), but some Phasmahyla Cruz, 1990 also with Phrynomedusa. One difference they noticed was the golden iris coloration TYPE SPECIES: Phyllomedusa guttata A. instead of white; however, in the present sce- Lutz, 1924, by original designation. nario the polarity of this state is unclear (a DIAGNOSIS: The monophyly of this genus white iris is present in Phasmahyla and Hy- is supported by 94 transformations in mito- 116 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 chondrial protein and ribosomal genes. See clear. Phrynomedusa could either be the sis- appendix 5 for a complete list of these mo- ter group of Cruziohyla or the remaining lecular synapomorphies. Possible morpho- Phyllomedusinae. logical synapomorphies of this genus are the CONTENTS: Five species. Phrynomedusa absence of a vocal sac, and the modi®cation appendiculata (A. Lutz, 1925); Phrynome- of the larval oral disc into an anterodorsal dusa bokermanni Cruz, 1991; Phrynomedusa funnel-shaped structure (Cruz, 1990). ®mbriata Miranda-Ribeiro, 1923; Phryno- COMMENTS: Cruz (1990) mentioned the ab- medusa marginata (Izecksohn and Cruz, sense of parotoid glands in Phasmahyla but 1976); Phrynomedusa vanzolinii Cruz, 1991. stressed the presence of a pair of latero-dor- sal glands. While these glands could be cos- Phyllomedusa Wagler, 1830 idered as possible synapomorphies of Phas- TYPE SPECIES: Rana bicolor Boddaert, mahyla, additional work is needed in order 1772 by monotypy. to determine if they could be considered as homologous to the parotoid glands present in Cope, 1866. Type species: Phyllome- Phyllomedusa. dusa azurea Cope, 1862. CONTENTS: Four species. Phasmahyla Bradymedusa Miranda-Ribeiro, 1926. Type spe- cochranae (Bokermann, 1966); Phasmahyla cies: Hyla hypochondrialis Daudin, 1800, by subsequent designation of Vellard (1948). exilis (Cruz, 1980); Phasmahyla guttata (A. Lutz, 1924); Phasmahyla jandaia (Boker- DIAGNOSIS: The monophyly of this taxon mann and Sazima, 1978). is supported by 49 transformations in nuclear and mitochondrial protein and ribosomal Phrynomedusa Miranda-Ribeiro, 1923 genes. See appendix 5 for a complete list of these transformations. Apparent morpholog- TYPE SPECIES: Phrynomedusa ®mbriata ical synapomorphies of Phyllomedusa are the Miranda-Ribeiro, 1923, by subsequent des- presence of parotoid glands, toe I longer than ignation of Miranda-Ribeiro (1926). toe II, and presence of the slip of the m. de- DIAGNOSIS: A likely synapomorphy of this pressor mandibulae originating from the dor- taxon is the oviposition in rock crevices or sal fascia at the level of the m. dorsalis scap- fallen trunks overhanging streams (A. Lutz ulae (known instance of homoplasy in the and B. Lutz, 1939; Weygoldt, 1991). group, and several COMMENTS: We did not include any species other anurans) (Duellman et al., 1988b). of this genus in our analysis. Besides the COMMENTS: The transformation from pres- place of oviposition, we are not aware of any ence to absence of the m. abductor brevis other possible synapomorphy of Phrynome- plantae hallucis optimizes ambiguously in dusa. This is not a strong support for its our analysis because the state of this char- monophyly, particularly if we consider that acter is unknown in Phasmahyla. with the exception of Weygoldt's (1991) Blaylock et al. (1976) described the pe- studies in captivity of Phrynomedusa mar- culiar wiping behavior in P. boliviana (as P. ginata, reports on oviposition of Phrynome- pailona), P. hypochondrialis, P. sauvagii, dusa are mostly anecdotal. and P. tetraploidea (as P. iheringii). This be- The most obvious difference between havior was subsequently reported in P. dis- Phrynomedusa and Cruziohyla is the impres- tincta, P. tarsius (Castanho and De Luca, sive SVL difference. Although the reduction 2001), and P. iheringii (Langone et al., in SVL could actually be a synapomorphy of 1985). Castanho and De Luca (2001) further Phrynomedusa, considering how rudimenta- noticed a peculiar daily molting behavior. ry is our knowledge of the topology of Pe- Further research on the taxonomic distribu- lodryadinae, and considering its taxonomic tion of these behaviors in Phyllomedusa will distribution in Phyllomedusinae (Phasmahy- determine the limits of the group(s) they sup- la, Hylomantis, and Cruziohyla also have a port. The presence of the so-called lipid proportionally smaller SVL, as do some spe- glands has been so far been reported in the cies of Phyllomedusa), the polarity of SVL ®ve species of Phyllomedusa that were stud- as a character, if de®nable at all, is far from ied (P. bicolor, P. boliviana, P. hypochon- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 117 drialis, P. sauvagii, and P. tetraploidea; of this group lack vomerine teeth, as do Blaylock et al., 1976; Del®no et al., 1998; Phasmahyla, Phyllomedusa palliata and Lacombe et al., 2000) and were noticed to some species of Phrynomedusa (BrandaÄo, be unique to the genus by Del®no et al. 2002; Cruz, 1990). The taxonomic distribu- (1998), so they could likely be another syn- tion of other myological peculiarities de- apomorphy. As noticed by Cruz (1982), and scribed by Manzano and Lavilla (1995b) in corroborated by most larval descriptions of P. hypochondrialis, such as the presence of Phyllomedusinae, the larvae of most species thin and/or shortened muscles, and unusual of Phyllomedusa,29 as rede®ned here, have insertions of some of them, needs to be as- the third posterior row of labial teeth reduced sessed in other Phyllomedusinae. in relation to the ®rst and second posterior CONTENTS: Six species. Phyllomedusa ay- rows. eaye (B. Lutz, 1966); Phyllomedusa centralis CONTENTS: Twenty-six species, some of Bokermann, 1965; Phyllomedusa hypochon- them included in four species groups. drialis (Daudin, 1800); Phyllomedusa me- gacephala (Miranda-Ribeiro, 1926); Phyllo- Phyllomedusa burmeisteri Group medusa oreades BrandaÄo, 2002; Phyllome- DIAGNOSIS: We are not aware of any syn- dusa rohdei Mertens, 1926. apomorphy of this group. COMMENTS: We included only a single spe- Phyllomedusa perinesos Group cies of this group in our analysis, and as such we did not test its monophyly, but we rec- DIAGNOSIS: A possible synapomorphy of ognize it following Pombal and Haddad this group is the purple coloration on the (1992), pending a rigorous test of its mono- hands, feet, ¯anks, and concealed surfaces, phyly. as well as the purple venter with white gran- CONTENTS: Four species. Phyllomedusa ules (Cannatella, 1982). burmeisteri Boulenger, 1882; Phyllomedusa COMMENTS: We did not include any ex- distincta B. Lutz, 1950; Phyllomedusa iher- emplar of this group in the analysis. Its ingii Boulenger, 1885; Phyllomedusa tetra- monophyly is tentatively assumed following ploidea Pombal and Haddad, 1992. Cannatella (1982) and is based on the evi- dence mentioned above. Phyllomedusa hypochondrialis Group CONTENTS: Four species. Phyllomedusa DIAGNOSIS: We are not aware of any syn- baltea Duellman and Toft, 1979; Phyllome- apomorphy of this group. dusa duellmani Cannatella, 1982; Phyllome- COMMENTS: We included a single species dusa ecuatoriana Cannatella, 1982; Phyllo- of this group, and as such we did not test its medusa perinesos Duellman, 1973. monophyly, but we recognize it following BrandaÄo (2002), pending a rigorous test of Phyllomedusa tarsius Group its monophyly. Manzano and Lavilla (1995b) described the muscle epicoracoideus in Phyl- DIAGNOSIS: We are not aware of any syn- lomedusa hypochondrialis, and Manzano apomorphy supporting the monophyly of this (1997) noticed its absence in other species group. that she studied (P. atelopoides, P. boliviana, COMMENTS: We included a single species and P. sauvagii). Our observations on the of this group, and as such we did not test its only other species of the group available to monophyly, but we continue to recognize it us, P. rohdei (AMNH A-20263), indicate following De la Riva (1999) until its mono- that it also has the m. epicoracoideus, so we phyly is rigorously tested. consider the presence of this muscle a pos- CONTENTS: Four species. Phyllomedusa sible synapomorphy of the group. All species boliviana Boulenger, 1902; Phyllomedusa camba De la Riva, 2000; Phyllomedusa sau- 29 The only exception we are aware of is the larvae of Phyllomedusa vaillanti, where P-3 almost equals P-2 vagii Boulenger, 1882; Phyllomedusa tarsius (Caramaschi and Jim, 1983). (Cope, 1868). 118 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Species of Phyllomedusa Unassigned to noted for the Hylidae (Darst and Cannatella, Group 2004; Hoegg et al., 2004) and in several oth- There are several species that are currently er groups (see SanmartõÂn and Ronquist not assigned to any group. These are: Phyl- [2004] for a review). In our results (®g. 13), lomedusa atelopoides Duellman, Cadle, and the Australopapuan Pelodryadinae forms the Cannatella, 1988; Phyllomedusa bicolor sister taxon of the predominantly South (Boddaert, 1772); Phyllomedusa coelestis American Phyllomedusinae, a distribution (Cope, 1874); Phyllomedusa palliata Peters, which we think speaks to one of the earliest ``1872'' [1873]; Phyllomedusa tomopterna patterns in the entire Hylidae, that of an Aus- (Cope, 1868); Phyllomedusa trinitatis Mer- tralia±Antarctica±South American connec- tens, 1926; Phyllomedusa vaillanti Boulen- tion. We cannot address any other topics of ger, 1882; and Phyllomedusa venusta Duell- pelodryadine biogeography due to our lim- man and Trueb, 1967. ited sampling.

BIOGEOGRAPHICAL COMMENTARY RELATIONSHIPS BETWEEN SOUTH AND Our objective here is to comment on pat- MIDDLE AMERICA terns of distribution among the major bio- geographic/tectonic units and not to provide Having the sister taxon of the Phyllome- a detailed biogeographic analysis. The distri- dusinae in Australia strongly suggests a bution/biogeographic units of our discussion southern (South American) origin of the are (1) Australia plus New Guinea, (2) con- Phyllomedusinae, although distribution of tinental South America, (3) Middle America the most basal taxon, , (in the sense of being composed of tropical is in ChocoÂ/lower Middle America, with the Mexico, the Chortis Block of Central Amer- remaining taxa found from northwestern ica, and the Panamanian Isthmus), and (4) Mexico to southern Brazil. This distribution the temperate Holarctic. Clearly all of these suggests that the phyllomedusine biogeo- regions have histories that provide clues as graphic pattern is not recent. Assuming a to movements and diversi®cations within connection between Australia and South these areas. Because of the enormity of the America was by way of Antarctica, one topic of biogeography for the entire Hylidae, would be driven to the conclusion that South our comments will be truncated, limited ei- America is the home of the phyllomedusines. ther by our taxonomic sampling, knowledge The fact that we could not include any ex- of earth history, or phylogenetic resolution. emplar of Phrynomedusa, an Atlantic Forest Nevertheless, there are obvious geographic genus possibly related with Cruziohyla, patterns that warrant our attention. could possibly cloud the general picture. The distribution of the Hylidae strongly Apart from the Hylini, there are several suggests a southern-continent origin of the instances of members of the other three tribes taxon, a conclusion in accord with sugges- of Hylinae having a Middle American distri- tions based on different lines of evidence ad- bution (®gs. 14±16), corroborating the sug- vanced over the last 80 years (Metcalf, gestion of Duellman (2001) regarding the ex- 1923a, 1923b, 1928; Duellman, 1970, 2001; istence of several independent vicariance or Savage, 2002a) and supported by the obser- dispersal events with hylids between South vation that all the major groups of hylids America and Middle America. Our results have their centers of diversity in southern imply eight independent events of dispersal continents, with only phylogenetically sec- from South America into Middle America: ondary centers of diversi®cation existing in (1) Dendropsophus ebraccatus, (2) D. micro- Middle America, North America, and even cephalus, (3) ancestor of Hylini, (4) Hypsi- more attenuated areas of radiation in Eurasia. boas boans, (5) H. ru®telus, (6) Scinax bou- lengeri, (7) S. elaeochrous and S. staufferi, RELATIONSHIPS BETWEEN AUSTRALIA AND and (8) Trachycephalus venulosus. However, SOUTH AMERICA this number is a clear underestimation be- The relationship between Australian and cause we did not include other terminals that South American taxa has been previously also have a Middle American distribution 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 119

(e.g., Dendropsophus phlebodes, D. robert- graphically from each other: Myersiohyla is mertensi, D. sartori, D. subocularis, Hypsi- composed solely of Guayana Highlands spe- boas pugnax, H. rosenbergi, Scinax altae, cies; Hyloscirtus is composed exclusively of and S. rostratus) and which may represent Andean species; Bokermannohyla and Aplas- additional entries into Middle America from todiscus are composed almost exclusively of South America. For some of these species species from the southeastern Brazilian At- (e.g., Scinax altae and S. rostratus) we con- lantic Forest and Rocky ®elds associated sider it likely that they are related to other with this formation and to the Cerrado. We Middle American members of their respec- are not aware of any similar biogeographic tive phylogenetic nearest relatives (hence not pattern in any other animal group. adding to the number of independent biogeo- graphic events). Other species (Dendropso- GUAYANA HIGHLANDS phus subocularis) might imply additional Our analysis included 6 of the 19 hylid events because they are probably nested endemics (updated from Duellman's [1999] within mostly South American clades. The list by adding Hypsiboas rhythmicus)ofthe uncertain position of the other species (e.g., Guayana Highlands, plus two undescribed Dendropsophus phlebodes, D. robertmerten- species. The topology suggests a minimum si, D. sartori, Hypsiboas pugnax, H. rosen- of four independent occurrences of endemic bergi) in our phylogenetic hypothesis does hylines in the Guayana Highlands (®gs. 14, not allow us to suggest that their presence in 16): (1) the Hypsiboas benitezi group (this Middle America either represents indepen- group also contains three species from west- dent events or that they are contained within ern Amazonia: H. hutchinsi, H. microderma, other groups of species whose ancestors and Hypsiboas sp. 2), (2) Hypsiboas sibleszi, moved into Middle America. (3) Myersiohyla, and (4) Tepuihyla.IntheH. Considering the Hylinae with a Middle benitezi group, it is ambiguous whether there American origin, the results imply two bio- is an origin in the Guayana Highlands with geographic events to explain the presence of a subsequent dispersal/vicariance event into these lineages in South America: the cases of northwestern Amazonia, or two independent Scinax elaeochrous (®g. 15) and Smilisca events that led to the presence of these spe- phaeota (®g. 16). Once again, this is a min- cies in the highlands. imal number of events. The monophyly of Considering the 13 taxa from the Guayana Ecnomiohyla could be in error, because most Highlands that were unavailable for this species were unavailable for study and at study, all but two species are members of least E. tuberculosa (not studied) is possibly groups represented in the analysis. Seven are unrelated to the Middle American fringe- species of Tepuihyla, three are species of limbed treefrogs. Duellman (2001) suggested Myersiohyla, two are species of Scinax (S. that Smilisca sila and S. sordida together are danae, and S. exiguus), one is a species ten- monophyletic (apparent synapomorphies: tatively associated with the Hypsiboas beni- ventral oral disc in the larvae and small inner tezi group (H. rhythmicus), and one is incerta metatarsal tubercle) and together are the sis- sedis (``Hyla warreni''). Phylogenetic rela- ter taxon of S. puma. If this hypothesis with- tionships of the two species of Scinax with stands further testing, it would represent a other species of the genus are still unknown, third independent biogeographic event in- as is the position of ``Hyla warreni''. When volving a Middle American lineage present considering relationships of the Guayana in northern South America. Highlands lineages with the other Hylinae, current evidence suggests they are related to SOUTH AMERICA elements from the Amazon Basin (Osteoce- phalus, Hypsiboas microderma, Hypsiboas GUAYANA HIGHLANDS±ANDES± sp. 2) and the ChocoÂ(Hypsiboas picturatus). ATLANTIC FOREST Within Cophomantini (®g. 14), the ®rst IMPACT OF THE ANDES IN HYLINE EVOLUTION four genera contain elements from three The uplift of the Andes and subsequent characteristic formations, quite distant geo- climatic changes in the Quaternary have an 120 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 121 impressive correlation with large radiations varius are sister species (Faivovich, unpubl. of anuran groups, such as certain Bufonidae, data), so they are considered another inde- Centrolenidae, Dendrobatidae, Hemiphracti- pendent entrance into the Andes. Adding up nae, and Eleutherodactylinae (e.g., Lynch, all these species and clades gives a maximum 1986; Coloma, 1995; Lynch and Duellman, total of 17 independent biogeographic 1997; Lynch et al., 1997; Lynch, 1998; events, of which 5 subsequently radiated and Duellman, 1999). Previous knowledge of hy- 13 are single taxa. If the Andean species of lid distribution, as well as our results, sug- Osteocephalus were monophyletic, then the gests a much more limited impact of the An- ®gure could decrease to 14 independent des in hylid radiation and speciation, with events, 6 of which subsequently radiated. three hyline radiations in the Andes (®gs. 14, Considering the information outlined 16): Hyloscirtus, the Andean clade of the above, and returning to the beginning of this Hypsiboas pulchellus group, and the Den- section, whereas now we have an upper and dropsophus columbianus ϩ D. labialis a lower limit for the number of independent groups clade. If we consider the taxa that radiations of hylids in the Andes, we have no were not included in this analysis, there are idea as to the number of independent radia- 41 with an Andean distribution: Dendrop- tions of Bufonidae, Centrolenidae, Dendro- sophus aperomeus, D. battersbyi,``Hyla batidae, and Hemiphractinae in the Andes. chlorostea'', D. delarivai, D. praestans, D. A question that might arise is why there is stingi, D. yaracuyanus,``Hyla vigilans'', Os- such poor diversi®cation of hylids in the An- teocephalus elkejungingerae, O. leoniae, O. des (note that its complement, Why are there pearsoni, Scinax fuscovarius, S. castroviejoi, so many species in extra-Andean areas?, is S. manriquei, S. oreites, the four species of equally valid). There are several scenarios the Dendropsophus garagoensis group, plus that could answer this question. The presence 23 additional members of Hyloscirtus, the in several areas of the Andes of anuran Andean clade of the Hypsiboas pulchellus groups with obligate aquatic life-history group, and the Dendropsophus columbianus stages dependent on either ponds or streams ϩ D. labialis groups clade (Duellman, 1999; (Centrolenidae, Bufonidae) appears to be a Mijares-Urrutia and Rivero, 2000; Jungfer strong argument against a hypothesis of lack and Lehr, 2001; KoÈhler and LoÈtters, 2001a; of appropriate . The fact that hylids Barrio-AmoroÂs et al., 2004). If the D. gara- are found in fairly high altitudes in the Andes goensis group is not related to the Dendrop- (e.g., species in the Andean stream-breeding sophus columbianus ϩ D. labialis groups clade reach up to 2400 m; Duellman et al., clade, then it would represent a fourth An- 1997; species of the D. labialis group reach dean radiation of hylids. Relationships of the up to 3500 m; LuÈddecke and Sanchez, 2002) Andean D. aperomeus, D. battersbyi, D. de- and other places (e.g., several Hylini living larivai, D. stingi, and D. yaracuyanus within between 2000 and 3000 m; see Duellman, Dendropsophus are unknown, so they may 2001) could indicate that there may be few represent as many as ®ve additional events physiological constraints limiting the exploi- 30 leading to the presence of hylids in the An- tation of higher areas. des. A similar situation occurs with ``Hyla 30 We understand that this argument is weak; perhaps chlorostea'', ``Hyla vigilans'', Scinax man- the hylid groups that are not physiologically constrained riquei, S. oreites, and the species of Osteo- are precisely those that could colonize and diversify in cephalus. Scinax castroviejoi and S. fusco- the highlands.

← Fig. 13. A partial view of the strict consensus showing major biogeographic patterns among out- groups, Pelodryadinae and Phyllomedusinae, and the geographic distribution of the exemplars of Phyl- lomedusinae. Distributions are taken from Duellman (1999) and Frost (2002). Only collective groups referred in ``Biogeographic Commentary'' are shown. An asterisk (*) indicates the distribution of Phyl- lomedusa hypochondrialis that ranges from the Chaco/Cerrado through the Amazon Basin and Guayana lowlands up to the Llanos. 122 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Fig. 14. A partial view of the strict consensus showing the geographic distribution of the components of Cophomantini. Distributions, in general, are taken from Duellman (1999). Only collective groups referred in ``Biogeographic Commentary'' are shown. An asterisk (*) indicates the distribution of Hyp- siboas punctatus that ranges from the Chaco/Cerrado through the Amazon Basin and Guayana lowlands up to the Caribbean lowlands. Two asterisks (**) indicate the geographic distribution of Hypsiboas cordobae that is restricted to the Sierras of Central . 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 123

ATLANTIC FOREST ested areas (Bokermann, 1964a) and that two species of the B. circumdata group, B. na- Of the several instances of hyline taxa pre- nuzae and B. sazimai are from rocky ®elds sent in the Atlantic Forest of Brazil, eight are (Bokermann and Sazima, 1973b; Cardoso single terminals and six are clades (®gs. 14± and Andrade ``1982'' [1983]) suggest that a 16). The terminals are (1) Aparasphenodon denser taxon sampling of Bokermannohyla is brunoi, (2) , (3) D. necessary to better understand whether these giesleri, (4) D. minutus, (5) D. seniculus, (6) frogs are an original element from the rocky Hypsiboas albopunctatus, (7) Scinax urugua- ®elds that secondarily radiated in the forested yus, and (8) Xenohyla truncata. The clades areas or vice versa. are (1) Aplastodiscus, (2) the Hypsiboas fa- The clade composed of the Hypsiboas fa- ber group plus the H. pulchellus group clade, ber and H. pulchellus groups could be an ex- (3) Trachycephalus nigromaculatus plus T. ample of an Atlantic Forest (or at least an mesophaeus, (4) Phyllodytes, (5) the Scinax eastern Brazilian31) origin with subsequent catharinae clade, and (6) Bokermannohyla. radiations into other regions. Faivovich et al. Including the approximately 134 hylid spe- (2004) found that within the H. pulchellus cies that were unavailable for this study with group, an Andean clade was nested within an a distribution in eastern Brazil would cer- Atlantic Forest clade. Exactly the same pat- tainly increase the number of clades and ter- tern for the group is corroborated by our minals in an unpredictable way. analysis (®g. 14). Faivovich (2002) observed that Scinax was divided in two clades, one endemic to ORIGIN OF WEST INDIAN HYLIDS the Atlantic Forest (the S. catharinae clade) and another that was widespread in the Neo- Our results support assertions made by tropics (the S. ruber clade). Our results imply Hass et al. (2001) and Hedges (1996), based an ambiguous situation. The position of S. on immunological distances and unpublished uruguayus as the sister taxon of the remain- sequence data, regarding a diphyletic origin ing species of the S. ruber clade suggests that of West Indian hylids. Osteopilus is the sister Scinax could have as well originated in group of a clade composed of Osteocephalus southeastern Brazil and colonized other areas and the montane Tepuihyla (®g. 16). While of the Neotropics in subsequent events. A the incomplete taxon sampling precludes a denser taxon sampling of Scinax would allow careful assessment of the distribution of the a test of this hypothesis. most basal taxa of these genera, our results In Lophiohylini, nearly all species of Phyl- are compatible with a northern South Amer- lodytes are from the Atlantic Forest (the only ican origin for Osteopilus; Tepuihyla is re- exception being P. auratus from Trinidad), stricted to highlands in Venezuela and Guy- as is also true for Itapotihyla langsdorf®i and ana (AyarzaguÈena et al., ``1992'' [1993b], several other species of the tribe. However, Duellman and Yoshpa, 1996; Mijares-Urrutia the situation here is equivocal because it et al., 1999), and Osteocephalus is wide- would be equally parsimonious to postulate spread in the Amazon Basin and surrounding two independent events leading to the pres- regions, from Venezuela and ence of I. langsdorf®i and Phyllodytes in the to Bolivia (e.g., De la Riva et al., 2000; Les- Atlantic Forest. cure and Marty, 2000; Jungfer and Lehr, Within Bokermannohyla, the B. circum- 2001; Smith and Noonan, 2001). data species group, mostly from forested re- gions, is nested within a clade composed of 31 Hypsiboas crepitans in Brazil occurs in some areas of the Atlantic forest and mostly in adjacent Cerrado species and species groups (B. pseudopseudis Caatinga and Cerrado formations; however, we still and B. martinsi groups) restricted to the think the observed pattern is meaningful, and the addi- highland formations of rocky ®elds (Boker- tion of the remaining species of the group will help to mann and Sazima, 1973b; Eterovick and better de®ne it. Hypsiboas crepitans also has wider dis- tribution, including , , Venezuela, and BrandaÄo, 2001; Lugli and Haddad, in prep.). the Guayanas; however, the status of those populations The facts that the other species included in needs to be reassessed (Lynch and Suarez-Mayorga, the B. martinsi group, B. langei, is from for- 2001), as do their relationships with the H. faber group. 124 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Regarding the other West Indian hylid spe- and that the Isthmian Highlands Isthmohyla cies, Hypsiboas heilprini and its sister-group is nested within all these lineages. We see relationship with the H. albopunctatus group these situations as being at least partially (®g. 14) is notable in that the basal taxon of compatible with the current paleogeographic the group, H. raniceps, has a broad distri- scenario for Middle America (see Iturralde- bution through open areas of South America, Vinent and McPhee, 1999; Savage, 2002a). spanning about 3500 km, from French Gui- The topology of the Mexican Highlands± ana (Lescure and Marty, 2000) to eastern Nuclear Central American clades also shows central Argentina (Basso, 1995). The fact some ®ne-grained patterns, like the possible that both hylid lineages present in the West sister-taxon relationship between a clade Indies clearly have a northern South Ameri- from the Mexican highlands (Plectrohyla can origin is coincident with the suggestions bistincta group) and one from the Nuclear made by Hedges (1996). Central American highlands (Plectrohyla guatemalensis group). The problem is that MIDDLE AMERICA AND THE HOLARCTIC considering the scarce taxon sampling of these two species groups in our analysis, and The molecular evidence for Hylini does the very likely possibility of further rear- not support the idea of a basal split between rangements upon addition of more exemplars an Isthmian±Lowlands clade and a Mexican± of these groups (see comments in earlier dis- Nuclear Central American clade as was sug- cussion), it seems risky to hypothesize about gested by Duellman (2001). Instead, it sug- the recovered pattern. gests the existence of a clade composed pri- Most authors who have discussed the ori- marily of, but not limited to, Mexican high- gin of Eurasiatic Hyla assumed its origin lands-Nuclear Central American elements from western North American Hyla and its (®g. 15). Nested within this clade, there is a dispersion to Eurasia presumably through lineage composed of two lowland clades Beringia (Anderson, 1991; Borkin, 1999; (Tlalocohyla, and the group composed of An- Duellman, 2001; Kuramoto, 1980). The to- otheca, Triprion, and Smilisca), an Isthmian pology of Hyla (®g. 15) shows two Eura- Highlands clade (Isthmohyla) and one North siatic taxa. One of these, the H. arborea American±Eurasiatic clade (Hyla). group, forms the sister taxon of the remain- Within the Mexican Highlands±Nuclear ing Hyla. The other, H. japonica, is imbed- Central American clade, and besides the ma- ded within the H. eximia group, which in jor lineage that diversi®ed outside this region turn is nested within a grade of eastern North (Hyla, Isthmohyla), there are two other in- American species. This situation implies two stances of terminals distributed in lower Cen- independent biogeographic events to explain tral America (®g. 15), Duellmanohyla ru®- the origin of Eurasiatic Hyla, as suggested by oculis and Ecnomiohyla miliaria. There are Anderson (1991) and Borkin (1999). While also at least three more cases that were un- this pattern is partially compatible with the available for this study: two species of Duell- idea of a western North American origin of manohyla (D. lythrodes, D. uranochroa), the at least some Eurasiatic Hyla (those nested lower Central American species of Ecnom- within the H. eximia group) claimed by pre- iohyla (E. ®mbrimembra, E. thysanota), and vious authors, it remains at least equivocal Ptychohyla (P. legleri). The two instances for the clade that contains most exemplars of implied by our results are a lower limit; the the H. arborea group. The only way of main- addition of further exemplars of Duellma- taining a western North American origin for nohyla, Ecnomiohyla, and Ptychohyla will this clade is to invoke a very important his- determine if there were other events as well. torical shift in the distribution of the cur- Hylini is nested within a South American rently eastern North American species clade, supporting a South American origin groups or to accept an eastern North Amer- for this group. It is interesting, however, to ican±European (North Atlantic) vicariance or see a likely Mexican highlands±Nuclear Cen- dispersal event. The position of the H. eximia tral American origin for the lowland lineages group nested within eastern North American (Anotheca, Tlalocohyla, Smilisca, Triprion), species groups requires a dispersal/vicariance 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 125

Fig. 15. Partial view of the strict consensus showing the geographic distribution of the components of Dendropsophini. Distributions, in general, are taken from Duellman (1999). Only collective groups referred in ``Biogeographic Commentary'' are shown. An asterisk (*) indicates the geographic distri- bution of Scinax squalirostris that includes the Atlantic forest, Cerrado, Chaco, and Pampean . Two asterisks (**) indicate the geographic distribution of Scinax ruber that includes the Amazonian and Guayana lowlands, Caribbean lowlands, and Llanos. Three asterisks (***) indicate the geographic dis- tribution of Pseudis paradoxa that extends from the Chaco region to the Amazonian and Guayana lowlands, the Llanos, and the Caribbean lowlands.

event southward to explain the distribution a humerus from the Maastrichtian of Naskal, of this lineage, as suggested by Duellman India (Prasad and Rage, 1995) tentatively as- (2001). signed to Hylidae, although Sanchiz (1998a) considered the identi®cation dubious. Hylids AROUGH TEMPORAL FRAMEWORK:CLUES were mentioned from the Paleocene of Ita- FROM THE HYLID FOSSIL RECORD boraõÂ (Brazil) by Estes (1970), Estes and The hylid fossil record is remarkably scant Reig (1973), Estes and Baez (1985), and (Sanchiz, 1998a), and hylid remains, on most Baez (2001), but the materialÐalso iliac re- occasions, are represented by disarticulated mainsÐis stills unstudied. ilia. The oldest fossil record tentatively as- The earliest known record for North signed to Hylidae is remains of an ilium and America is Hyla swanstoni, from the Late 126 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 127

Eocene of Cypress Hill Formation (Saskatch- niency the Miocene remains from Europe, ewan, Canada), described by Holman (1968) especially the approximately 17 mybp Hyla based on eroded iliac remains; Sanchiz sp. reported by Sanchiz (1998b), we could (1998a) also considered this taxonomic as- consider an even earlier, though still unspec- signment to be dubious. Other iliac remains i®ed, minimum age of hylid presence in from the mid-Miocene of North America North America. All the evidence regarding (mostly from the Hemingfordian North hylid fossil record and its minimum ages has American Land Mammal Age) were also re- been presented. ferred to hylids (i.e., Acris barbouri, Hyla How this information could be used de- miocenica, H. mio¯oridiana, Proacris min- pends on how much we are willing to assume toni, Pseudacris nordensis), as well as sev- about the role of known geophysical data in eral Pleistocene remains that were assigned dating cladogenetic events. In recent studies to extant species (Holman, 2003). addressing phylogenetic studies of some frog The oldest known hylid record for Europe groups, geophysical information was used was reported by Sanchiz (1998b) from early for molecular clock calibrations (e.g., Bos- Miocene lignite deposits of Austria. The re- suyt and Milinkovitch, 2000; Vences et al., mains consist of a fragmentary sacral verte- 2003c). Leaving aside particular objections bra and a scapula, which Sanchiz (1998b) about molecular clock estimations, the use of found to be similar to Hyla arborea and H. clade-independent information as calibration meridionalis, and assigned to Hyla sp. Other points entails assumptions about the evolu- remains from the late Miocene, as well as tionary process and about the primacy and from the Pliocene to Holocene, were referred precision of paleogeographic reconstructions to Hyla sp., H. arborea, and the most recent that should be taken cautiously (Page and ones to some extant species (see Sanchiz Lydeard, 1994). It has been this clade-inde- [1998a] for review). pendent information that has classically been The oldest fossil record of hylids in Aus- used to date one of the important events of tralia dates to the Lower to Middle Miocene, the hylid radiation: the origin of the Hylini. where some species of Litoria were de- Both Savage (1966, 1982, 2002a) and scribed on the basis of iliac remains (e.g., Duellman (1970, 2001) suggested an early Tyler, 1991). Other Pleistocene and Holocene colonization event of Middle America by remains were assigned to extant species (see Hylinae and Phyllomedusinae stocks in the Sanchiz [1998a] for a review). late ±; from these stocks, We are not inclined to construct far-reach- all remaining Middle American and North ing hypotheses based on such a sparse fossil American elements differentiated due to sev- record. Without taking into account Hyla eral vicariant and dispersal events through swanstoni, already questioned by Sanchiz the Tertiary. Considering that the evidence (1998a), we must consider the possibility that for the existence of a late mid-Miocene land- at least one of the North American iliac re- bridge between North and South America mains from the Miocene assigned to hylids (necessarily involving Central America) is is actually related to the extant groups of ambiguous (Iturralde-Vinent and McPhee, Holarctic hylids. If this were the case, it 1999), a ``classical'' assumption of nonover- would imply a minimum age of approxi- water dispersal would imply that actually the mately 15 mybp of hylid presence in North minimum age of colonization of Middle America. If we consider with the same le- America must have been at least about 75

← Fig. 16. Partial view of the strict consensus showing the geographic distribution of the components of Hylini and Lophiohylini. Distributions were taken from Campbell (1999) and Duellman (1970, 2001). Only collective groups referred in ``Biogeographic Commentary'' are shown. An asterisk (*) indicates the distribution of Anotheca spinosa that is present in the Mexican, Nuclear Central American, and Isthmian highlands. Two asterisks (**) indicate the geographic distribution of Trachycephalus venulosus, which extends from central eastern Argentina to Southern Mexico. 128 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 mybp, during the existence of the so-called Ecnomiohyla, Hyloscirtus, Hypsiboas, and post-Cretaceous Arc landbridge (Iturralde- Plectrohyla would result in important Vinent and McPhee, 1999). While this seems changes in our understanding of those like a logical deduction, we ®nd it to be un- groups. supported by the available data pertaining to 5. Resolution of the taxa herein considered in- sertae sedis: A careful study of available hylids. We only know (or better, assume) that material of the taxa that we could not as- hylids were present in North America 15 sociate with any of clades that we identify mybp and possibly in Europe 17 mybp. Ac- and, if available, the inclusion of molecular cordingly, we are still uncomfortable in as- data derived from them would hopefully signing 75 mybp as the minimum age of Hy- permit their inclusion in the phylogenetic lini. Instead, this age should be the result of context of hylids. either a fossil record (still unknown) or a dat- ing exercise. ACKNOWLEDGMENTS

FUTURE DIRECTIONS First and foremost, we thank William E. Duellman for his major contribution to our In order to increase our knowledge of hy- knowledge of hylid frogs. His lifework was lid phylogenetics, we see several lines of in- the foundation of this project and a perma- quiry stemming from this project whose pur- nent source of inspiration. Several of his suit would be fruitful. These are: ideas were corroborated here, while we were 1. Nonmolecular data set: As stated elsewhere unable to ®nd evidence supporting a few oth- in this paper, an extensive, well-researched ers. These discrepancies are immaterial in nonmolecular data set is a major gap in our our appreciation of his monumental contri- analysis. Every effort should be made to bution. complete one and to combine it with the For the loan of tissue samples employed available molecular data. in this study, voucher specimens, help in the 2. Phylogeny of Pelodryadinae: By far the ®eld, or critical material, we thank (see ap- greatest de®ciency in our knowledge of hy- pendix 4 for institutional abreviations): lid relationships that still need to be solved Raoul Bain, Charles J. Cole, Linda S. Ford, is the relationships among Pelodryadinae. The combination of a densely sampled data and Charles W. Myers (AMNH); Angelique set of Pelodryadinae with ours will be help- Corthals (AMCC-AMNH); Cornelya Klutsch ful for understanding Phyllomedusinae re- (ZFMK); Diego F. Cisneros-Heredia (DFCH- lationships. USFQ); Eric Smith and Paul Ustach (UTA); 3. Inclusion of unrepresented groups and dens- Boris L. Blotto, Andres Sehinkman, Martin er taxon sampling of poorly represented Ramirez, Santiago Nenda, and Gustavo R. groups of Hylinae: No exemplars of the Carrizo (MACN); Oscar Flores-Villela and Bokermannohyla claresignata and the Den- Adrian Nieto Montes de Oca (MZFC); dropsophus garagoensis groups were avail- Dwight Lawson (Zoo Atlanta), David Wake, able for this analysis. Furthermore, several and Meredith Mahoney (MVZ); Jose P. Pom- groups have been poorly represented; such is the case for Ecnomiohyla, Exerodonta, bal Jr. (MNRJ); MaÂrcio Martins, Miguel T. Isthmohyla, Megastomatohyla, Plectrohyla, Rodrigues, and Renata Cecilia Amaro Ghi- and Tlalocohyla. A major task in the future lardi (Universidade de SaÄo Paulo); Hussam will be to rigorously test all the tentative as- Zaher, Paulo Nuin, and Patricia Narvaes sociations of species not included in the (MZUSP); Frederick H. Sheldon and Donna analysis with the various clades that we Dittmann (LSU); W. Ronald Heyer and Roy identi®ed. W. McDiarmid (USNM); Karen Lips 4. Relationships within smaller taxonomic (SIUC); Luis Coloma (QCAZ); Jiri Moravec units: Our results provide a general frame- (NMP6V); Steve Lougheed (Queen's Uni- work for the study of relationships within almost any of the genera or species groups versity); Ignacio De la Riva (MNCN); Diego of the species-rich genera of Hylidae. In par- Baldo (Universidad Nacional de Misiones); ticular, we think that the study of relation- George Lenglet (IRSNB); James Hanken ships through an increased taxon sampling (MCZ); Frank Glaw (ZSM); Elizabeth Scot within Bokermannohyla, Dendropsophus, (TMSA); Rainer GuÈnther (ZMB); Barry 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 129

Clarke (BMNH); Arnold Kluge and Greg ural History and the Center for Environmen- Schnider (UMMZ); Robert Murphy (ROM); tal Research and Conservation at Columbia Steve Donnellan (SAMA); Jorge Williams University, New York, in collaboration with (MLP); GoÈran Nilson (NHMG); Janalee P. the Museo de Historia Natural Noel-Kempff Caldwell (Sam Noble Oklahoma Museum of Mercado, Santa Cruz, Bolivia, and ColeccioÂn Natural History, University of Oklahoma; Boliviana de la Fauna, La Paz. Tissues from samples collected under National Science AMNH Vietnamese specimens were collect- Fundation grants DEB-9200779 and DEB- ed under National Science Foundation DEB- 9505518); Rafael de Sa (University of Rich- 9870232 to the Center for Biosiversity and mond); Renoud Boistel (Universite Paris Conservation at the AMNH. Exportation per- Sud); Luis Canseco-MaÂrquez (Universidad mits of Brazilian samples were issued by Au- Nacional Autonoma de Mexico); Esteban O. torizacËaÄo de Acesso e de Remessa de Amos- Lavilla (FundacioÂn Miguel Lillo); Maureen tra de Componente do PatrimoÃnio GeneÂtico A. Donnelly (Florida International Universi- nЊ 037/2004; permits for collection were is- ty); John D. Lynch (Instituto de Ciencias Na- sued by IBAMA/RAN, licencËa 057/03, pro- turales, Universidad Nacional de Colombia); cesso 02001.002792/98±03. Magno Segalla (Museu de HistoÂria Natural For discussions on hylid systematics and/ CapaÄo da Imbuia); HeÂlio da Silva (Univer- or nomenclatural problems, we thank JoseÂA. sidade Federal Rural do Rio de Janeiro); Ana Langone, Jose P. Pombal, Jr., Charles W. My- Carolina de Queiroz Carnaval (University of ers, Esteban O. Lavilla, and Roy McDiarmid. Chicago); Paul Moler (Florida Fish and Tom Burton answered many questions and Wildlife Conservation Commission); Robert requests of clari®cations regarding his im- N. Fisher (U.S. Geological Survey, San Di- portant contribution (Burton, 2004). Jan De ego, CA); Valerie McKenzie (University of Laet and Pablo Goloboff made useful sug- California, Santa Barbara); Aaron Bauer gestions regarding the analyses. Maureen A. (Villanova University); Marcos Vaira (Mu- Donnelly, Jose P. Pombal, Jr., Charles W. seo de Ciencias Naturales, Universidad Na- Myers, Jose L. Langone, Taran Grant, Nor- cional de Salta); Claude Gascon (Conserva- berto P. Giannini, Raoul Bain, Diego Pol, and tion International); Joseph Mendelsohn (Utah W. Leo Smith kindly read partially or com- State University); Axel Kwet (Staatliches pletely the manuscript and provided useful Museum fuÈr Naturkunde, Stuttgart); RogeÂrio comments and ideas. P. Bastos (Universidade Federal de GoiaÂs); JoaÄo Luis Gasparini (Universidade Federal JuliaÂn Faivovich acknowledges the Amer- do EspõÂrito Santo); Marcelo Gordo (Univer- ican Museum of Natural History, E3B/Co- sidade Federal do Amazonas); SoÃnia Cechin lumbia University, NASA/AMNH computa- (Universidade Federal de Santa Maria); Ivan tional phylogenetic fellowship, AMNH Roo- Sazima (Universidade Estadual de Campi- sevelt Grant, and National Science Founda- nas); MarõÂlia T.A. Hartmann, Paulo Hart- tion grant no. DEB-0407632 for ®nancial mann, Luciana Lugli, Ariovaldo P. Cruz support. Furthermore, he thanks Diego Pol, Neto, Cynthia P.A. Prado, LuõÂz O. M. Gias- W. Leo Smith, Taran Grant, Rafael de SaÂ, son, and LuõÂs F. Toledo (Universidade Estad- Charles J. Cole, Fernando Lobo, and Esteban ual Paulista±Rio Claro); Giovanni Vincipro- Lavilla for their early encouragment to pur- va (Universidade Federal do Rio Grande do sue this project. Sul); Phillipe Gaucher (Mission Pour la CreÂ- Celio F.B. Haddad thanks programa BIO- ation du Parc de la Guyane); Karl-Heinz TA/FAPESP (proc. 01/13341±3) and CNPq Jungfer; Sylvain Dubey; A.P. Almeida; Pedro for ®nancial support. Cacivio; Martin Henzel; and Pierrino and Jonathan A. Campbell acknowledges Na- Sandy Mascarino. Their generosity was in- tional Science Foundation grant no. DEB- strumental in the completion of this project. 0102383 for ®nancial support. Tissues from Bolivian AMNH specimens Darrel R. Frost and Ward C. Wheeler ac- were collected during an expedition support- knowledge support from NASA grants ed by the Center for and Con- NAG5±8443 and NAG5±12333. They also servation at the American Museum of Nat- especially thank Lisa Gugenheim and Mer- 130 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 rily Sterns for their efforts in support of mo- lecular perspective on the evolutionary af®ni- lecular research at the AMNH. ties of an enigmatic Neotropical frog, Allophry- ne ruthveni. Zoological Journal of the Linnean REFERENCES Society 134: 335±346. AyarzaguÈena, J. 1992. Los centrolenidos de la Alcalde, L., and S.D. Rosset. ``2003'' [2004]. Guayana Venezolana. Publicaciones de la Aso- DescripcioÂn y comparacioÂn del condrocraÂneo ciacioÂn de Amigos de DonÄana: 1±46. en larvas de Hyla raniceps (Cope, 1862), Sci- AyarzaguÈena, J., and J.C. SenÄaris. ``1993'' nax granulatus (Peters, 1871) y Scinax squali- [1994]. Dos nuevas especies de Hyla (Anura; rostris (A. Lutz, 1925) (Anura: Hylidae). Cuad- Hylidae) para las Cumbres Tepuyanas del Es- ernos de HerpetologõÂa 17: 33±49. tado Amazonas, Venezuela. Memoria de la So- Almeida, C.G., and A.J. Cardoso. 1985. Variabi- ciedad de Ciencias Naturales La Salle 53: 127± lidade em medidas dos espermatozoÂides de 146. Hyla fuscovaria (Amphibia, Anura) e seu sig- AyarzaguÈena, J., J.C. SenÄaris, and S. Gorzula. ni®cado taxonoÃmico. Revista Brasileira de ``1992'' [1993a]. El grupo Osteocephalus rod- Biologia 45: 387±391. riguezi de las tierras altas de la guayana vene- Altig, R., and R.W. McDiarmid. 1999a. Body zolana: descripcioÂn de cinco nuevas especies. plan. Development and morphology. In R.W. Memoria Sociedad de Ciencias Naturales La McDiarmid and R. Altig (editors), Tadpoles. Salle 52: 133±142. The biology of anuran larvae: 24±51. Chicago: AyarzaguÈena, J., J.C. SenÄaris, and S. Gorzula. The University of Chicago Press. ``1992'' [1993b]. Un nuevo genero para las es- Altig, R., and R.W. McDiarmid. 1999b. Diversity. pecies del ``grupo Osteocephalus rodriguezi'' Familial and generic characterizations. In R.W. (Anura: Hylidae). Memoria de la Sociedad de McDiarmid and R. Altig (editors), Tadpoles. Ciencias Naturales La Salle 52: 213±221. The biology of anuran larvae: 295±337. Chi- Baez, A.M. 2001. Tertiary anurans from South cago: The University of Chicago Press. America. In H. Heatwole and R.L. Carrol (ed- Alves, A.C.R., and S.P. Carvalho e Silva. 2002. itors), biology, vol. 4: 1388±1401. Descriptions of the tadpoles of Scinax alter and Sidney: Surrey Beatty and Sons. Scinax cuspidatus. Journal of Herpetology 36: Bagnara, J.T. 1974. The tail-darkening reaction of 133±137. phyllomedusine tadpoles. Journal of Experi- Alves, A.C.R., M.d.R. Gomes, and S.P. Carvalho mental Zoology 187: 149±154. e Silva. 2004. Description of the tadpole of Sci- Bagnara, J.T., and W. Ferris. 1975. The presence nax auratus (Wied-Neuwied) (Anura, Hylidae). of phyllomedusine melanosomes and pigments Revista Brasileira de Zoologia 21: 315±317. in Australian hylids. Copeia 1975: 592±595. Anderson, K. 1991. Chromosome evolution in Barrio, A., and B. Lutz. 1966. Notas Batracolo- Holarctic Hyla treefrogs. In D.M. Green and gicas. I. Sobre la supuesta presencia del genero S.K. Sessions (editors), Amphibian cytogenet- Flectonotus Miranda-Ribeiro en la Argentina. ics and evolution: 299±331. New York: Aca- II. Observaciones etoecologicas sobre Trachy- demic Press. cephalus siemersi (Mertens) (Anura, Hylidae). Anderson, K. 1996. A karyological perspective on Physis 26: 107±108. the monophyly of the hylid genus Osteopilus. Barrio, A., and P. Rinaldi de Chieri. 1971. Con- In R. Powell and R.W. Henderson (editors), tribucioÂn al esclarecimiento de la posicioÂn taxo- Contributions to West Indian herpetology: a tribute to Albert Schwartz: 157±168. Ithaca, ®letica de algunos batracios patagoÂnicos de la NY: Society for the Study of Amphibians and familia Leptodactylidae mediante el anaÂlisis Reptiles. cariotipico. Physis 30: 673±685. Anstis, M. 2002. Tadpoles of south-eastern Aus- Barrio-AmoroÂs, C.L., and O. Fuentes. 2003. A tralia. A guide with keys. Sydney: Reed New new species of Stefania (Anura: Hylidae: Holland. Hemiphractinae) from the summit of Cerro Au- Apponyi, M.A., T.L. Pukala, C.S. Brinkworth, tana, Estado Amazonas, Venezuela. Herpetolo- V.M. Maselli, J.H. Bowie, M.J. Tyler, G.W. gica 59: 504±512. Booker, J.C. Wallace, J.A. Carver, F. Separovic, Barrio-AmoroÂs, C.L., A. Orellana, and A. Cha- J.J. Doyle, and L.E. Llewellyn. 2004. Host-de- con. 2004. A new species of Scinax (Anura: fense peptides of Australian anurans: structure, Hylidae) from the Andes of Venezuela. Journal mechanisms of action and evolutionary signif- of Herpetology 38: 105±112. icance. Peptides 25: 1035±1054. Basso, N.G. 1995. Hyla raniceps. Geographic dis- Austin, J.D., S.C. Lougheed, K. Tanner, A.A. tribution. Herpetological Review 26: 105. Chek, J.P. Bogart, and P.T. Boag. 2002. A mo- Bastos, R.P., and J.P. Pombal, Jr. 1996. A new 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 131

species of Hyla (Anura: Hylidae) from eastern ais da Academia Brasileira de Ciencias 39: Brazil. Amphibia±Reptilia 17: 325±331. 441±443. Biju, S.D., and F. Bossuyt. 2003. New frog from Bokermann, W.C.A. 1968. Notas sobre alguns an- India reveals an ancient biogeographical link ®bios Brasileiros descritos por Reinhardt e LuÈt- with the Seychelles. Nature 425: 711±714. ken em 1862 (Amphibia). Revista Brasileira de Blair, W.F. 1958. Call structure and species groups Biologia 28: 327±329. in U.S. treefrogs (Hyla). Southwestern Natural- Bokermann, W.C.A. 1972. Notas sobre Hyla clep- ist 3: 77±89. sydra A. Lutz (Anura, Hylidae). Revista Bras- Blaylock, L.A., R. Ruibal, and K. Platt-Aloia. ileira de Biologia 32: 291±295. 1976. Skin structure and wiping behavior of Bokermann, W.C.A. 1973. Duas novas especies Phyllomedusinae frogs. Copeia 1976: 283±295. de Sphaenorynchus da Bahia (Anura, Hylidae). Block, J.E., S.L. Unser, J.K. Mooney, and E.R. Revista Brasileira de Biologia 33: 589±594. Wild. 2003. Agalychnis craspedopus (Amazon Bokermann, W.C.A., and I. Sazima. 1973a. An- leaf frog). Reproduction. Herpetological Re- fõÂbios da Serra do CipoÂ, Minas Gerais, Brasil. view 34: 134±135. 1: Duas espeÂcies novas de Hyla (Anura, Hyli- Bogart, J.E. 1973. Evolution of anuran karyo- dae). Revista Brasileira de Biologia 33: 521± types. In J.L. Vial (editor), Evolutionary biol- 528. ogy of the anurans. Contemporary research on Bokermann, W.C.A. and I. Sazima. 1973b. AnfõÂ- major problems: 329±349. Columbia, MO: bios da Serra do CipoÂ, Minas Gerais, Brasil. 1: University of Missouri Press. EspeÂcies novas de ``Hyla'' (Anura, Hylidae). Bokermann, W.C.A. 1962. Cuatro nuevos hylidos Revista Brasileira de Biologia 33: 329±336. del Brasil. Neotropica 8: 81±91. Bokermann, W.C.A., and I. Sazima. 1978. AnfõÂ- Bokermann, W.C.A. 1963. Girinos de anfõÂbios bios da Serra do CipoÂ, Minas Gerais, Brasil. 4: brasileirosÐI (Amphibia±). Anais da DescricËaÄo de Phyllomedusa jandaia sp. n. (An- Academia Brasileira de CieÃncias 35: 465±474. ura, Hylidae). Revista Brasileira de Biologia Bokermann, W.C.A. 1964a. Dos nuevas especies 38: 927±930. de Hyla de Minas Gerais y notas sobre Hyla Bonacum, J., R. DeSalle, P. O'Grady, D. Olivera, alvarengai bok (Amphibia, Salientia, Hylidae). J. Wintermute, and M. Zilversmith. 2001. New Neotropica 10: 67±76. nuclear and mitochondrial primers for system- Bokermann, W.C.A. 1964b. Notes on treefrogs of atics and comparative genomics in Drosophili- the Hyla marmorata group with description of dae. Drosophila Information Service 84: 201± a new species (Amphibia, Hylidae). Sencken- 204. bergiana Biologica 45: 243±254. Borkin, L.J. 1999. Distribution of amphibians in Bokermann, W.C.A. 1965a. Tres novos batraquios North Africa, Europe, western Asia, and the da regiaÄo central de Mato Grosso, Brasil. Re- former Soviet Union. In W.E. Duellman (edi- vista Brasileira de Biologia 25: 257±264. tor), Patterns of distribution of amphibians. A Bokermann, W.C.A. 1965b. Hyla langei, a new global perspective: 329±420. Baltimore: The frog from ParanaÂ, southern Brasil. Journal of Johns Hopkins University Press. the Ohio Herpetological Society 5: 49±51. Bossuyt, F., and M.C. Milinkovitch. 2000. Con- Bokermann, W.C.A. 1966a. Notas sobre Hylidae vergent adaptive radiations in Madagascan and do Espirito Santo (Amphibia, Salientia). Revis- Asian ranid frogs reveal covariation between ta Brasileira de Biologia 26: 29±37. larval and adult traits. Proceedings of the Na- Bokermann, W.C.A. 1966b. O geÃnero Phyllodytes tional Academy of Sciences USA 97: 6585± Wagler, 1830 (Anura, Hylidae). Anais da Aca- 6590. demia Brasileira de CieÃncias 38: 335±344. Boulenger, G.A. 1882. Catalogue of the Batrachia Bokermann, W.C.A. 1966c. Una nueva especie de Salientia s. Ecaudata in the collection of the Trachycephalus de Bahia, Brasil (Amphibia, British Museum, 2nd ed. London: Taylor and Hylidae). Neotropica 12: 120±124. Francis. Bokermann, W.C.A. 1967a. Hyla astartea, nova BrandaÄo, R.A. 2002. A new species of Phyllo- especie da Serra do Mar em SaÄo Paulo (Am- medusa Wagler, 1830 (Anura: Hylidae) from phibia, Hylidae). Revista Brasileira de Biologia central Brazil. Journal of Herpetology 36: 571± 27: 157±158. 578. Bokermann, W.C.A. 1967b. Nova especie de Hyla Bremer, K. 1988. The limits of amino acid se- do Amapa (Amphibia, Hylidae). Revista Bras- quence data in angiosperm phylogenetic recon- ileira de Biologia 27: 109±112. struction. Evolution 42: 795±803. Bokermann, W.C.A. 1967c. Notas soÃbre cantos Burton, T.C. 1996. Adaptations and evolution in nupciais de anfõÂbios brasileiros. I. (Anura). An- the hand muscles of Australo-Papuan hylid 132 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

frogs (Anura: Hylidae: Pelodryadinae). Austra- Campbell, J.A., E.N. Smith, and M. Acevedo. lian Journal of Zoology 44: 611±623. 2000. A new species of fringe-limbed treefrog Burton, T.C. 1998a. Are the distal extensor mus- (Hylidae) from the Sierra de los Cuchumatanes cles of the ®ngers of anurans an adaptation to of northwestern . Herpetologica 56: arboreality? Journal of Herpetology 32: 611± 250±256. 617. Cannatella, D.C. 1980. A review of the Phyllo- Burton, T.C. 1998b. Variation in the hand and su- medusa buckleyi group (Anura: Hylidae). Oc- per®cial throat musculature of Neotropical lep- casional Papers of the Museum of Natural His- todactylid frogs. Herpetologica 54: 53±72. tory, The University of Kansas 87: 1±40. Burton, T.C. 2004. Muscles of the pes of hylid Cannatella, D.C. 1982. Leaf-frogs of the Phyllo- frogs. Journal of Morphology 260: 209±233. medusa perinesos group (Anura: Hylidae). Bushnell, R.J., E.P. Bushnell, and M.V. Parker. Copeia 1982: 501±513. 1939. A chromosome study of ®ve members of Canseco-MaÂrquez, L., J.R. Mendelson III, and G. the family Hylidae. Journal of the Tennessee GutieÂrrez-MayeÂn. 2002. A new species of Hyla Academy of Science 14: 209±215. (Anura: Hylidae) from the Mixteca Alta, Oa- Cadle, J.E., and R. Altig. 1991. Two lotic tadpoles xaca, Mexico. Herpetologica 58: 260±269. from the Andes of southern : Hyla armata Canseco-MaÂrquez, L., G. GutieÂrrez-MayeÂn, and and Bufo veraguensis, with notes on the call of J.R. Mendelson III. 2003. Distribution and nat- Hyla armata (Amphibia: Anura: Hylidae and ural history of the hylid frog Hyla xera in the Bufonidae). Studies on Neotropical Fauna and Tehuacan-Cuicatlan valley, Mexico, with a de- Environment 26: 45±53. scription of the tadpole. The Southwestern Nat- Caldwell, J.P. 1974. A re-evaluation of the Hyla uralist 48: 670±675. bistincta species group, with descriptions of Caramaschi, U. 1989. RevisaÄo do geÃnero Sphae- three new species (Anura: Hylidae). Occasional norhynchus Tschudi, 1838: ComposicËaÄo, anaÂl- Papers of the Museum of Natural History, The ise cladõÂstica e biogeogra®a (Anura, Hylidae). University of Kansas 28: 1±37. Ph.D. dissertation, Instituto de BiocieÃncias, Caldwell, J.P. 1986. A description of the tadpole Universidade de SaÄo Paulo, SaÄo Paulo of Hyla smithii with comments on tail colora- Caramaschi, U. 1998. Description of a second tion. Copeia 1986: 1004±1006. species of the genus Xenohyla (Anura: Hyli- Caldwell, J.P. 1989. Structure and behavior of dae). Amphibia-Reptilia 19: 377±384. Hyla geographica tadpole schools, with com- Caramaschi, U., and C.A.G. Cruz. 1998. Notas ments on classi®cation of group behavior in taxonoÃmicas sobre Pseudis fusca Garman e P. tadpoles. Copeia 1989: 938±950. bolboactyla A. Lutz, com a descricËaÄo de uma Caldwell, J.P. 1992. Diversity of reproductive nova espeÂcie correlata (Anura, Pseudidae). Re- modes in anurans: facultative nest construction vista Brasileira de Biologia 15: 929±944. in gladiator frogs. In W.C. Hamlett (editor), Re- Caramaschi, U., and C.A.G. Cruz. 2000. Duas es- productive biology of South American verte- peÂcies novas de Hyla Laurenti, 1768 do estado brates: 85±97. New York: Springer-Verlag. de GoiaÂs, Brasil (Amphibia, Anura, Hylidae). Caldwell, J.P. 1994. Natural history and survival Boletim do Museu Nacional, Nova SeÂrie, Zool- of eggs and early larval stages of Agalychnis ogia 422: 1±12. calcarifer (Anura: Hylidae). Herpetological Caramaschi, U., and R.N. Feio. 1990. A new spe- Natural History 2: 57±66. cies of Hyla (Anura, Hylidae) from southern Campbell, J.A. 1999. Distribution patterns of Am- Minas Gerais, Brazil. Copeia 1990: 542±546. phibians in Middle America. In W.E. Duellman Caramaschi, U., and J. Jim. 1983. ObservacËoÄes (editor), Patterns of distribution of amphibians. sobre haÂbitos e desenvolvimento dos girinos de A global perspective: 111±210. Baltimore: The Phyllomedusa vaillanti Boulenger, 1882 (Am- Johns Hopkins University Press. phibia, Anura, Hylidae). Revista Brasileira de Campbell, J.A., and W.E. Duellman. 2000. New Biologia 43: 261±268. species of stream-breeding hylid frogs from the Caramaschi, U. and M.F. Napoli. 2004. The no- northern versant of the highlands of Oaxaca, menclatural status of the synonyms of Hyla Mexico. Scienti®c Papers of the Natural His- pardalis Spix, 1824, and the taxonomic posi- tory Museum, The University of Kansas 16: 1± tion of Hyla biobeba Bokerman and Sazima, 28. 1973. Journal of Herpetology 38: 501±509. Campbell, J.A., and E.N. Smith. 1992. A new frog Caramaschi, U., and H. Niemeyer. 2003. New of the genus Ptychohyla (Hylidae) from the Si- species of the Hyla albopunctata group from erra de Santa Cruz, Guatemala, and description central Brazil (Amphibia, Anura, Hylidae). of a new genus of Middle American stream- Boletim do Museu Nacional, Nova Serie, Zool- breeding treefrogs. Herpetologica 48: 153±167. ogia 504: 1±8. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 133

Caramaschi, U., and M.T. Rodrigues. 2003. A Phyllomedusa (Anura: Phyllomedusinae). Zool- new large treefrog species, genus Hyla Lauren- ogischer Anzeiger 240: 3±6. ti, 1768, from southern Bahia, Brazil (Amphib- Cei, J.M. 1985. Taxonomic and evolutionary sig- ia, Anura, Hylidae). Arquivos do Museu Na- ni®cance of peptides in amphibian skin. Pep- cional 61: 255±260. tides 6(suppl. 3): 13±16. Caramaschi, U., and O.L. Peixoto. 2004. A new Cei, J.M. 1987. Additional notes to ``Amphibians species of Phyllodytes (Anura: Hylidae) from of Argentina'': An update 1980±1986. Moni- the state of Sergipe, northeastern Brazil. Am- tore Zoologico Italiano (N. S.) 21: 209±272. phibia-Reptilia 25: 1±7. Cespedez, J.A. 2000. Historia natural de la rana Caramaschi, U., and A. Velosa. 1996. Nova es- de Pedersen, Argenteohyla siemersi pederseni peÂcie de Hyla Laurenti, 1768 do leste brasileiro (Anura: Hylidae). Boletin de la AsociacioÂn (Amphibia, Anura, Hylidae). Boletim do Mu- Herpetologica EspanÄola 11: 75±80. seu Nacional, Nova SeÂrie, Zoologia 365: 1±7. Chang, J. 1996. Inconsistency of evolutionary tree Caramaschi, U., H.R. da Silva, and M.C.d. Britto± topology reconstruction methods when substi- Pereira. 1992. A new species of Phyllodytes tution rates vary across characters. Mathemat- (Anura, Hylidae) from southern Bahia, Brazil. ical Biosciences 134: 189±215. Copeia 1992: 187±191. Chek, A.A., S.C. Lougheed, J.P. Bogart, and P.T. Caramaschi, U., M.F. Napoli, and A.T. Bernardes. Boag. 2001. Perception and history: molecular 2001. Nova espeÂcie do grupo de Hyla circum- phylogeny of a diverse group of Neotropical data (Cope, 1870) do Estado de Minas Gerais, frogs, the 30-chromosomes Hyla (Anura: Hy- Brasil (Amphibia, Anura, Hylidae). Boletim do lidae). Molecular Phylogenetics and Evolution Museu Nacional, Nova SeÂrie, Zoologia 457: 1± 18: 370±385. 11. Cochran, D.M. 1955. Frogs of southeastern Bra- zil. Bulletin of the United States National Mu- Caramaschi, U., B.V.S. Pimenta, and R.N. Feio. seum 206: 1±423. 2004a. Nova espeÂcie do grupo de Hyla geogra- Cochran, D.M. 1961. Type specimens of reptiles phica Spix, 1824 da Floresta AtlaÃntica, Brasil and amphibians in the United States National (Amphibia, Anura, Hylidae). Boletim do Mu- Museum. Bulletin of the United States National seu Nacional, Nova SeÂrie, Zoologia 518: 1±14. Museum 220: 1±291. Caramaschi, U., O.L. Peixoto, and M.T. Ro- Cochran, D.M., and C.J. Goin. 1970. Frogs of Co- drigues. 2004b. Revalidation and redescription lombia. Bulletin of the United States National of Phyllodytes wuchereri (Peters, 1873) (Am- Museum 288: 1±655. phibia, Anura, Hylidae). Arquivos do Museu Cocroft, R.B. 1994. A cladistic analysis of chorus Nacional 62: 185±191. frog phylogeny (Hylidae: Pseudacris). Herpe- Cardoso, A.J. 1983. DescricËaÄo e biologia de uma tologica 50: 420±437. nova espeÂcie de Hyla Laurenti, 1768 (Amphib- Cole, C.J. 1966. The chromosomes of Acris cre- ia, Anura, Hylidae). Iheringia, Zoologia 62: 37± pitans blanchardi Harper (Anura: Hylidae). 45. Copeia 1966: 578±580. Cardoso, A.J., and G.V. Andrade. ``1982'' [1983]. Coloma, L.A. 1995. Ecuadorian frogs of the ge- Nova espeÂcie de Hyla do Parque Nacional Se- nus Colostethus (Anura: Dendrobatidae). Mis- rra da Canastra (Anura, Hylidae). Revista Bras- cellaneous Publications of the Museum of Nat- ileira de Biologia 42: 589±593. ural History, University of Kansas 87: 1±72. Carnaval, A.C.O.Q., and O.L. Peixoto. 2004. A Cope, E.D. 1862. Catalogues of the reptiles ob- new species of Hyla from northeastern Brazil tained during the explorations of the Parana, (Amphibia, Anura, Hylidae). Herpetologica 60: , Vermejo and Rivers, by 387±395. Capt. Thos. J. Page, U.S.N.; and of those pro- Carrizo, G.R. 1992. Cuatro especies nuevas de an- cured by Lieut. N. Michler, U.S. Top. Eng., uros (Bufonidae: Bufo e Hylidae: Hyla) del nor- Commander of the expedition conducting the te de la Argentina. Cuadernos de HerpetologõÂa survey of the Atrato River. Proceedings of the 7: 14±23. Academy Natural Sciences of Philadelphia 14: Carvalho e Silva, S.P., A.M.P.T. Carvalho e Silva, 346±359. and E. Izecksohn. 2003. Nova espeÂcie de Hyla Cope, E.D. 1863. On Trachycephalus, Scaphiopus Laurenti do grupo de H. microcephala Cope and other Batrachia. Proceedings of the Acad- (Amphibia, Anura, Hylidae) do nordeste do emy of Natural Sciences of Philadelphia 15: Brasil. Revista Brasileira de Zoologia 20: 553± 43±54. 558. Costa, G.C., G.H.C. Vieira, R.D. Teixeira, A.A. Castanho, L.M., and I.M.S. De Luca. 2001. Garda, G.R. Colli, and S.N. BaÂo. 2004. An ul- Moulting behavior in leaf-frogs of the genus trastructural comparative study of the sperm of 134 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Hyla pseudopseudis, Scinax rostratus, and S. tion of Australian torrent treefrogs (Anura: Hy- squalirostris (Amphibia: Anura: Hylidae). lidae: Litoria nannotis group). Memoirs of the Zoomorphology 123: 191±197. Queensland Museum 48: 93±102. Cruz, C.A.G. 1973. ObservacËoÄes sobre o girino Darst, C.R., and D.C. Cannatella. 2004. Novel re- de Sphaenorhynchus planicola (Lutz and Lutz, lationships among hyloid frogs inferred from 1938) (Amphibia, Anura, Hylidae). Arquivos 12S and 16S mitochondrial DNA sequences. de Universidade Federal Rural do Rio de Ja- Molecular Phylogenetics and Evolution 31: neiro 3: 83±86. 462±475. Cruz, C.A.G. 1982. ConceituacËaÄo de grupos de da Silva, H.R. 1997. Two character states new for espeÂcies de Phyllomedusinae brasileiras com hylines and the taxonomy of the genus Pseu- base em carcteres larvaÂrios (Amphibia, Anura, dacris. Journal of Herpetology 31: 609±613. Hylidae). Arquivos de Universidade Federal da Silva, H.R. 1998. Phylogenetic relationships of Rural do Rio de Janeiro 5: 147±171. the family Hylidae with emphasis on the rela- Cruz, C.A.G. ``1988'' [1989]. Sobre Phyllome- tionships within the subfamily Hylinae (Am- dusa aspera e a descricËaÄo de uma espeÂcie nova phibia: Anura). Ph.D. dissertation, Department desse geÃnero (Amphibia, Anura, Hylidae). Ar- of Systematics and Ecology, University of Kan- quivos de Universidade Federal Rural do Rio sas. de Janeiro 11: 39±44. da Silva, H.R., M.C. De Britto-Pereira, and U. Cruz, C.A.G. 1990. Sobre as relacËoÄes intergeneÂr- Caramaschi. 1989. Frugivory and seed dispers- icas de Phyllomedusinae da Floresta AtlaÃntica al by Hyla truncata, a Neotropical tree-frog. (Amphibia, Anura, Hylidae). Revista Brasileira Copeia 1989: 781±783. de Biologia 50: 709±726. De Laet, J. 2005. Parsimony and the problem of Cruz, C.A.G., and U. Caramaschi. 1998. De®ni- inapplicables in sequence data. In V.A. Albert cËaÄo, composicËaÄo e distribucËaÄo geogra®ca do (editor), Parsimony, phylogeny, and genomics: grupo de Hyla polytaenia Cope, 1870 (Am- 81±116. Oxford University Press. phibia, Anura, Hylidae). Boletim do Museu Na- De Laet, J., and E. Smets. 1998. On the three- cional, Nova SeÂrie, Zoologia 392: 1±19. taxon approach to parsimony analysis. Cladis- Cruz, C.A.G., and A.G. Dias. 1991. Girinos do tics 14: 363±381. grupo ``microcephala'' do estado do Rio de Ja- Delahoussaye, A.J. 1966. The comparative sperm neiro (Amphibia, Anura, Hylidae). Revista morphology of the Louisiana Hylidae (Am- Brasileira de Zoologia 7: 679±683. phibia: Anura). Proceedings of the Louisiana Cruz, C.A.G., and O.L. Peixoto. 1980. Notas so- Academy of Sciences 29: 140±152. bre o girino de Sphaenorhynchus orophilus De la Riva, I., 1999. A new Phyllomedusa from (Lutz and Lutz, 1938) (Amphibia, Anura, Hy- southwestern Amazonia (Amphibia: Anura: lidae). Revista Brasileira de Biologia 40: 383± Hylidae). Revista EspanÄola de HerpetologõÂa 13: 386. 123±131. Cruz, C.A.G., and O.L. Peixoto. ``1984'' [1985]. De la Riva, I., and W.E. Duellman. 1997. The EspeÂcies verdes de Hyla: o complexo ``albosig- identity and distribution of Hyla rossalleni nata'' (Amphibia, Anura, Hylidae). Arquivos Goin. Amphibia-Reptilia 18: 433±436. de Universidade Federal Rural do Rio de Ja- De la Riva, I., J. KoÈhler, S. LoÈtters, and S. Rei- neiro 7: 31±47. chle. 2000. Ten years of research on Bolivian Cruz, C.A.G., and O.L. Peixoto. ``1985'' [1987]. amphibians: updated checklist, distribution, EspeÂcies verdes de Hyla: o complexo ``albof- taxonomic problems, literature and iconogra- renata'' (Amphibia, Anura, Hylidae). Arquivos phy. Revista EspanÄola de HerpetologõÂa 14: 19± de Universidade Federal Rural do Rio de Ja- 164. neiro 8: 59±70. Del®no, G., B.B. Alvarez, R. Brizzi, and J.A. Ces- Cruz, C.A.G., U. Caramaschi, and A.G. Dias. pedez. 1998. Serous cutaneous glands of Ar- 2000. EspeÂcie nova de Hyla Laurenti, 1768 do gentine Phyllomedusa Wagler 1830 (Anura Hy- Estado do Rio de Janeiro, Brasil (Amphibia, lidae): secretory polymorphism and adaptive Anura, Hylidae). Boletim do Museu Nacional, plasticity. Tropical Zoology 11: 333±351. Nova SeÂrie, Zoologia 434: 1±8. Del®no, G., D. Nosi, and F. Giachi. 2001. Secre- Cruz, C.A.G., B.V.S. Pimenta, and D.L. Silvano. tory granule-cytoplasm relationships in serous 2003. Duas novas espeÂcies pertenecentes ao glands of anurans: ultrastructural evidence and complexo de Hyla albosignata Lutz and Lutz, possible functional role. Toxicon 39: 1161± 1938, do leste do Brasil (Amphibia, Anura, Hy- 1171. lidae). Boletim do Museu Nacional, Nova SeÂr- Del®no, G., R. Brizzi, D. Nosi, and A. Terreni. ie, Zoologia 503: 1±13. 2002. Serous cutaneous glands in New World Cunningham, M. 2002. Identi®cation and evolu- hylid frogs: an ultrastructural study on skin poi- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 135

sons con®rms phylogenetic relationships be- dusine frogs (Anura: Hylidae). University of tween Osteopilus septentrionalis and Phrynoh- Kansas Publications, Museum of Natural His- yas venulosa. Journal of Morpholgy 253: 176± tory 18: 1±10. 186. Duellman, W.E. 1968b. The taxonomic status of de SaÂ, R.O. 1983. DescripcioÂn de la larva de Ar- some American hylid frogs. Herpetologica 24: genteohyla siemersi (Mertens, 1937), (Anura: 194±209. Hylidae). ResuÂmenes y Comunicaciones de las Duellman, W.E. 1969. Phyllomedusa buckleyi Jornadas de Ciencias Naturales, Montevideo 3: Boulenger: variation, distribution and synony- 40±41. my. Herpetologica 25: 134±140. de SaÂ, R.O. 1995. Hyla albopunctata. Catalogue of Duellman, W.E. 1970. Hylid frogs of Middle American Amphibians and Reptiles 602: 1±5. America. Monographs of the Museum of Nat- de SaÂ, R.O. 1996. Hyla multifasciata. Catalogue of ural History, University of Kansas 1±2: 1±753. American Amphibians and Reptiles 624: 1±4. Duellman, W.E. 1971a. The nomenclatural status de SaÂ, R.O., and E.O. Lavilla. 1997. The tadpole of the names Hyla boans (Linnaeus) and Hyla of Pseudis minuta (Anura: Pseudidae), an ap- maxima (Laurenti) (Anura: Hylidae). Herpeto- parent case of heterochrony. Amphibia-Reptilia logica 27: 397±405. 18: 229±240. Duellman, W.E. 1971b. A taxonomic review of D'Heursel, A., and R.O. de SaÂ. 1999. Comparing South American hylid frogs, genus Phrynoh- the tadpoles of Hyla geographica and Hyla yas. Occasional Papers of the Museum of Nat- semilineata. Journal of Herpetology 33: 353± ural History, The University of Kansas 4: 1± 361. 21. D'Heursel, A., and C.F.B. Haddad. 2002. School- Duellman, W.E. 1972a. The systematic status and ing and swimming behaviors of Hyla semili- life history of Hyla rhodopepla GuÈnther. Her- neata tadpoles (Anura, Hylidae). Iheringia, petologica 28: 369±375. Zoologia 92: 99±104. Duellman, W.E. 1972b. A review of the Neotrop- Donnellan, S.C., and M.J. Mahony. 2004. Allo- ical frogs of the Hyla bogotensis group. Occa- zyme, chromosomal and morphological vari- sional Papers of the Museum of Natural His- ability in the Litoria lesueuri species group tory, University of Kansas 11: 1±31. (Anura: Hylidae), including a description of a Duellman, W.E. 1973a. Frogs of the Hyla geogra- new species. Australian Journal of Zoology 52: phica group. Copeia 1973: 515±533. 1±28. Duellman, W.E. 1973b. Descriptions of new hylid Donnelly, M.A., and C.W. Myers. 1991. Herpe- frogs from Colombia and . Herpetolo- tological results of the 1990 Venezuelan expe- gica 29: 219±227. dition to the summit of Cerro Guaiquinima, Duellman, W.E. 1974. A reassessment of the tax- with new tepui reptiles. American Museum onomic status of some Neotropical hylid frogs. Novitates 3017: 1±54. Occasional Papers of the Museum of Natural Donnelly, M.A., C. Guyer, D.M. Krempels, and History, University of Kansas 27: 1±27. H.E. Braker. 1987. The tadpole of Agalychnis Duellman, W.E. 1977. Liste der rezenten Amphi- calcarifer (Anura: Hylidae). Copeia 1987: 247± bien und Reptilien. Hylidae, Centrolenidae, 250. Pseudidae. Das Tierreich 95: 1±225. Dubois, A. 1982. Dendrobates Wagler, 1830 and Duellman, W.E. 1978. The biology of an Equa- Dendrobatidae Cope, 1865 (Amphibia, Anura): torial herpetofauna in Amazonian Ecuador. proposed conservation. Bulletin of Zoological Miscellaneous Publications of the Museum of Nomenclature 39: 267±278. Natural History of the University of Kansas 65: Dubois, A. 1987. Miscellanea taxinomica batrach- 1±352. ologica (I). Alytes 5: 7±95. Duellman, W.E. 1982. A new species of small yel- Duellman, W.E. 1963. A review of the Middle low Hyla from Peru (Anura: Hylidae). Am- American tree frogs of the genus Ptychohyla. phibia-Reptilia 3: 153±160. University of Kansas Publications, Museum of Duellman, W.E. 1989. New species of hylid frogs Natural History 15: 297±349. from the Andes of Colombia and Venezuela. Duellman, W.E. 1966. Taxonomic notes on some Occasional Papers of the Museum of Natural Mexican and Central American Hylid frogs. History, The University of Kansas 131: 1±12. University of Kansas Publications, Museum of Duellman, W.E. 1999. Distribution patterns of Natural History 17: 263±279. amphibians in South America. In W.E. Duell- Duellman, W.E. 1967. Additional studies of chro- man (editor), Patterns of distribution of am- mosomes of anuran amphibians. Systematic phibians. A global perspective: 255±328. Bal- Zoology 16: 38±43. timore: The Johns Hopkins University Press. Duellman, W.E. 1968a. The genera of phyllome- Duellman, W.E. 2001. Hylid frogs of Middle 136 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

America. Ithaca, NY: Society for the Study of Duellman, W.E., and L. Trueb. 1976. The system- Amphibians and Reptiles. atic status and relationships of the hylid frog Duellman, W.E., and J.A. Campbell. 1992. Hylid Nyctimantis rugiceps Boulenger. Occasional frogs of the genus Plectrohyla: systematics and Papers of the Museum of Natural History, Uni- phylogenetic relationships. Miscellaneous Pub- versity of Kansas 58: 1±14. lications of the Museum of Zoology, University Duellman, W.E., and L. Trueb. 1983. Frogs of the of Michigan 181: 1±32. Hyla columbiana group: taxonomy and phylo- Duellman, W.E., and C.J. Cole. 1965. Studies of genetic relationships. In A.G.J. Rhodin and K. chromosomes of some anuran amphibians (Hy- Miyata (editors), Advances in herpetology and lidae and Centrolenidae). Systematic Zoology evolutionary biology: 33±51. Cambridge, MA: 14: 139±143. Museum of Comparative Zoology, Harvard Duellman, W. E., and L.A. Coloma. 1993. Hyla University. staufferorum, a new species of treefrog in the Duellman, W.E., and L. Trueb. 1986. Biology of Hyla larinopygion group from the cloud forest amphibians. New York: McGraw-Hill. of Ecuador. Occasional Papers of the Museum Duellman, W.E., and L. Trueb. 1989. Two new of Natural History, The University of Kansas treefrogs of the Hyla parviceps group from the 161: 1±11. Amazon basin in southeastern Peru. Herpeto- Duellman, W.E., and M. Crump. 1974. Speciation logica 45: 1±10. in frogs of the Hyla parviceps group in the up- Duellman, W.E., and J.J. Wiens. 1992. The status per Amazon basin. Occasional Papers of the of the hylid frog genus Ololygon and the rec- Museum of Natural History, University of Kan- ognition of Scinax Wagler, 1830. Occasional sas 23: 1±40. Papers of the Museum of Natural History, Uni- Duellman, W.E., and R.O. de SaÂ. 1988. A new versity of Kansas 151: 1±23. genus and species of South American hylid Duellman, W.E., and M. Yoshpa. 1996. A new frog with a highly modi®ed tadpole. Tropical species of Tepuihyla (Anura: Hylidae) from Zoology 1: 117±136. Guyana. Herpetologica 52: 275±281. Duellman, W.E., and J.M.J. Fouquette. 1968. Duellman, W.E., I. De la Riva, and E.R. Wild. Middle American frogs of the Hyla microce- 1997. Frogs of the Hyla armata and Hyla pul- phala group. University of Kansas Publications chella groups in the Andes of South America, of the Museum of Natural History 17: 517±557. with de®nitions and analyses of phylogenetic Duellman, W.E., and P. Gray. 1983. Developmen- relationships of Andean groups of Hyla. Sci- tal biology and systematics of the egg-brooding enti®c Papers of the Natural History Museum, hylid frogs, genera Flectonotus and Fritziana. The University of Kansas 3: 1±41. Herpetologica 39: 333±359. Duellman, W.E., J.E. Cadle, and D.C. Cannatella. Duellman, W.E., and D.M. Hillis. 1990. System- 1988a. A new species of terrestrial Phyllome- atics of frogs of the Hyla larinopygion group. dusa (Anura: Hylidae) from southern Peru. Occasional Papers of the Museum of Natural Herpetologica 44: 91±95. History, University of Kansas 134: 1±23. Duellman, W.E., L.R. Maxson, and C.A. Jesi- Duellman, W.E., and M.S. Hoogmoed. 1984. The olowski. 1988b. Evolution of marsupial frogs taxonomy and phylogenetic relationships of the (Hylidae: Hemiphractinae): immunological ev- hylid frog genus Stefania. Miscellaneous Pub- idence. Copeia 1988: 527±543. lications of the Museum of Natural History of DumeÂril, A.M.C., and G. Bibron. 1841. ErpeÂto- the University of Kansas 75: 1±39. logie geÂneÂrale ou histoire naturelle compleÂte Duellman, W.E., and M.S. Hoogmoed. 1992. des reptiles, tome 8. Paris: Librairie Encyclo- Some hylid frogs from the Guiana highlands, peÂdique de Roret. northeastern south America: new species, dis- Dunn, E.R. 1926. The frogs of Jamaica. Proceed- tributional records, and a generic reallocation. ings of the Boston Society of Natural History Occasional Papers of the Museum of Natural 38: 11±130. History, University of Kansas 147: 1±21. Dunn, E.R. 1943. An extraordinary new Hyla Duellman, W.E., and J.R. Mendelson III. 1995. from Colombia. Caldasia 1943: 309±311. Amphibians and reptiles from northern Depar- Echeverria, D.D. 1997. Microanatomy of the buc- tamento Loreto, Peru: taxonomy and biogeog- cal apparatus and oral cavity of Hyla minuta raphy. The University of Kansas Science Bul- Peters, 1872 larvae (Anura, Hylidae), with data letin 55: 329±376. on feeding habits. Alytes 15: 26±36. Duellman, W.E., and L. Trueb. 1966. Neotropical Eliosa LeoÂn, H.R. 2002. VariacioÂn geogra®ca en hylid frogs, genus Smilisca. University of Kan- Hyla eximia (Anura: Hylidae). Boletin de la So- sas Publications Museum of Natural History ciedad Herpetologica Mexicana 10: 59±60. 17: 281±375. Emerson, S.B., C. Richards, R.C. Drewes, and 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 137

K.M. Kjer. 2000. On the relationships among Farris, J.S. 1999. Likelihood and inconsistency. ranoid frogs: a review of the evidence. Herpe- Cladistics 15: 199±204. tologica 56: 209±230. Farris, J.S. 2000. Corroboration versus ``strongest Erspamer, V. 1994. Bioactive secretions of the evidence''. Cladistics 16: 385±393. amphibian integument. In H. Heatwole and Farris, J.S., V.A. Albert, M. KaÈllersjo, D. Lip- G.T. Barthalmus (editors), Amphibian biology, scomb, and A.G. Kluge. 1996. Parsimony jack- vol. 1: 178±350. Surrey: Beatty & Sons. kni®ng outperforms neighbor-joining. Cladis- Estes, R. 1970. Origin of the recent North Amer- tics 12: 99±124. ican lower vertebrate fauna: An inquiry into the Feller, A., and S.B. Hedges. 1998. Molecular ev- fossil record. Forma et Functio 3: 139±163. idence for the early history of living amphibi- Estes, R., and A.M. Baez. 1985. Herpetofauna of ans. Molecular Phylogenetics and Evolution 9: North and South America during the late Cre- 509±516. taceous and Cenozoic: evidence for inter- Firschein, I.L., and H.M. Smith. 1956. A new change? In F.G. Stehli and S.D. Webb (editors), fringe-limbed Hyla (Amphibia: Anura) from a The great American biotic interchange: 139± new faunal district of Mexico. Herpetologica 197. New York: Plenum Press. 12: 17±21. Estes, R., and O. Reig. 1973. The early fossil re- Fitzinger, L.J. 1843 [1973]. Systema Reptilium. cord of frogs: a review of the evidence. In J. Athens, OH: SSAR, p. 128. Vial (editor), Evolutionary biology of the an- Ford, L.S., and D.C. Cannatella. 1993. The major urans: 11±63. Columbia, MO: University of clades of frogs. Herpetological Monographs 7: Missouri Press. 94±117. Eterovick, P.C., and R.A. BrandaÄo. 2001. A de- Fouquette, M.J., and A.J. Delahoussaye. 1977. scription of the tadpoles and advertisement Sperm morphology in the Hyla rubra group (Amphibia, Anura, Hylidae), and its bearing on calls of members of the Hyla pseudopseudis generic status. Journal of Herpetology 11: 387± group. Journal of Herpetology 35: 442±450. 396. Eterovick, P.C., I.S. Barros, and I. Sazima. 2002. Franz, R. 2003. Wet mountains and mountain Tadpoles of two species in the Hyla polytaenia frogs. In R.W. Henderson and R. Powell (edi- species group and comparison with other tad- tors), Islands and the sea: essays on herpetolog- poles of Hyla polytaenia and Hyla pulchella ical exploration in the West Indies. Society for groups (Anura, Hylidae). Journal of Herpetol- the Study of the Amphibians and Reptiles. Con- ogy 36: 512±515. tributions to Herpetology, vol. 20: 159±167. Fabrezi, M. 2001. A survey of prepollex and pre- Ithaca, NY. hallux variation in anuran limbs. Zoological Frost, D.R. 1985. Amphibian species of the world: Journal of the Linnean Society 131: 227±248. a taxonomic and geographic reference. Law- Fabrezi, M., and E.O. Lavilla. 1992. Estructura rence, KS: Association of Systematic Collec- del condrocraÂneo y esqueleto hiobranquial en tions and Allen Press. larvas de algunos hõÂlidos neotropicales (Anura: Frost, D.R. 2004. Amphibian species of the world: Hylidae). Acta ZooloÂgica Lilloana 41: 155± an online reference, version 3.0 (22 August 164. 2004). Electronic database accessible at http:// Faivovich, J. 2002. A cladistic analysis of Scinax research.amnh.org/herpetology/amphibia/in- (Anura: Hylidae). Cladistics 18: 367±393. dex.html. American Museum of Natural His- Faivovich, J., C.A.G. Cruz, and O.L. Peixoto. tory. 2002. Identity of Hyla ehrhardti MuÈller, 1924 Frost, D.R., M.T. Rodrigues, T. Grant, and T.A. (Anura, Hylidae). Journal of Herpetology 36: Titus. 2001. Phylogenetics of the lizard genus 325±327. Tropidurus (Squamata: Tropiduridae: Tropidur- Faivovich, J., P.C.A. Garcia, F. Ananias, L. Lanari, inae): direct optimization, descriptive ef®cien- N.G. Basso, and W.C. Wheeler. 2004. A mo- cy, and sensitivity analysis of congruence be- lecular perspective on the phylogeny of the tween molecular data and morphology. Molec- Hyla pulchella species group (Anura, Hylidae). ular Phylogenetics and Evolution 21: 352±371. Molecular Phylogenetics and Evolution 32: Funkhouser, A. 1957. A review of the Neotropical 938±950. tree frogs of the genus Phyllomedusa. Occa- Farris, J.S. 1983. The logical basis of phyloge- sional Papers of the Natural History Museum netic analysis. In N.I. Platnick and V.A. Funk of Stanford University 5: 1±90. (editors), Advances in cladistics: Proceedings Gallardo, J.M. 1964. Observaciones bioloÂgicas of the Third Meeting of the Willi Hennig So- sobre Hyla raddiana Fitz., en la provincia de ciety, vol. 2: 7±36. New York: Columbia Uni- Buenos Aires. Ciencia E InvestigacioÂn 17: 63± versity Press. 69. 138 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Gallardo, J.M. 1970. Estudio ecologico sobre los Goloboff, P.A., J.S. Farris, and K.C. Nixon. 2000. an®bios y reptiles del sudeste de la provincia T.N.T.: tree analysis using new technology. Pro- de Buenos Aires, Argentina. Revista del Museo gram and documentation, version 1.0. Avail- Argentino de Ciencias Naturales ``Bernardino able from the authors, and at www.zmuc.dk/ Rivadavia'', Zoologia 10: 27±63. public/phylogeny. Garcia, P.C.A. 2003. RevisaÄo taxonoÃmica e anaÂl- Gomes, M.R., and O.L. Peixoto. 1991a. Consi- ise ®logeneÂtica das espeÂcies do geÃnero Hyla deracËoÄes sobre os girinos de Hyla senicula Laurenti do complexo marginata/semiguttata (Cope, 1868) e Hyla soaresi (Caramaschi e (Amphibia, Anua, Hylidae). Ph.D. dissertation, Jim, 1983) (Amphibia, Anura, Hylidae). Acta Universidade Estadual Paulista, Rio Claro, SaÄo Biologica Leopoldensia 13: 5±18. Paulo, Brazil. Gomes, M.R., and O.L. Peixoto. 1991b. Larvas Garcia, P.C.A., U. Caramaschi, and A. Kwet. de Hyla do grupo ``leucophyllata'' com a des- 2001a. O status taxonoÃmico de Hyla cochranae cricËaÄo da de H. elegans Wied, 1824 e notas Mertens e recaracterizacËaÄo de Aplastodiscus A. sobre a variacËaÄo do padraÄo de colorido do ad- Lutz (Anura, Hylidae). Revista Brasileira de ulto nesta espeÂcie (Anura, Hylidae). Revista Zoologia 18: 1197±1218. Brasileira de Biologia 51: 257±262. Garcia, P.C.A., G. Vinciprova, and C.F.B. Haddad. Gomes, M.R., and O.L. Peixoto. 2002. O girino 2001b. VocalizacËaÄo, girino, distribucËaÄo geo- de Hyla leucopygia Cruz and Peixoto, 1984 gra®ca e novos comentaÂrios sobre Hyla mar- (Amphibia, Anura, Hylidae). Boletim do Mu- ginata Boulenger, 1887 (Anura, Hylidae, Hyli- seu de Biologia Mello LeitaÄo, Nova SeÂrie 13: nae). Boletim do Museu Nacional, Nova SeÂrie, 17±25. Zoologia 460: 1±19. Gorham, S.W. 1974. Checklist of world amphib- Garcia, P.C.A., G. Vinciprova, and C.F.B. Haddad. ians up to January 1, 1970. Saint John, Canada: 2003. The taxonomic status of Hyla pulchella New Brunswick Museum. joaquini B. Lutz, 1968 (Anura: Hylidae). Her- Gorzula, S., and C. SenÄaris. ``1998'' [1999]. Con- petologica 59: 350±363. tribution to the herpetofauna of the Venezuelan Garda, A.A., G.C. Costa, G.R. Colli, and S.N. Guyana: I. A data base. Scientia Guianae 8: 1± BaÂo. 2004. Spermatozoa of Pseudinae (Am- 270. phibia, Anura, Hylidae), with a test of the hy- Grant, T., E.C. Humphrey, and C.W. Myers. 1997. pothesis that sperm ultrastructure correlates The medial lingual process of frogs: a bizarre with reproductive modes in anurans. Journal of character of old world ranoids discovered in Morphology 261: 196±205. South American dendrobatids. American Mu- Gaudin, A.J. 1974. An osteological analysis of seum Novitates 3212: 1±40. Holarctic tree frogs, family Hylidae. Journal of Gray, J.E. 1825. A synopsis of the genera of rep- Herpetology 8: 141±152. tiles and Amphibia, with a description of some Giribet, G. 2001. Exploring the behavior of POY, new species. Annals of Philosophy, ser. 2, 10: a program for direct optimization of molecular 193±217. data. Cladistics 17: S60±S70. Graybeal, A. 1993. The phylogenetic utility of cy- Goeldi, E. 1907. Description of Hyla resini®ctrix tochrome b: lessons from bufonid frogs. Mo- Goeldi, a new Amazonian peculiar for lecular Phylogenetics and Evolution 2: 256± its breeding habits. Proceedings of the Zoolog- 269. ical Society of London 1907: 135±140. Graybeal, A. 1997. Phylogenetic relationships of Goin, C.J. 1961. Synopsis of the genera of hylid bufonid frogs and tests of alternate macroevo- frogs. Annals of the Carnegie Museum 36: 5± lutionary hypotheses characterizing their radi- 18. ation. Zoological Journal of the Linnean Soci- Goin, C.J., and O.B. Goin. 1968. A new tree frog ety 119: 297±338. from . Copeia 3: 581±583. Gruber, S.L. 2002. Estudos citogeneÂticos em es- Goin, C.J., and J.D. Woodley. 1969. A new tree- peÂcies do geÃnero Hyla (Anura, Hylidae) dos frog from Guyana. Zoological Journal of the grupos com 2n ϭ 24e2nϭ 30 cromossomos, Linnean Society 48: 135±140. com teÂcnicas de coloracËaÄo diferencial. Master's Goloboff, P.A. 1999. Analyzing large data sets in thesis, Universidade Estadual Paulista, Rio Cla- reasonable times: solutions for composite opti- ro, SaÄo Paulo, Brazil. ma. Cladistics 15: 415±428. Guillaume, C.P., P. Gaucher, and F.M. Catze¯is. Goloboff, P.A. 2003. Parsimony, likelihood, and 2001. Does Hyla hadroceps belong to the genus simplicity. Cladistics 19: 91±103. Phrynohyas (Hylidae: Batrachia)? First ap- Goloboff, P.A., and J.S. Farris. 2001. Methods for proach using the mitochondrial gene 12S, quick consensus estimation. Cladistics 17: S26± rRNA. 11th ordinary general meeting of Socie- S34. tas Europaea Herpetologica (SEH), Zalec, Slov- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 139

enie, 13±17 VII 2001. Summary in Biota (Anura, Hylidae). Caribbean Journal of Science 2(suppl.): 68±69. 23: 380±384. GuimaraÄes, L.D., R. de Freitas Juliano, and R.P. Hedges, S.B. 1994. Molecular evidence for the Bastos. 2001. Life history notes: Hyla raniceps origin of birds. Proceedings of the National (NCN). Combat. Herpetological Review 32: Academy of Sciences USA 91: 2621±2624. 102±103. Hedges, S.B. 1996. The origin of West Indian am- Haas, A. 1996. Das larvale cranium von Gastro- phibians and reptiles. In R. Powell and R.W. theca riobambae und seine metamorphose Henderson (editors), Contributions to West In- (Amphibia, Anura, Hylidae). Verhandlungen dian herpetology: a tribute to Albert Schwartz: des Naturwissenschaftlichen Vereins in Ham- 95±128. Ithaca, NY: Society for the Study of burg 36: 33±162. Amphibians and Reptiles. Haas, A. 2003. Phylogeny of frogs as inferred Heyer, W.R. 1977. Taxonomic notes on frogs from from primarily larval characters (Amphibia: the Madeira and the Purus rivers, Brasil. Papeis Anura). Cladistics 19: 23±89. Avulsos de Zoologia 31: 141±162. Haas, A., and S.J. Richards. 1998. Correlations of Heyer, W.R. 1980. The calls and taxonomic po- cranial morphology, ecology, and evolution in sitions of Hyla giesleri and Ololygon opalina Australian suctorial tadpoles of the genera Li- (Amphibia: Anura: Hylidae). Proceedings of toria and Nyctimystes (Amphibia: Anura: Hy- the Biological Society of Washington 93: 655± lidae: Pelodryadinae). Journal of Morphology 661. 238: 109±141. Heyer, W.R. 1985. New species of frogs from Haddad, C.F.B., and R.J. Sawaya. 2000. Repro- BoraceÂia, SaÄo Paulo, Brazil. Proceedings of the ductive modes of Atlantic forest hylid frogs: a Biological Society of Washington 98: 657±671. general overview and the description of a new Heyer, W.R., A.S. Rand, C.A.G. Cruz, O.L. Pei- mode. Biotropica 32: 862±871. xoto, and C.E. Nelson. 1990. Frogs of Bora- Haddad, C.F.B., J. Faivovich, and P.C.A. Garcia. ceÂia. Arquivos de Zoologia 31: 231±410. 2005. The specialized reproductive mode of the Hillis, D.M., and M.T. Dixon. 1991. Ribosomal treefrog Aplastodiscus perviridis (Anura: Hyli- RNA: molecular evolution and phylogenetic in- dae). Amphibia-Reptilia. 26: 87±92. ference. Quarterly Review of Biology 66: 411± Hall, T.A. 1999. BioEdit: a user-friendly biologi- 453. cal sequence alignment editor and analysis. De- Hillis, D.M., L.K. Ammerman, M.T. Dixon, and partment of Microbiology. North Carolina State University. R.O. de SaÂ. 1993. Ribosomal DNA and the Hartmann, M.T., P.A. Hartmann and C.F.B. Had- phylogeny of frogs. Herpetological Mono- dad. 2004. Visual signaling and reproductive graphs 7: 118±131. biology in a nocturnal treefrog genus Hyla (An- Hoegg, S., M. Vences, H. Brinkmann, and A. ura: Hylidae). Amphibia-Reptilia 25: 395±406. Meyer. 2004. Phylogeny and comparative sub- Hass, C.A., L.R. Maxson, and S.B. Hedges. 2001. stitution rates of frogs inferred from sequences Relationships and divergence times of West In- of three nuclear genes. Molecular Biology and dian amphibians and reptiles: insights from al- Evolution 21: 1188±1200. bumin immunology. In C.A. Woods and F.E. Holman, A.J. 1968. Lower Oligocene amphibians Sergile (editors), Biogeography of the West In- from Saskatchewan. Quarterly Journal of the dies. Patterns and perspectives: 157±174. Boca Florida Academy of Sciences 31: 273±289. Raton, FL: CRC Press. Holman, A.J. 2003. Fossil frogs and of Hawkins, J.A., C.E. Hughes, and R.W. Scotland. North America. Bloomington: Indiana Univer- 1997. Primary homology assessment, charac- sity Press. ters, and character states. Cladistics 13: 275± Hoogmoed, M.S. 1979. Resurrection of Hyla or- 283. natissima Noble (Amphibia, Hylidae) and re- Hay, J.M., I. Ruvinsky, S.B. Hedges, and L.R. marks on related species of green tree frogs Maxson. 1995. Phylogenetic relationships of from the Guiana area. Notes on the herpetofau- amphibian families inferred from DNA se- na of Surinam VI. Zoologische Verhandelingen quences of mitochondrial 12S and 16S ribo- 172: 1±46. somal RNA genes. Molecular Biology and Hoogmoed, M.S. 1990. Resurrection of Hyla wav- Evolution 12: 928±937. rini Parker (Amphibia: Anura: Hylidae), a glad- Hedges, S.B. 1986. An electrophoretic analysis of iator frog from northern South America. Zool- Holarctic hylid frog evolution. Systematic Zo- ogische Mededeelingen 64: 71±93. ology 35: 1±21. Hoogmoed, M.S., and J.E. Cadle. 1991. Natural Hedges, S.B. 1987. Vocalization and pref- history and distribution of Agalychnis craspe- erence of the Jamaican treefrog Hyla marianae dopus (Funkhouser, 1957) (Amphibia: Anura: 140 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Hylidae). Zoologische Mededeelingen 65: 129± Jungfer, K.H., and E. Lehr. 2001. A new species 142. of Osteocephalus with bicoloured iris from Po- Hutchinson, M.N., and L.R. Maxson. 1986. Im- zuzo (Peru: Departamento de Pasco) (Amphib- munological evidence on relationships of some ia: Anura: Hylidae). Zoologische Abhandlun- Australian terrestrial frogs (Anura: Hylidae: Pe- gen Staatliches Museum fuÈr Tierkunde, Dres- lodryadinae). Australian Journal of Zoology 34: den 51: 321±329. 575±582. Jungfer, K.H., and L.C. Schiesari. 1995. Descrip- Hutchinson, M.N., and L.R. Maxson. 1987. Phy- tion of a central Amazonian and Guyanan tree logenetic relationships among Australian tree frog, genus Osteocephalus (Anura, Hylidae), frogs (Anura: Hylidae: Pelodryadinae): an im- with oophagous tadpoles. Alytes 13: 1±13. munological approach. Australian Journal of Jungfer, K.H., and P. Weygoldt. 1994. The repro- Zoology 35: 61±74. ductive biology of the leaf frog Phyllomedusa ICZN. 1999. International code of zoological no- lemur Boulenger, 1882, and a comparison with menclature, 4th ed. London: International Trust other members of the Phyllomedusinae (Anura: for Zoological Nomenclature. Hylidae). Revue FrancËaise de Aquariologie 21: Iturralde-Vinent, M.A., and R.D.E. MacPhee. 57±64. 1999. Paleogeography of the Caribbean region: Jungfer, K.H., and P. Weygoldt. 1999. Biparental implications for Cenozoic biogeography. Bul- care in the tadpole-feeding Amazonian treefrog letin of the American Museum of Natural His- . Amphibia-Reptilia tory 238: 1±95. 20: 235±249. Izecksohn, E. 1959. Uma nova espeÂcie de ``Hy- Jungfer, K.H., S. Ron, R. Seipp, and A. Almen- lidae'' da baixada ¯uminense, Estado de Rio de dariz. 2000. Two new species of hylid frogs, Janeiro, Brasil (Amphibia, Anura). Revista genus Osteocephalus, from Amazonian Ecua- Brasileira de Biologia 19: 259±263. dor. Amphibia-Reptilia 21: 327±340. Izecksohn, E. 1988. Algumas consideracËoÄes sobre Kaiser, H., C. Mais, F. BolanÄos, C. Steinlen, W. ogeÃnero Euparkerella, com a descricËaÄo de tres Feichtinger, and M. Schmid. 1996. Chromo- novas espeÂcies (Amphibia, Anura, Leptodactyl- somal investigation of three Costa Rican frogs idae). Revista Brasileira de Biologia 48: 59±74. from the 30-chromosome radiation of Hyla Izecksohn, E. 1996. Novo geÃnero de Hylidae bras- with the description of a unique geographic ileiro (Amphibia, Anura). Revista de Universi- variation in nucleolus organizer regions. Ge- dade Rural, Serie CieÃncias da Vida 18: 47±52. Izecksohn, E., and C.A.G. Cruz. 1976. Nova es- netica 98: 95±102. peÂcie de Phyllomedusinae do Estado do EspõÂr- Kaplan, M. 1991. A new species of Hyla from the ito Santo, Brasil (Amphibia, Anura, Hylidae). eastern slope of the Cordillera Oriental in Revista Brasileira de Biologia 36: 257±261. northern Colombia. Journal of Herpetology 25: Jared, C., M.M. Antoniazzi, E. Katchburian, R.C. 313±316. Toledo, and E. FreymuÈller. 1999. Some aspects Kaplan, M. 1994. A new species of frog of the of the natural history of the casque-headed tree genus Hyla from the cordillera oriental in frog Corythomantis greeningi Boulenger (Hy- northern Colombia with comments on the tax- lidae). Annales des Sciences Naturelles 3: 105± onomy of Hyla minuta. Journal of Herpetology 115. 28: 79±87. Jim, J. 1980. Aspectos ecoloÂgicos dos anfõÂbios re- Kaplan, M. 1997. On the status of Hyla bogerti gistrados na regiaÄo de Botucatu, SaÄo Paulo Cochran and Goin. Journal of Herpetology 31: (Amphibia, Anura). Ph.D. dissertation, Univ- 536±541. ersidade de SaÄo Paulo. Kaplan, M. 1999. On the phylogenetic relation- Jim, J., and U. Caramaschi. 1979. Uma nova es- ships of Hyla praestans and the monophyly of peÂcie da regiaÄo de Botucatu, SaÄo Paulo, Brasil the Hyla columbiana group: morphological ob- (Amphibia, Anura). Revista Brasileira de Biol- servations on the larynx. Revista de la Acade- ogia 39: 717±719. mia Colombiana de Ciencias Exactas, FõÂsicas y Jungfer, K.H. 1996. Reproduction and parental Naturales 23: 299±302. care of the coronated treefrog, Anotheca spi- Kaplan, M., and P.M. RuõÂz. 1997. Two new spe- nosa (Steindachner, 1864) (Anura: Hylidae). cies of Hyla from the Andes of Central Colom- Herpetologica 52: 25±32. bia and their relationships to other small An- Jungfer, K.H., and W. Hodl. 2002. A new species dean Hyla. Journal of Herpetology 31: 230± of Osteocephalus from Ecuador and a rede- 244. scription of O. leprieurii (DumeÂril and Bibron, Kasahara, S., A.P. Zampieri Silva, S.L. Gruber, 1841) (Anura: Hylidae). Amphibia-Reptilia 23: and C.F.B. Haddad. 2003. Comparative cyto- 21±46. genetic analysis on four tree frog species (An- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 141

ura, Hylidae, Hylinae) from Brazil. Cytogenet- a study with special reference to montane forest ics and Genome Research 103: 155±162. regions. Bonner Zoologische Monographien Kellogg, R. 1932. Mexican tailless amphibians in 48: 1±243. the United States National Museum. Bulletin of KoÈhler, J., and S. LoÈtters. 2001a. A new species the United States National Museum Bulletin of minute Hyla from the southwestern Amazon 160: 1±224. basin (Amphibia, Anura, Hylidae). Studies on Kenny, J.S. 1969. The Amphibia of Trinidad. Neotropical Fauna and Environment 36: 105± Studies on the fauna of CuracËao and other Ca- 112. ribbean islands 108: 1±78. KoÈhler, J., and S. LoÈtters. 2001b. Description of King, M. 1980. A cytotaxonomic analysis of Aus- a small tree frog, genus Hyla (Anura: Hylidae), tralian hylid frogs of the genus Litoria. In C.B. from humid Andean slopes of Bolivia. Sala- Banks and A.A. Martin (editors), Proceedings mandra 37: 175±184. of the Melbourne Herpetological Symposium: Kolenc, F., C. Borteiro, and M. Tedros. ``2003'' 169±175. Melbourne, Australia. [2004]. La larva de Hyla uruguaya Schmidt, King, M., M.J. Tyler, M. Davies, and D. King. 1944 (Anura: Hylidae), con comentarios sobre 1979. Karyotypic studies on Cyclorana and as- su biologõÂa en Uruguay y su status taxonoÂmico. sociated genera of Australian frogs. Australian Cuadernos de HerpetologõÂa 17: 87±100. Journal of Zoology 27: 699±708. Kuramoto, M. 1980. Mating calls of treefrogs (ge- Kizirian, D., L.A. Coloma, and A. Paredes-Re- nus Hyla) in the Far East, with description of a calde. 2003. A new treefrog (Hylidae: Hyla) new species from Korea. Copeia 1980: 100± from southern Ecuador and a description of its 108. antipredator behavior. Herpetologica 59: 339± Kuramoto, M. 1998. Spermatozoa of several frog 349. species from Japan and adjacent regions. Jap- Klappenbach, M.A. 1961. Notas herpetologicas, anese Journal of Herpetology 17: 107±116. II. Hallazgo de Trachycephalus siemersi (Mer- Kuramoto, M., and A. Allison. 1991. Karyotypes tens) y Phyllomedusa iheringi Boulenger (Am- of ®ve hylid frogs from Papua New Guinea, phibia, Salientia) en el Uruguay. Comunica- with a discussion on their systematic implica- ciones ZooloÂgicas del Museo de Historia Nat- tions. Japanese Journal of Herpetology 14: 6± ural de Montevideo 5: 1±8. 11. Klappenbach, M.A. 1985. Notas herpetologicas, Kwet, A. 2000. The genus Pseudis (Anura: Pseu- V. Comunicaciones ZooloÂgicas del Museo de didae) in Rio Grande do Sul, southern Brazil, Historia Natural de Montevideo 11: 1±23. with description of a new species. Amphibia- Klappenbach, M.A., and J.A. Langone. 1992. Lis- Reptilia 21: 39±55. ta sistemaÂtica y sinonõÂmica de los an®bios del Lacombe, C., C. Cifuentes-Diaz, I. Dunia, M. Au- Uruguay. Anales del Museo Nacional de His- ber-Thomay, P. Nicolas, and M. Amiche. 2000. toria Natural de Montevideo, 2a Serie, 8: 163± Peptide secretion in the cutaneous glands of 222. South American tree frog Phyllomedusa bicol- Kluge, A.G. 1979. The gladiator frogs of Middle or: an ultrastructural study. European Journal America and ColombiaÐa reevaluation of their of Cell Biology 79: 634±641. systematics (Anura: Hylidae). Occasional Pa- Lajmanovich, R.C., M.F. Izaguirre, M.F. Vera- pers of the Museum of Zoology, University of Candioti, and V.H. Casco. 2000. Unique struc- Michigan 688: 1±24. tural pattern of the manicotto glandulare of Kluge, A.G. 1989. A concern for evidence and a Hyla nana tadpoles (Anura: Hylidae). Amphib- phylogenetic hypothesis of relationships among ia-Reptilia 21: 237±242. Epicrates (Boidae, Serpentes). Systematic Zo- La Marca, E. 1985. Systematic and ecological ob- ology 38: 7±25. servations on the Neotropical frogs Hyla jahni Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Ed- and Hyla platydactyla. Journal of Herpetology wards, S. PaÈbo, F.X. Villablanca, and A.C. Wil- 19: 227±237. son. 1989. Dynamics of mitochondrial DNA La Marca, E. 1992. CataÂlogo taxonoÂmico biogeo- evolution in : ampli®cation and se- gra®co y bibliogra®co de las ranas de Venezue- quencing with conserved primers. Proceedings la. Cuadernos Geogra®cos 9: 1±197. of the National Academy of Sciences USA 86: La Marca, E. 1997. Lista actualizada de los an®- 6196±6200. bios de Venezuela. In E. La Marca (editor), Kolaczkowski, B., and J.W. Thornton. 2004. Per- Vertebrados actuales y fosiles de Venezuela 1: formance of maximum parsimony and likeli- 103±119. Merida,Venezuela: Museo de Ciencia hood phylogenetics when evolution is hetero- y TecnologõÂa de MeÂrida. geneous. Nature 431: 980±984. La Marca, E. 1998. Biodiversidad de an®bios en KoÈhler, J. 2000. Amphibian diversity in Bolivia: los Andes de Venezuela: analisis preliminar por 142 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

pisos de vegetacion. In G. Halffter (editor), La Hyla melanopleura Boulenger, 1912 (Amphib- diversidad bioloÂgica de Iberoamerica III. Vol- ia: Anura: Hylidae). Salamandra 40: 51±58. umen Especial, Acta Zoologica Mexicana, nue- Lescure, J., and C. Marty. 2000. Atlas des am- va serie: 199±210. Xalapa, Mexico: Instituto de phibiens de Guyane. Paris: Publications Scien- EcologõÂa, A.C. ti®ques du Museum National d'Histoire Natu- Lang, M. 1990. Annotated catalogue of the type- relle. specimens from the herpetological collection of Lescure, J., C. Marty, V. Marty, F. Starace, M. the Royal Belgian Institute of Natural Sciences, Auber-Thomay, and F. Letellier. 1995. Contri- Brussels. Documents de Travail de l'Institut bution aÁ l'eÂtude des amphibiens de Guyana Royal des Sceinces Naturelles de Belgique 59: francËaise. X. Les Phyllomedusa (Anura, Hyli- 1±36. dae). Revue FrancËaise de Aquariologie 22: 35± Langone, J.A. 1990. RevalidacioÂn de Hyla uru- 50. guaya Schmidt, 1944 (Amphibia, Anura, Hyli- Lewis, P.O. 2001. A likelihood approach to esti- dae). Comunicaciones ZooloÂgicas del Museo de mating phylogeny from discrete morphological Historia Natural de Montevideo 12: 1±9. character data. Systematic Biology 50: 913± Langone, J.A. ``1994'' [1995]. Ranas y sapos del 925. Uruguay. Montevideo: Museo Damaso Antonio Lichtenstein, M.H. C., and E. von Martens 1856. LarranÄaga, Serie de DivulgacioÂn nЊ 5, 123 pp. Nomenclator Reptilium et Amphibiorum Musei Langone, J.A., and N.G. Basso. 1987. Distribu- Zoologici Berolinensis. Namensverzeichniss cioÂn geogra®ca y sinonimia de Hyla nana Bou- der in der zoologischen Sammlung de KoÈnig- lenger, 1889 y de Hyla sanborni Schmidt, 1944 lichen UniversitaÈt zu Berlin aufgestellten Arten (Anura, Hylidae) y observaciones sobre formas von Reptilien und Amphibien nach ihren Ord- a®nes. Comunicaciones ZooloÂgicas del Museo nungen, Familien und Gattungen, Berlin, 48 pp. Lips, K. 1996. New treefrog from the Cordillera de Historia Natural de Montevideo 11: 1±17. de Talamanca of Central America with a dis- Langone, J.A., C.M. Prigioni, and L. Venturino. cussion of systematic relationships in the Hyla 1985. Informe preliminar sobre el comporta- lancasteri group. Copeia 1996: 615±626. miento reproductor y otros aspectos de la biol- LuÈddecke, H., and O.R. Sanchez. 2002. Are trop- ogõÂa de Phyllomedusa iheringi, Boulenger, ical highland frog calls cold-adapted? The case 1885 (Anura, Hylidae). Comunicaciones Zool- of the Andean frog Hyla labialis. Biotropica oÂgicas del Museo de Historia Natural de Mon- 34: 281±288. tevideo 11: 1±12. Lutz, A., and B. Lutz. 1939. I. Notes on the genus Lannoo, M.J., D.S. Townsend, and R. Wassersug. Phyllomedusa Wagler. A) Observations on 1987. Larval life in the leaves: arboreal tadpole small Phyllomedusae without vomerine teeth or types, with special attention to the morphology, conspicuous parotids found in the region of Rio ecology, and behavior of the oophagous Osteo- de Janeiro. B) Phyllomedusa bahiana Lutz. An- pilus brunneus (Hylidae) larva. Fieldiana Zo- naes da Academia Brasileira de Sciencias 11: ology, N.S. 38: 1±31. 219±263. Laurent, R.F. 1986. Sous classe de Lissamphi- Lutz, B. 1948. Anuros da ColecËaÄo Adolpho Lutz biens: Lissamphibia systeÂmatique. In P.-P. da regiaÄo sud-este do Brasil. I. Hyla anceps Grasse and M. Delsol (editors), Traite de zool- Lutz, 1929. MemoÂrias do Instituto Oswaldo ogie: anatomie, systeÂmatique, biologie, tome Cruz 46: 299±313. XIV, fascicle 1BÐBatraciens: 594±797. Paris: Lutz, B. ``1948'' [1949]. An®bios anuros da co- Masson. lecËaÄo Adolpho Lutz II. EspeÂcies verdes do geÃ- Lavilla, E.O. 1984. RedescripcioÂn de larvas de nero Hyla do leste-meridional do Brasil. Me- Hyla pulchella andina (Anura: Hylidae) con un morias do Instituto Oswaldo Cruz 46: 551±577. anaÂlisis de la variabilidad interpoblacional. Lutz, B. 1950. AnfõÂbios anuros da colecËaÄo Adol- Neotropica 30: 19±30. pho Lutz. V. LocomocËaÄo e estrutura das ex- Lavilla, E.O. 1990. The tadpole of Hyla nana tremidades. V.a Phyllomedusa (P.) burmeisteri (Anura: Hylidae). Journal of Herpetology 24: distincta A. Lutz. V.b Aplastodiscus perviridis 207±209. A. Lutz. MemoÂrias do Instituto Oswaldo Cruz Lavilla, E.O. 1992. Tipos portadores de nombre y 48: 599±637. localidades tipo de an®bios de Argentina. Acta Lutz, B. 1954. AnfõÂbios anuros do Distrito Fed- Zoologica Lilloana 42: 61±100. eral. MemoÂrias do Instituto Oswaldo Cruz 52: Lee, J.C. 1996. The amphibians and reptiles of the 155±238. YucataÂn peninsula. Ithaca, NY: Cornell Univer- Lutz, B. 1963. New species of Hyla from south- sity Press. eastern Brazil. Copeia 1963: 561±562. Lehr, E., and R.V. May. 2004. Rediscovery of Lutz, B. 1968. Taxonomy of Neotropical Hylidae. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 143

The Pearce-Sellards Series, Texas Memorial sobre la miologõÂa apendicular de Phyllomedusa Museum 11: 1±25. hypocondrialis (Anura, Hylidae). Alytes 12: Lutz, B. 1973. Brazilian Species of Hyla. Austin: 169±174. University of Texas Press. MaÂrquez, R., I. De la Riva, and J. Bosch. 1993. Lynch, J.D. 1971. Evolutionary relationships, os- Advertisement calls of Bolivian species of Hyla teology, and zoogeography of leptodactyloid (Amphibia, Anura, Hylidae). Biotropica 25: frogs. Miscellaneous Publications of the Mu- 426±443. seum of Natural History, University of Kansas Martins, M., and A.J. Cardoso. 1987. Novas es- 53: 1±238. peÂcies de hilõÂdeos do Estado do Acre (Amphib- Lynch, J.D. 1973. The transition from archaic to ia: Anura). Revista Brasileira de Biologia 47: advanced frogs. In J.L. Vial (editor), Evolution- 549±558. ary biology of the anurans. Contemporary re- Martins, M., and C.F.B. Haddad. 1988. Vocaliza- search on major problems: 131±182. Columbia: tions and reproductive behavior in the smith University of Missouri Press. frog, Hyla faber Wied (Amphibia: Hylidae). Lynch, J.D. 1986. Origins of the high Andean her- Amphibia-Reptilia 9: 49±60. petological fauna. In F. Vuilleumier and M. Martins, M., and G. Moreira. 1991. The nest and Monasterio (editors), High altitude tropical bio- the tadpole of Hyla wavrini, Parker (Amphibia, geography: 478±499. New York: Oxford Uni- Anura). Memorias do Instituto Butantan 53: versity Press. 197±204. Lynch, J.D. 1998. New species of Eleutherodac- Maxson, L.R. 1992. Tempo and pattern in anuran tylus from the Cordillera Occidental of western speciation and phylogeny: an albumin perspec- Colombia with a synopsis of the distributions tive. In K. Adler (editor), Herpetology: current of species in western Colombia. Revista de la research on the biology of amphibians and rep- Academia Colombiana de Ciencias Exactas, tiles: 41±57. Oxford, OH: Society for the Study FõÂsicas y Naturales 22: 117±148. of Amphibians and Reptiles. Lynch, J.D. 2002. A new species of the genus Maxson, L.R., D.P. Ondrula, and M.J. Tyler. 1985. Osteocephalus (Hylidae: Anura) from the west- An immunological perspective on evolutionary ern Amazon. Revista de la Academia Colom- relationships in Australian frogs of the hylid biana de Ciencias Exactas, FõÂsicas y Naturales genus Cyclorana. Australian Journal of Zoolo- 26: 289±292. gy 33: 17±22. Lynch, J.D., and W.E. Duellman. 1997. Frogs of Maxson, L.R., M.J. Tyler, and R.D. Maxson. the genus Eleutherodactylus in western Ecua- 1982. Phylogenetic relationships of Cyclorana dor. University of Kansas Natural History Mu- and the Litoria aurea species-group (Anura: seum, Special Publication 23: 1±236. Hylidae): a molecular perspective. Australian Lynch, J.D., and A.M. Suarez-Mayorga. 2001. Journal of Zoology 30: 643±651. The distributions of the gladiator frogs (Hyla McCranie, J.R., and L.D. Wilson. 1993. Taxo- boans group) in Colombia, with comments on nomic changes associated with the names Hyla size variation and sympatry. Caldasia 23: 491± spinipollex Schmidt and Ptychohyla merazi 507. Wilson and McCranie (Anura, Hylidae). The Lynch, J.D., P.M. Ruiz-Carranza, and C.M. Ar- Southwestern Naturalist 38: 100±104. dila-Robayo. 1997. Biogeographic patterns of McCranie, J.R., and L.D. Wilson. 2002. The am- Colombian frogs and toads. Revista de la Ac- phibians of . Ithaca, NY: Society for ademia Colombiana de Ciencias Exactas, Fisi- the Study of Amphibians and Reptiles. cas y Naturales 21: 237±248. McDiarmid, R.W., and R. Altig. 1990. Description MacCulloch, R.D., and A. Lathrop. 2002. Excep- of a bufonid tadpole and two hylid tadpoles tional diversity of Stefania (Anura: Hylidae) on from western Ecuador. Alytes 8: 51±60. Mount Ayangana, Guyana: three new species McDonald, K.R. and D.L. Storch. 1993. A new and new distribution records. Herpetologica 58: reproductive mode for an Australian hylid frog. 327±346. Memoirs of the Queensland Museum 34: 200. Manzano, A.S. 1997. Estudio comparativo de la Mendelson, J.R., III, and J.A. Campbell. 1999. miologõÂa de la cintura pectoral de algunos Phyl- The taxonomic status of populations referred to lomedusinos. Bollettino del Museo di Scienze Hyla chaneque in southern Mexico, with the Naturali, Torino 15: 255±277. description of a new treefrog from Oaxaca. Manzano, A.S., and E.O. Lavilla. 1995a. Myolog- Journal of Herpetology 33: 80±86. ical peculiarities in Rhinoderma darwinii (An- Mendelson, J.R., III, and K.R. Toal. 1995. A new ura: ). Journal of Morphology species of Hyla (Anura: Hylidae) from cloud 224: 125±129. forest in Oaxaca, Mexico, with comments on Manzano, A.S., and E.O. Lavilla. 1995b. Notas the status of the Hyla bistincta group. Occa- 144 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

sional Papers of the Museum of Natural His- Archivos do Museu Nacional do Rio de Janeiro tory, The University of Kansas 174: 1±20. 27: 1±227. Mendelson J.R., III, and K.R. Toal III. 1996. A Miranda-Ribeiro, A. 1937. Alguns batrachios no- new species of Hyla (Anura: Hylidae) from the vos das colecËoÄes do Museu Nacional. O Campo sierra madre del sur of Oaxaca, Mexico, with 1937(Maio): 66±69. comments on Hyla chryses and Hyla mykter. Misuraca, G., G. Prota, J.T. Bagnara, and S.K. Journal of Herpetology 30: 326±333. Frost. 1977. Identi®cation of the leaf±frog me- Mendelson, J.R., III, H.R. da Silva, and A.M. lanophore pigment, rhodomelanochrome, as Maglia. 2000. Phylogenetic relationships pterorhodin. Comparative Biochemistry and among marsupial frog genera (Anura: Hylidae: Physiology 57B: 41±43. Hemiphractinae) based on evidence from mor- Morand, M., and A. Hernando. 1996. Cariotipo y phology and natural history. Zoological Journal regioÂn organizadora del nucleolo en Argenteo- of the Linnean Society 128: 125±148. hyla siemersi pederseni (Anura: Hylidae). FA- Menin, M., R.A. Silva, and A.A. Giaretta. 2004. CENA 12: 141±144. Reproductive biology of Hyla goiana (Anura, Morescalchi, A. 1973. Amphibia. In A.B. Chi- Hylidae). Iheringia, Zoologia 94: 49±52. arelli and E. Capanna (editors), Cytotaxonomy Metcalf, M.M. 1923a. The origin and distribution and vertebrate evolution: 233±348. London: of the Anura. American Naturalist 57: 385± Academic Press. 411. Moriarty, E.C., and D.C. Cannatella. 2004. Phy- Metcalf, M.M. 1923b. The opalinid ciliate infu- logenetic relationships of the north american sorians. Bulletin of the United States National chorus frogs (Pseudacris: Hylidae). Molecular Museum 120: 1±484. Phylogenetics and Evolution 30: 409±420. Metcalf, M.M. 1928. The Bell-toads and their Moritz, C., C.J. Schneider, and D.B. Wake. 1992. Evolutionary relationships within the Ensatina opalinid parasites. American Naturalist 62: 5± eschscholtzii complex con®rm the ring species 21. interpretation. Systematic Biology 41: 273± Meyer, E., B.G.M. Jamieson, and D.M. Scheltin- 291. ga. 1997. Sperm ultrastructure of six Australian MuÈller, L., and W. Hellmich. 1936. Amphibien hylid frogs from two genera (Litoria and Cy- und Reptilien I. Teil: Amphibia, Chelonia, Lor- clorana): phylogenetic implications. Journal of icata. In H. Krieg (editor), Wissenschaftliche Submicroscopic Cytology and Pathology 29: Ergebnisse der Deutschen Gran Chaco-Expe- 443±451. dition: 120 pp. Stuttgart: Stecker und SchroÈder. Mijares-Urrutia, A. 1992a. Sobre el renacuajo de Myers, C.W., and M.A. Donnelly. 1997. A tepui Hyla alemani Rivero (Anura: Hylidae). Acta herpetofauna on a granitic mountain (Tamacu- Biologica Venezuelica 13: 35±39. ari) in the borderland between Venezuela and Mijares-Urrutia, A. 1992b. El renacuajo de Hyla Brazil: report from the Phipps Tapirapeco Ex- lascinia, con aportes al conocimiento de los pedition. American Museum Novitates 3213: renacuajos de Hyla jahni e Hyla platydactyla 1±71. (Hylidae) de los andes venezolanos. Alytes 10: Myers, C.W., and R. Stothers. MS. The myth of 91±98. Hylas revisited: the frog name Hyla, and other Mijares-Urrutia, A. 1997. Renacuajos de tres es- commentary on the Specimen Medicum of J. N. pecies de ranas (Amphibia: Bufonidae, Hyli- Laurenti, the ``father of herpetology''. dae) de Colombia y Venezuela. Acta Cientõ®ca Myers, C.W., A.O. Paolillo, and J.W. Daly. 1991. Venezolana 48: 139±144. Discovery of a defensively malodorous and Mijares-Urrutia, A. 1998. Una nueva especie de nocturnal frog in the family Dendrobatidae: rana arborõÂcola (Amphibia: Hylidae) de un phylogenetic signi®cance of a new genus and bosque nublado del oeste de Venezuela. Revista species from the Venezuelan Andes. American Brasileira de Biologia 58: 659±663. Museum Novitates 3002: 1±33. Mijares-Urrutia, A., and R.A. Rivero. 2000. A Napoli, M.F. 2000. Taxonomia, variacËaÄo morfo- new treefrog from the Sierra de Aroa, northern loÂgica e distribuicËaÄo geogra®ca das espeÂcies do Venezuela. Journal of Herpetology 34: 80±84. grupo de Hyla circumdata (Cope, 1870) (Am- Mijares-Urrutia, A., J. Manzanilla-Puppo, and E. phibia, Anura, Hylidae). Ph.D. dissertation, La Marca. 1999. Una nueva especie de Tepui- Universidade Federal do Rio de Janeiro. hyla (Anura: Hylidae) del noroeste de Vene- Napoli, M.F., and U. Caramaschi. 1998. Duas no- zuela, con comentarios sobre su biogeografõÂa. vas especies de Hyla Laurenti, 1768 do Brasil Revista de Biologia Tropical 47: 1099±1110. central a®ns de H. tritaeniata Bokermann, 1965 Miranda-Ribeiro, A. 1926. Notas para servirem ao (Amphibia, Anura, Hylidae). Boletim do Mu- estudo do gymnobatrachios (Anura) brasileiros. seu Nacional, Nova SeÂrie, Zoologia 391: 1±12. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 145

Napoli, M.F., and U. Caramaschi. 1999. The tax- deral Amazonas, Venezuela, con anotaciones onomic status of Hyla elongata Lutz, 1925. sobre su biologõÂa. Memoria de la Sociedad de Journal of Herpetology 33: 484±487. Ciencias Naturales La Salle 41: 77±95. Napoli, M.F., and U. Caramaschi. 2004. Two new Parker, H.W. 1940. The Australian frogs of the species of the Hyla circumdata group from Se- family Leptodactylidae. Novitates Zoologicae rra do Mar and Serra da Mantiqueira, south- 42: 1±106. eastern Brazil, with description of the adver- Parmalee, J.R. 1999. Trophic ecology of a tropical tisement call of Hyla ibitipoca (Anura, Hyli- anuran assemblage. Scienti®c Papers of the dae). Copeia 2004: 534±545. Natural History Museum, The University of Napoli, M.F., and B.V.S. Pimenta. 2003. Nova es- Kansas 11: 1±59. peÂcie do grupo de Hyla circumdata (Cope, Peixoto, O.L. 1981. Nova espeÂcie de Hyla da Se- 1870) do sul da Bahia, Brasil (Amphibia, An- rra dos OÂ rgaÂos, Estado de Rio de Janeiro, Brasil ura, Hylidae). Arquivos do Museu Nacional 61: (Amphibia, Anura, Hylidae). Revista Brasileira 189±194. de Biologia 41: 515±520. Nicholls, G.C. 1916. The structure of the vertebral Peixoto, O.L. 1987. CaracterizacËaÄo do grupo column in the Anura Phaneroglossa and its im- ``perpusilla'' e revalidacËaÄo da posicËaÄo taxoÃn- portance as a basis of classi®cation. Proceed- omica de Ololygon perpusilla perpusilla e ings of the Linnean Society of London 128: Ololygon perpusilla v-signata (Amphibia, An- 80±92. ura, Hylidae). Arquivos de Universidade Fed- Nieden, F. 1923. Anura I. Subordo Aglossa und eral Rural do Rio de Janeiro 10: 37±49. Phanerglossa sectio 1 Arcifera. Das Tierreich Peixoto, O.L., and C.A.G. Cruz. 1983. Girinos de 46: 1±584. espeÂcies de Hyla do grupo ``albomarginata'' do Nixon, K.C. 1999a. The parsimony ratchet, a new Sudeste brasileiro (Amphibia, Anura, Hylidae). method for rapid parsimony analysis. Cladistics Arquivos de Universidade Federal Rural do Rio 15: 407±414. de Janeiro 6: 155±163. Nixon, K.C. 1999b. WinClada. Computer soft- Peixoto, O.L., and C.A.G. Cruz. 1988. DescricËaÄo ware and documentation, available at: http:// de duas espeÂcies novas do geÃnero Phyllodytes www.Cladistics.com. Wagler (Amphibia, Anura, Hylidae). Revista Nixon, K.C., and J.M. Carpenter. 1996. On si- Brasileira de Biologia 48: 265±272. multaneous analysis. Cladistics 12: 221±241. Peixoto, O.L., and M.R. Gomes. 1999. The tad- Noble, G.K. 1922. The phylogeny of the Salientia. pole of Hyla nahdereri Lutz and Bokermann, I. The osteology and the thigh musculature; 1963. Journal of Herpetology 33: 477±479. their bearing on classi®cation and phylogeny. Peixoto, O.L., U. Caramaschi, and E.M.X. Freire. Bulletin of the American Museum of Natural 2003. Two new species of Phyllodytes (Anura: History 46: 1±87. Hylidae) from the state of Alagoas, northeast- Noble, G.K. 1927. The value of life history data ern Brazil. Herpetologica 59: 235±246. in the study of evolution of the Amphibia. An- Peters, W.C.H. ``1872'' [1873]. UÈ ber eine, zwei nals of the New York Academy of Sciences 30: neue Gattungen enthaltende, Sammlung von 31±128. Batrachiern des Hrn. Dr. O. Wucherer aus Ba- Noble, G.K. 1931. The biology of the Amphibia. hia, so wie uÈber einige neue oder weniger be- New York: McGraw-Hill. kannte Saurier. Monatsberichte der koÈniglich Page, R.D.M., and C. Lydeard. 1994. Towards a Akademie der Wissenschaften zu Berlin 1872: cladistic biogeography of the Caribbean. Cla- 768±776. distics 10: 21±41. Peters, W.C.H. 1873. UÈ ber eine neue SchildkroÈ- Page, T.J. 1859. La Plata, the Argentine Confed- tenart, Cinosternon effeldtii und einige andere eration, and Paraguay. Being a narrative of the neue oder weniger bekannte Amphibien. Mon- exploration of the tributaries of the river La atsberichte der koÈniglich Akademie der Wis- Plata and adjacent countries during the years senschaften zu Berlin 1873: 603±618. 1853, '54, '55, and '56, under the orders of the Pol, D., and M.E. Siddall. 2001. Biases in maxi- United States Government. New York: Harper mum likelihood and parsimony: a simulation and Brothers. approach to a 10-taxon case. Cladistics 17: Palumbi, S.R., A. Martin, W.O. McMillan, L. 266±281. Stice, and G. Grabowski. 1991. The simple Pombal, J.P., Jr. 1993. A new species of Apara- fool's guide to PCR, version 2.0. Privately pub- sphenodon (Anura: Hylidae) from southeastern lished. Brazil. Copeia 1993: 1088±1091. Paolillo, A.O., and J. Cerda. 1981. Nuevos hal- Pombal, J.P., Jr., and R.P. Bastos. 1998. Nova es- lazgos de Aparasphenodon venezolanus (Mer- peÂcie de Hyla Laurenti, 1768 do centro-oeste tens) (Salientia, Hylidae) en el Territorio Fe- brasileiro e a posicËaÄo taxonoÃmica de H. micro- 146 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

cephala werneri Cochran, 1952 e H. microce- versus exemplars revisited. Systematic Biology phala meridiana B. Lutz, 1952 (Anura, Hyli- 50: 290±300. dae). Boletim do Museu Nacional, NoÂva Serie, Pugliese, A., A.C.R. Alves, and S.P. Carvalho e Zoologia 390: 1±14. Silva. 2000. The tadpoles of Hyla oliveirai and Pombal, J.P., Jr., and U. Caramaschi. 1995. Posi- Hyla decipiens with notes on the Hyla micro- cËaÄo taxonoÃmica de Hyla pseudopseudis Miran- cephala group (Anura, Hylidae). Alytes 18: 73± da-Ribeiro, 1937 e Hyla saxicola Bokermann, 80. 1964 (Anura, Hylidae). Boletim do Museu Na- Pugliese, A., A.C.R. Alves, and J.P. Pombal, Jr. cional, Nova SeÂrie, Zoologia 363: 1±8. 2001. The tadpole of Hyla rubicundula. Journal Pombal, J.P., Jr., and M. Gordo. 2004. AnfõÂbios of Herpetology 35: 686±688. anuros da JureÂia. In O.A.V. Marques and W. Pyburn, W.F. 1977. A new hylid frog (Amphibia, Duleba (editors), EstacËaÄo ecoloÂgica JureÂia-Ita- Anura, Hylidae) from the Vaupes River of Co- tins: ambiente fõÂsico, ¯ora e fauna: 243±256. lombia with comments on related species. Jour- RibeiraÄo Preto, SaÄo Paulo, Brasil: Holos Edi- nal of Herpetology 11: 405±410. tora. Pyburn, W.F. 1978. The voice and relationships of Pombal, J.P., Jr., and C.F.B. Haddad. 1992. EspeÂ- the treefrog Hyla hobbsi (Anura: Hylidae). Pro- cies de Phyllomedusa do grupo burmeisteri do ceedings of the Biological Society of Washing- Brasil oriental, com descricËaÄo de uma espeÂcie ton 91: 123±131. nova (Amphibia: Hylidae). Revista Brasileira Pyburn, W.F. 1984. A new stream-inhabiting tree- de Biologia 52: 217±229. frog (Anura: Hylidae) from southeastern Co- Pombal, J.P., Jr., and C.F.B. Haddad. 1993. Hyla lombia. Herpetologica 40: 366±372. luctuosa, a new treefrog from southeastern Bra- Pyburn, W.F. 1993. A new species of dimorphic zil (Amphibia: Hylidae). Herpetologica 49: 16± tree frog, genus Hyla (Amphibia: Anura: Hy- 21. lidae) from the Vaupes River of Colombia. Pro- Pombal, J.P., Jr., C.F.B. Haddad, and C.A.G. Cruz. ceedings of the Biological Society of Washing- 2003. New species of Phrynohyas from Atlan- ton 106: 46±50. tic rain forest of southeastern Brazil (Anura, Rabello, M.N. 1970. Chromosomal studies in Bra- Hylidae). Copeia 2003: 379±383. zilian anurans. Caryologia 23: 45±59. Pope, C.H. 1931. Notes on the amphibians from Ralin, D.B. 1970. Genetic compatibility and a Fukien, Hainan, and other parts of China. Bul- phylogeny of the temperate North American letin of the American Museum of Natural His- hylid fauna. Ph.D. dissertation, University of tory 61: 397±611. Texas, Austin. [Not seen, cited from Hedges, Porras, L., and L.D. Wilson. 1987. A new species 1986]. of Hyla from the highlands of Honduras and El Ramos, A.D., and J.L. Gasparini. 2004. An®bios Salvador. Copeia 1987: 478±482. do Gioapaba-AcËu, FundaÄo, Estado do EspõÂrito Powell, R., and R.W. Henderson. 2003a. Some Santo. VitoÂria: Gra®ca Santo Antonio. historical perspectives. In R.W. Henderson and Read, K., J.S. Keogh, I.A.W. Scott, J.D. Roberts, R. Powell (editors), Islands and the sea: essays and P. Doughty. 2001. Molecular phylogeny of on herpetological exploration in the West In- the australian frog genera Crinia, Geocrinia, dies. Society for the Study of Amphibians and and allied taxa (Anura, Myobatrachidae). Mo- Reptiles, Contributions to Herpetology, 20: 9± lecular Phylogenetics and Evolution 21: 294± 20. Ithaca, NY. 308. Powell, R., and R.W. Henderson. 2003b. A second Reynolds, R.P., and M.S. Foster. 1992. Four new set of addenda to the checklist of West Indian species of frogs and one new species of snake amphibians and Reptiles. Herpetological Re- from the Chapare region of Bolivia, with notes view 34: 341±345. on other species. Herpetological Monographs 6: Prado, G., J.H. Borgo, P.A. Abrunhosa, and H. 83±104. Wogel. 2003. Comportamento reprodutivo, vo- Richards, S.J. 1993. Functional signi®cance of calizacËaÄo e redescricËaÄo do girino de Phrynoh- nest construction by an australian rainforest yas mesophaea (Hensel, 1867) do Sudeste do frog: a preliminary analysis. Memoirs of the Brasil (Amphibia, Anura, Hylidae). Boletim do Queensland Museum 34: 89±93. Museu Nacional, Nova SeÂrie, Zoologia 510: 1± Richards, S.J., and G.R. Johnston. 1993. A new 11. species of Nyctimystes (Anura: Hylidae) from Prasad, G.V.R., and J.C. Rage. 1995. Amphibians the Star mountains, Papua New Guinea. Mem- and squamates from the Maastrichtian of Nas- oirs of the Queensland Museum 33: 73±76. kal, India. Cretaceous Research 16: 95±107. Rivero, J.A. 1961. Salientia of Venezuela. Bulle- Prendini, L. 2001. Species or supraspeci®c taxa as tin of the Museum of Comparative Zoology terminals in cladistic analysis? Groundplans 126: 1±207. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 147

Rivero, J.A. 1964. Salientios (Amphibia) en la co- Gilles. 2002. Molecular phylogeny of French leccion de la Sociedad de Ciencias Naturales la Guiana Hylinae: implications for the systematic Salle de Venezuela. Caribbean Journal of Sci- and biodiversity of the Neotropical frogs. ence 4: 297±305. Compte Rendu des SeÂances de la SocieÂteÂde Rivero, J.A. 1968. Los CentroleÂnidos de Vene- Physique et d'Histoire Naturelle, Biologie 325: zuela (Amphibia: Salientia). Memoria de la So- 141±153. ciedad de Ciencias Naturales La Salle 28: 301± Sanchiz, B. 1998a. Salientia. In P. Wellnhofer (ed- 334. itor), Encyclopedia of paleoherpetology 4: 1± Rivero, J.A. 1969. A new species of Hyla (Am- 276. MuÈnchen: Verlag Dr. Friedrich Pfeil. phibia, Salientia) from the region of Paramo de Sanchiz, B. 1998b. Vertebrates from the early Tama, Venezuela. Caribbean Journal of Science Miocene lignite deposits of the opencast mine 9: 145±150. Oberdorf (Western Styrian Basin, Austria): 2. Rivero, J.A. 1970. On the origin, endemism and Amphibia. Annalen des Naturhistorischen Mu- distribution of the genus Stefania Rivero (Am- seums in Wien 99A: 13±29. phibia, Salientia) with a description of a new Sanderson, M.J., and J. Kim. 2000. Parametric species from southeastern Venezuela. Boletin phylogenetics? Systematic Biology 49: 817± de la Sociedad Venezolana de Ciencias Natur- 829. ales 28: 456±481. Sankoff, D. 1975. Minimal mutation trees of se- Rivero, J.A. ``1971'' [1972]. Notas sobre los an- quence. SIAM Journal of Applied Mathematics ®bios de Venezuela. I. Sobre los hilidos de la 21: 35±42. Guayana venezolana. Caribbean Journal of Sci- Sankoff, D., and R.J. Cedergren. 1983. Simulta- ences 11: 181±188. neous comparisons of three or more sequences Rivero, J.A. 1985. Nuevos centrolenidos de Co- related by a tree. In D. Sankoff and J. Kruskal lombia y Venezuela. Brenesia 23: 335±373. (editors), Time warps, string edits, and macro- RodrõÂguez, L.O., and W.E. Duellman. 1994. molecules. The theory and practice of sequence Guide to the frogs of the Iquitos region, Ama- comparisons: 253±264. Reading, MA: Addi- zonian Peru. The University of Kansas Natural son-Wesley. History Museum Special Publication 22: i±ii, SanmartõÂn, I., and F. Ronquist. 2004. Southern 1±80. hemisphere biogeography inferred by event- Romero de Perez, G., and P.M. Ruiz-Carranza. based models: plant versus animal patterns. 1996. Histologia, histoquõÂmica y estructura ®na de la glaÂndula mentoniana de dos especies de Systematic Biology 53: 216±243. Hyla (grupo bogotensis) y del antebrazo de Santos, C.S., A.C.R. Alves, and S.P. Carvalho e Phrynopus adenobatrachius. Revista de la Ac- Silva. 1998. Description of the tadpoles of Hyla ademia Colombiana de Ciencias Exactas, FõÂsi- giesleri and Hyla microps from southern Brazil. cas y Naturales 20: 575±584. Journal of Herpetology 32: 61±66. Ron, S., and J.B. Pramuk. 1999. A new species Santos, J.C., L.A. Coloma, and D.C. Cannatella. of Osteocephalus (Anura, Hylidae) from Am- 2003. Multiple, recurring origins of aposema- azonian Ecuador and Peru. Herpetologica 55: tism and diet specialization in poison frogs. 433±446. Proceedings of the National Academy of Sci- Ruiz-Carranza, P.M., J.I. Hernandez-Camacho, ences USA 100: 12792±12797. and J.V. Rueda-Almonacid. 1988. Una nueva Savage, J.M. 1966. The origins and history of the espeÂcie de Phyllomedusa Wagler 1830 (Am- Central American herpetofauna. Copeia 1966: phibia: Anura: Hylidae) del noroeste de Colom- 719±766. bia. Trianea 2: 373±382. Savage, J.M. 1973. The geographic distribution of Ruiz-Carranza, P.M., and J.D. Lynch. 1991. Ranas frogs: patterns and predictions. In J.L. Vial (ed- Centrolenidae de Colombia I. Lozania 57: 1± itor), Evolutionary biology of the Anurans: 32. contemporary research on major problems: Ruvinsky, I., and L.R. Maxson. 1996. Phyloge- 351±445. Columbia: University of Missouri netic relationships among bufonoid frogs (An- Press. ura: Neobatrachia) inferred from mitochondrial Savage, J.M. 1982. The enigma of Central Amer- DNA sequences. Molecular Phylogenetics and ican herpetofauna: dispersals or vicariance? Evolution 5: 533±547. Annals of the Missouri Botanical Garden 69: Sachsse, R., E. Izecksohn, and S.P. Carvalho e 464±547. Silva. 1999. The systematic status of Hyla al- Savage, J.M. 2002a. The amphibians and reptiles bolineata Lutz and Lutz, 1939 (Amphibia: An- of . A herpetofauna between two ura: Hylidae). Herpetologica 55: 401±406. continents, between two seas. Chicago: Univer- Salducci, M.D., C. Marty, R. Chappaz, and A. sity of Chicago Press. 148 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Savage, J.M. 2002b. The hylid frogs of Middle Guyana. Revista de Biologia Tropical 49: 347± America [book review]. Copeia 2002: 545±552. 357. Savage, J.M., and A.L.D. Carvalho. 1953. The Smith, H.M., and E.H. Taylor. 1948. An annotated family position of neotropical frogs currently checklist and key to the Amphibia of Mexico. referred to the genus Pseudis. Zoologica, Sci- Bulletin of the United States National Museum enti®c Contributions of the New York Zoolog- 194: 1±118. ical Society 38: 193±200. Smith, T.F., M.S. Waterman, and W.M. Fitch. Savage, J.M., and W.R. Heyer. ``1968'' [1969]. 1981. Comparative biosequence metrics. Jour- The tree-frogs (family Hylidae) of Costa Rica: nal of Molecular Evolution 18: 38±46. diagnosis and distribution. Revista de Biologia Snyder, D.H. 1972. Hyla juanitae, a new treefrog Tropical 16: 1±127. from southern Mexico, and its relationship to Sazima, I., and W.C.A. Bokermann. 1977. AnfõÂ- H. pinorum. Journal of Herpetology 6: 5±15. bios da Serra do CipoÂ, Minas Gerais, Brasil. 3: Spirandeli Cruz, E.F. 1991. Estudo comparativo ObservacËoÄes sobre a biologia de Hyla alvar- da morfologia oral interna de larvas de anfõÂbios engai Bok. (Anura, Hylidae). Revista Brasileira anuros que ocorrem na regiaÄo de Botucatu, SaÄo de Biologia 37: 413±417. Paulo (Amphibia, Anura). Instituto de BiocieÃn- Schiesari, L.C., B. Grillitsch, and C. Vogl. 1996. cias. Ph.D. dissertation, Universidade de SaÄo Comparative morphology of phytotelmonous Paulo, SaÄo Paulo and pond-dwelling larvae of four neotropical Starrett, P.H. 1968. The phylogenetic signi®cance treefrog species (Anura, Hylidae, Osteocephal- of the jaw musculature in anuran amphibians. us oophagus, Osteocephalus taurinus, Phry- Ph.D. dissertation University of Michigan, Ann nohyas resini®ctrix, Phrynohyas venulosa). Arbor. Alytes 13: 109±139. Steel, M. 2002. Some statistical aspects of the Schmidt, K.P. 1953. A checklist of North Ameri- maximum parsimony method. In R. De Salle, can amphibians and reptiles, 6th ed. Chicago: G. Giribet, and W. Wheeler (editors), Molecular American Society of Ichthyologists and Her- systematics and evolution: theory and practice: petologists. 125±139. Basel, Switzerland: BirkhaÈuser Ver- SenÄaris, J.C., and J. AyarzaguÈena. 2002. A new lag. Hyla (Anura: Hylidae) from the highlands of Steel, M., and D. Penny. 2000. Parsimony, like- Venezuelan Guyana. Journal of Herpetology lihood, and the role of models in molecular 36: 634±640. phylogenetics. Molecular Biology and Evolu- SenÄaris, J.C., J. AyarzaguÈena, and S. Gorzula. tion 17: 839±850. ``1996'' [1997]. RevisioÂn taxonoÂmica del ge- Steel, M.A., M.D. Hendy, and D. Penny. 1993. nero Stefania (Anura; Hylidae) en Venezuela Parsimony can be consistent! Systematic Biol- con la descripcioÂn de cinco nuevas especies. ogy 42: 581±587. Publicaciones de la AsociacioÂn de Amigos de Steel, M., L. Szekely, and M. Hendy. 1994. Re- DonÄana 7: 1±57. constructing trees from sequences whose sites Sheil, C.A., J.R. Mendelson, and H.R. da Silva. evolve at variable rates. Journal of Comparative 2001. Phylogenetic relationships of the species Biology 1: 153±163. of Neotropical horned frogs, genus Hemiphrac- Stejneger, L. 1907. Herpetology of Japan and ad- tus (Anura: Hylidae: Hemiphractinae), based on jacent territory. Bulletin of the United States evidence from morphology. Herpetologica 57: National Museum 58: 1±577. 203±214. Stewart, M.M. 2003. Recollections of Jamaica. In Siddall, M.E. 1998. Success of parsimony in the R.W. Henderson and R. Powell (editors), Is- four-taxon case: long-branch repulsion by like- lands and the sea: essays on herpetological ex- lihood in the Farris zone. Cladistics 14: 209± ploration in the West Indies: 121±132. Contri- 220. butions to Herpetology, no. 20. Ithaca, NY: So- Siddall, M.E., and A.G. Kluge. 1999. Letter to the ciety for the Study of Amphibians and Reptiles. editor. Cladistics 15: 439±440. Strong, E.E., and D.L. Lipscomb. 1999. Character Simmons, M.P., K.M. Pickett, and M. Miya. 2004. coding and inapplicable data. Cladistics 15: How meaningful are Bayesian support values? 363±371. Molecular Biology and Evolution 21: 188±199. Suarez-Mayorga, A.M., and J.D. Lynch. 2001a. Skuk, G., and J.A. Langone. 1991. Los cromo- Redescription of the tadpole of Hyla vigilans somas de cuatro especies del geÂnero Hyla (An- (Anura: Hylidae) and notes about possible tax- ura, Hylidae) con un nuÂmero diploide de 2n ϭ onomic relationships. Caribbean Journal of Sci- 30. Acta Zoologica Lilloana 41: 165±171. ences 37: 116±119. Smith, E.N., and B.P. Noonan. 2001. A new spe- Suarez-Mayorga, A.M., and J.D. Lynch. 2001b. cies of Osteocephalus (Anura: Hylidae) from Los renacuajos colombianos de Sphaenorhyn- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 149

chus (Hylidae): descripciones, anotaciones sis- us. Occasional Papers of the Museum of Nat- temaÂticas y ecoloÂgicas. Revista de la Academia ural History, The University of Kansas 1: 1± Colombiana de Ciencias Exactas, FõÂsicas y Na- 47. turales 25: 411±420. Trueb, L., and M.J. Tyler. 1974. Systematics and Taboga, S.R., and H. Dolder. 1993. Ultrastructural evolution of the greater Antillean hylid frogs. analysis of the Hyla ranki spermatozoan tail Occasional Papers of the Museum of Natural (Amphibia, Anura, Hylidae). Cytobios 75: 85± History, University of Kansas 24: 1±60. 95. Tschudi, J.J. von. 1838 (1967). Classi®cation der Taylor, E.H. 1948. Two new hylid frogs from Cos- Batrachier, mit berucksichtigung der fossilen ta Rica. Copeia 1948: 233±238. thiere dieser abtheilung der reptilien. Athens, Taylor, E.H. 1952. The frogs and toads of Costa OH: Society for the Study of Amphibians and Rica. University of Kansas Science Bulletin 35: Reptiles. 577±942. Tuf¯ey, C., and M. Steel. 1997. Links between Taylor, E.H. 1954. Frog-egg eating tadpoles of maximum likelihood and maximum parsimony Anotheca coronata (Stejneger) (Salientia, Hy- under a simple model of site substitution. Bul- lidae). University of Kansas Science Bulletin letin of Mathematical Biology 59: 581±607. 36: 589±595. Tyler, M.J. 1963. A taxonomic study of amphib- Teixeira, R.L., J.A.P. Schneider, and G.I. Almeida. ians and reptiles of the Central Highlands of 2002. The occurrence of amphibians in bro- New Guinea, with notes on their ecology and meliads from a southeastern Brazilian restinga biology 2. Anura: Ranidae and Hylidae. Trans- habitat, with special reference to Aparasphen- actions of the Royal Society of South Australia odon brunoi (Anura, Hylidae). Brazilian Jour- 86: 105±130. nal of Biology 62: 263±268. Tyler, M.J. 1968. Papuan hylid frogs of the genus Thomas, E.O., L. Tsang, and P. Licht. 1993. Com- Hyla. Zoologische Verhandelingen: 1±203. parative histochemistry of the sexually dimor- Tyler, M.J. 1971. The phylogenetic signi®cance of phic skin glands of anuran amphibians. Copeia vocal sac structure in hylid frogs. Occasional 1993: 133±143. Papers of the Museum of Natural History, The Titus, T.A., and A. Larson. 1996. Molecular phy- University of Kansas 19: 319±360. logenetics of desmognathine salamanders (Cau- Tyler, M.J. 1972. Super®cial mandibular muscu- data: Plethodontidae): a reevaluation of evolu- lature, vocal sacs and the phylogeny of Austra- tion in ecology, life history, and morphology. Systematic Biology 45: 229±238. lo-Papuan leptodactylid frogs. Records of the Toal, K.R., III. 1994. A new species of Hyla (An- South Australian Museum 16: 1±20. ura: Hylidae) from the Sierra de JuaÂrez, Oaxa- Tyler, M.J. 1978. Amphibians of South Australia. ca, Mexico. Herpetologica 50: 187±193. Government Printer, South Australia. Toledo, R.C., and C. Jared. 1995. Cutaneous gran- Tyler, M.J. 1979. Herpetofaunal relationships of ular glands and amphibian venoms. Compara- South America with Australia. In W.E. Duell- tive Biochemistry and Physiology 111A: 1±29. man (editor), The South American herpetofau- Trewavas, E. 1933. The hyoid and larynx of the na: its origins, evolution, and dispersal: 73± Anura. Philosophical Transactions of the Royal 106. University of Kansas, Museum of Natural Society of London 222: 401±527. History Monographs, 7. Trueb, L. 1969. Pternohyla, P. dentata, P. fodiens. Tyler, M.J. 1982. The hylid frog genus Litoria Catalogue of American Amphibians and Rep- Tschudi: an overview. In D.G. Newman (edi- tiles 77: 1±4. tor), New Zealand herpetology. Proceedings of Trueb, L. 1970a. Evolutionary relationships of a symposium held at Victoria University of casque-headed tree frogs with co-ossi®ed skulls Wellington 29±31 January 1980: 103±112. (Family Hylidae). University of Kansas Publi- Wellington, N.Z.: New Zealand Wildlife Ser- cations, Museum of Natural History 18: 547± vice, Occasional Publication No. 2. 716. Tyler, M.J. 1991. A large new species of Litoria Trueb, L. 1970b. The generic status of Hyla sie- (Anura: Hylidae) from the Tertiary of Queens- mersi Mertens. Herpetologica 26: 254±267. land. Transactions of the Royal Society of Trueb, L. 1974. Systematic relationships of Neo- South Australia 115: 103±105. tropical horned frogs, genus Hemiphractus Tyler, M.J., and M. Davies. 1978a. Phylogenetic (Anura: Hylidae). Occasional Papers of the relationships of Australian hyline and Neotrop- Museum of Natural History, University of Kan- ical phyllomedusine frogs of the family Hyli- sas 29: 1±60. dae. Herpetologica 34: 219±224. Trueb, L., and W.E. Duellman. 1971. A synopsis Tyler, M.J., and M. Davies. 1978b. Species- of Neotropical hylid frogs, genus Osteocephal- groups within the Australopapuan hylid frog 150 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

genus Litoria Tschudi. Australian Journal of frogs, Hyla nana and Scinax nasicus (Anura: Zoology Supplement 63: 1±47. Hylidae). Journal of Morphology 261: 206± Tyler, M.J., and M. Davies. 1979. Rede®nition 224. and evolutionary origin of the Australopapuan Vigle, G.O., and D.C.I. Goberdhan-Vigle. 1990. hylid frog genus Nyctimystes Stejneger. Austra- A new species of small colorful Hyla from the lian Journal of Zoology 27: 755±772. lowland rainforest of Amazonian Ecuador. Her- Tyler, M.J., and M. Davies. 1993. Family Hylidae. petologica 46: 467±473. In C.J. Glasby, G.J.B. Ross, and P.L. Beesley Wagler, J. 1830. NatuÈrliches System der Amphi- (editors), Fauna of Australia, vol. 2A. Amphib- bien: mit vorangehender Classi®cation der SaÈu- ia and Reptilia: 58±63. Canberra: Australian gethiere und VoÈgel: ein Beitrag zur verglei- Government Publishing Service. chenden Zoologie. Cotta'schen, MuÈnchen. Tyler, M.J., G.F. Watson, and A.A. Martin. 1981. Wassersug, R. 1980. Internal oral features of lar- The Amphibia: diversity and distribution. In A. vae from eight anuran families: functional, sys- Keast (editor), Ecological biogeography of tematic, evolutionary and ecological consider- Australia: 1277±1301. Hague: Dr. W. Junk. ations. Miscellaneous Publications of the Mu- Ustach, P.C., J.R. Mendelson III, R.W. Mc- seum of Natural History, University of Kansas Diarmid, and J.A. Campbell. 2000. A new spe- 68: 1±146. cies of Hyla (Anura: Hylidae) from the Sierra Wassersug, R.J., and W.E. Duellman. 1984. Oral Mixes, Oaxaca, Mexico, with comments on on- structures and their development in egg-brood- togenetic variation in tadpoles. Herpetologica ing hylid frog embryos and larvae: evolution- 56: 239±250. ary and ecological implications. Journal of Vellard, J. 1948. Batracios del Chaco Argentino. Morphology 182: 1±37. Acta Zoologica Lilloana 5: 137±174. Werner, F. 1903. Neue reptilien und batrachier aus Vences, M., and F. Glaw. 2001. Systematic review dem naturhistorischen museum in BruÈssel. and molecular phylogenetic relationships of the Nebst bemerkungen uÈber einige andere arten. direct developing Malagasy anurans of the Zoologische Anzeiger 26: 246±253. Mantidactylus asper group. Alytes 19: 107± Weygoldt, P. 1984. Durch nachzucht erhalten: der 139. makifrosch Phyllomedusa exilis. Aquarien-Ma- Vences, M., J. Kosuch, F. Glaw, W. BoÈhme, and gazin 1984: 147±150. M. Veith. 2003a. Molecular phylogeny of hy- Weygoldt, P. 1991. Zur biologie und zum verhal- peroliid treefrogs: biogeographic origin of Mal- ten von Phyllomedusa marginata Izecksohn agasy and Seychelean taxa and re-analysis of and Da Cruz, 1976 im terrarium. Salamandra familial paraphyly. Journal of Zoological Sys- 27: 83±96. tematics and Evolutionary Research 41: 205± Weygoldt, P., and S.P. Carvalho e Silva. 1991. Ob- 215. servations on mating, oviposition, egg sac for- Vences, M., J. Kosuch, R. Boistel, C.F.B. Haddad, mation and development in the egg-brooding E. La Marca, S. LoÈtters, and M. Veith. 2003b. frog, Fritziana goeldii. Amphibia-Reptilia 12: Convergent evolution of aposematic coloration 67±80. in Neotropical poison frogs: a molecular phy- Weygoldt, P., and O.L. Peixoto. 1987. Hyla rus- logenetic perspective. Organisms, Diversity, chii n. sp., a new frog from the Atlantic forest and Evolution 3: 215±226. domain in the State of EspõÂrito Santo, Brazil Vences, M., D.R. Vieites, F. Glaw, H. Brinkmann, (Amphibia, Hylidae). Studies on Neotropical J. Kosuch, M. Veith, and A. Meyer. 2003c. Fauna and Environment 22: 237±247. Multiple overseas dispersal in amphibians. Pro- Wheeler, W.C. 1996. Optimization alignment: the ceedings of the Royal Society of London B end of multiple sequence alignment in phylo- 270: 2435±2442. genetics? Cladistics 12: 1±9. Vences, M., J. Kosuch, S. LoÈtters, A. Widmer, Wheeler, W.C. 1998. Alignment characters, dy- K.H. Jungfer, J. KoÈhler, and M. Veith. 2000. namic programming and heuristic solutions. In Phylogeny and classi®cation of poison frogs, R. DeSalle and B. Schierwater (editors), Mo- (Amphibia: Dendrobatidae), based on mito- lecular approaches to ecology and evolution: chondrial 16S and 12S ribosomal RNA gene 243±251. Basel: Birkhauser Verlag. sequences. Molecular Phylogenetics and Evo- Wheeler, W.C. 2002. Optimization alignment: lution 15: 34±40. down, up, error, and improvements. In R. De Vera Candioti, M.F. 2004. Morphology of pre- Salle, G. Giribet, and W.C. Wheeler (editors), metamorphic larvae of Lysapsus limellus (An- Techniques in molecular systematics and evo- ura: Pseudinae). Amphibia-Reptilia 25: 41±54. lution: 55±69. Bassel: BirkhauÈser Verlag. Vera Candioti, M.F., E.O. Lavilla, and D.D. Eche- Wheeler, W.C. 2003a. Iterative pass optimization verria. 2004. Feeding mechanism in two tree- of sequence data. Cladistics 19: 254±260. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 151

Wheeler, W.C. 2003b. Implied alignment: a syn- Wilson, L.D., J.R. McCranie, and K.L. Williams. apomorphy-based multiple-sequence alignment 1985. Two new species of fringe-limbed hylid method and its use in cladogram search. Cla- frogs from nuclear Central America. Herpeto- distics 19: 261±268. logica 41: 141±150. Wheeler, W.C., D. Gladstein, and J. De Laet. Wilson, L.D., J.R. McCranie, and G.A. Cruz. 2002. POY, version 3.0. Program available at 1994a. A new species of Plectrohyla (Anura: ftp.amnh.org/pub.molecular/poy. Hylidae) from a premontane rainforest in north- Wild, E.R. 1992. The tadpoles of Hyla fasciata ern Honduras. Proceedings of the Biological and H. allenorum, with a key to the tadpoles of Society of Washington 107: 67±78. the Hyla parviceps group (Anura: Hylidae). Wilson, L.D., J.R. McCranie, and K.L. Williams. Herpetologica 48: 439±447. 1985. Two new species of fringe-limbed hylid Wiley, J.E. 1982. Chromosome banding patterns frogs from nuclear Central America. Herpeto- of treefrogs (Hylidae) of the eastern United logica 41: 141±150. States. Herpetologica 38: 507±520. Wilson, L.D., J.R. McCranie, and K.L. Williams. Wilkinson, J.A., M. Matsui, and T. Terachi. 1996. 1994b. Commentary on the reproductive biol- ogy and systematic relationships of Hyla inso- Geographic variation in a lita McCranie, Wilson, and Williams. Caribbe- ( arboreus) revealed by PCR-aid- an Journal of Science 30: 214±221. ed restriction site analysis of mtDNA. Journal Wogel, H., P.A. Abrunhosa, and J.P. Pombal, Jr. of Herpetology 30: 418±423. 2000. Girinos de cinco espeÂcies do Sudeste do Williams, J.D., and A. Bosso. 1994. Estado sis- Brasil (Amphibia: Hylidae, Leptodactylidae, temaÂtico y distribucioÂn geogra®ca de Argenteo- Microhylidae). Boletim do Museu Nacional, hyla siemersi (Mertens, 1937) en la RepuÂblica Nova SeÂrie, Zoologia: 1±16. Argentina (Anura: Hylidae). Cuadernos de Her- Yang, Z. 1997. How often do frog models produce petologia 8: 57±62. better phylogenies? Molecular Biology and Wilson, L.D., and J.R. McCranie. 1989. A new Evolution 414: 105±108. species of Ptychohyla of the euthysanota group Zweifel, R.G. 1983. Two new hylid frogs from from Honduras, with comments on the status of the Papua New Guinea and a discussion of the the genus Ptychohyla Taylor (Anura: Hylidae). Nyctimystes papua species group. American Herpetologica 45: 10±17. Museum Novitates 2759: 1±21. 152 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 group group group group group group group PECIES group group S group group group group Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð SSIGNED A Unassigned URRENTLY C THE , PPLICABLE A AXONOMY IF , T EW N Hypsiboas albopunctatus Hypsiboas albopunctatus Hyloscirtus albopunctulatusHypsiboas Hyloscirtus pulchellus bogotensis Hypsiboas alemani Hypsiboas pulchellus Hypsiboas punctatus Aplastodiscus albosignatus Aplastodiscus albosignatus Hypsiboas albomarginatus Hypsiboas faber Dendropsophus acreanusBokermannohyla ahenea Dendropsophus marmoratus Bokermannohyla circumdata Hypsiboas alboniger Hypsiboas pulchellus Exerodonta abdivita Aplastodiscus albofrenatusIncerta sedis Aplastodiscus albofrenatus Hyloscirtus estevesi Hyloscirtus bogotensis Duellmanohyla uranochroa Duellmanohyla soralia Duellmanohyla schmidtorum Duellmanohyla salvavida Duellmanohyla ru®oculis Duellmanohyla lythrodes Duellmanohyla ignicolor Duellmanohyla chamulae Corythomantis greeningi Argenteohyla siemersi Aplastodiscus perviridis Aplastodiscus perviridis Aplastodiscus cochranae Aplastodiscus perviridis Aparasphenodon venezolanus Aparasphenodon brunoi Aparasphenodon bokermanni Anotheca spinosa Acris gryllus Acris crepitans NCLUDING ,I group group group APPENDIX 1 TATUS WITH THE complex, group S group complex, complex, group group TS I group group HYLLOMEDUSINAE P Ð Ð Species group in current taxonomy New taxonomy Species group in new taxonomy H. albomarginata H. albomarginata H. albomarginata GROUP AND H. albopunctata H. granosa H. albosignata H. albomarginata H. marmorata H. circumdata H. albofrenata H. pulchella H. miotympanum YLINAE AND H PECIES OF S (Mertens, 1950) Ð Pombal, 1993 Ð (Stuart, 1954) Ð '' (Rivero, 1968) Ð ECENT (Cope, 1875) Ð R (Duellman, 1961) Ð (McCranie and Wilson, (Taylor, 1952) Ð (Savage, 1968) Ð (Duellman, 1961) Ð Boulenger, 1896 Ð (Mertens, 1952) Ð Miranda-Ribeiro, 1920 Ð A. Lutz, 1950 Ð (Wilson and McCranie, (Mertens, 1937) Ð Boulenger, 1882 Unassigned Spix, 1824 ALID Spix, 1824 V (Steindachner, 1864) Ð A. Lutz and B. Lutz, 1938 A. Lutz, 1924 Boulenger, 1882 Unassigned Lichtenstein and Martens, 1856 Unassigned Current taxonomy Nieden, 1923 Baird, 1854 Ð Bokermann, 1964 Campbell and Duellman, 2000 Rivero, 1964 (LeConte, 1825) Ð Napoli and Caramaschi, 2004 IST OF L 1985) 1986) Hyalinobatrachium estevesi Hyla alemani Hyla albopunctulata Hyla albosignata Hyla albovittata Hyla albopunctata Hyla ahenea Hyla albofrenata Hyla alboguttata Hyla albomarginata Hyla albonigra Hyla acreana Hyla abdivita Duellmanohyla uranochroa `` Duellmanohyla schmidtorum Duellmanohyla soralia Duellmanohyla ru®oculis Duellmanohyla salvavida Duellmanohyla lythrodes Duellmanohyla ignicolor Duellmanohyla chamulae Corythomantis greeningi Argenteohyla siemersi Aplastodiscus cochranae Aplastodiscus perviridis Aparasphenodon venezolanus Aparasphenodon brunoi Anotheca spinosa Aparasphenodon bokermanni Acris gryllus Acris crepitans 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 153 group group, group, group group group H. group group group group group group group group, group group group group group clade clade group clade group group Ð Ð Ð Ð group group group D. rubicundulus D. rubicundulus polytaenius Unassigned ) Dendropsophus ancepsHyla andersonii Dendropsophus leucophyllatus Hyla eximia Plectrohyla arborescandens Plectrohyla bistincta Dendropsophus aperomeusDendropsophus araguayaHyla arboricola Dendropsophus minimus Dendropsophus microcephalus Hyla arenicolor H. eximia Hyla eximia Dendropsophus amicorum Dendropsophus anataliasiasi Dendropsophus microcephalus Hypsiboas andinusIsthmohyla angustilineata Isthmohyla pseudopuma Hypsiboas pulchellus Hyla arborea Hyla arborea Hyla arborea Plectrohyla ameibothalame Plectrohyla bistincta Nomen dubium Aplastodiscus arildae Aplastodiscus albofrenatus Hyloscirtus armatus Hyloscirtus armatus Hyloscirtus alytolylax Hyloscirtus bogotensis Bokermannohyla alvarengai Bokermannohyla pseudopseudis Charadrahyla altipotens Dendropsophus allenorum Dendropsophus parviceps Bokermannohyla astarteaHypsiboas atlanticusNomen dubium Bokermannohyla circumdata Hypsiboas punctatus Myersiohyla aromatica Hyla avivocaDendropsophus battersbyiHypsiboas beckeri Dendropsophus microcephalus Hyla versicolor Hypsiboas pulchellus Hypsiboas balzani Hypsiboas pulchellus Hypsiboas benitezi Hypsiboas benitezi Continued ( APPENDIX 1 group H. group group group group complex, group group group group group clade group group group group, group group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy H. albomarginata polytaenia H. versicolor H. miotympanum H. rubicundula H. rubicundula H. minima H. eximia H. arborea H. eximia H. pulchella H. pseudopuma H. arborea H. bistincta H. albofrenata H. armata H. bogotensis H. taeniopus H. pulchella H. parviceps H. punctata H. aromatica H. circumdata H. versicolor H. pulchella Äaris, 1994 Âquez, Mendelson, na and Sen Ú Âril and Bibron, 1841) Unassigned Taylor, 1939 ``1938'' Ân, 2002 Canseco-Mr Taylor, 1952 Bokermann, 1972 Bokermann, 1956 Unassigned Baird, 1854 Taylor, 1941 (Dume Current taxonomy Cope, 1866 Ayarzagae Duellman and Trueb, 1989 (Jerdon, 1870) Mijares-Urrutia, 1998 Unassigned Duellman, 1982 Rivero, 1961 Unassigned Duellman, 1972 Duellman, 1968 Napoli and Caramaschi, 1998 Èller, 1924 Caramaschi and Velosa, 1996 Bokermann, 1967 (Linnaeus, 1758) Viosca, 1928 Rivero, 1961 Unassigned Peters, 1873 Unassigned Boulenger, 1898 Caramaschi and Cruz, 2004 Cruz and Peixoto, 1987 ``1985'' Boulenger, 1902 Mu A. Lutz, 1929 Unassigned Ârrez-Maye and Gutie ``1993'' Hyla andersonii Hyla araguaya Hyla arboricola Hyla arenicolor Hyla aperomea Hyla arborea Hyla arborescandens Hyla anceps Hyla andina Hyla angustilineata Hyla annectans Hyla anataliasiasi Hyla americana Hyla amicorum Hyla arildae Hyla armata Hyla aromatica Hyla ameibothalame Hyla alytolylax Hyla alvarengai Hyla allenorum Hyla altipotens Hyla astartea Hyla atlantica Hyla auraria Hyla avivoca Hyla balzani Hyla battersbyi Hyla beckeri Hyla benitezi 154 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 group, group group group, group group group group group group group group group group group group group group group, group group group group group group clade clade clade Ð group D. decipiens H. polytaenius D. rubicundulus Unassigned Unassigned ) Plectrohyla bistincta Plectrohyla bistincta Hypsiboas bischof® Hypsiboas pulchellus Dendropsophus bipunctatusExerodonta Dendropsophus bivocata microcephalus Dendropsophus berthalutzae Dendropsophus microcephalus Dendropsophus bifurcus Dendropsophus leucophyllatus Hypsiboas boansHyla bocourti Hypsiboas semilineatus Hyla eximia Dendropsophus bogerti Dendropsophus columbianus Hyloscirtus bogotensisDendropsophus bokermanni Dendropsophus parviceps Hyloscirtus bogotensis Dendropsophus branneriDendropsophus brevifrons Dendropsophus microcephalus Dendropsophus parviceps Hypsiboas buriti Hypsiboas pulchellus Bromeliohyla bromeliacia Dendropsophus cachimbo Dendropsophus microcephalus Hypsiboas calcaratus Hypsiboas albopunctatus Hyloscirtus callipeza Hyloscirtus bogotensis Hypsiboas caingua Hypsiboas pulchellus Hypsiboas callipleura Hypsiboas pulchellus Aplastodiscus callipygiusPlectrohyla calthula Aplastodiscus albosignatus Plectrohyla bistincta Plectrohyla calvicollina Plectrohyla bistincta Isthmohyla calypsaBokermannohyla caramaschiiBokermannohyla carvalhoi Bokermannohyla circumdata Isthmohyla pictipes Bokermannohyla circumdata Dendropsophus carnifexExerodonta catracha Dendropsophus columbianus Hyloscirtus caucanus Hyloscirtus larinopygion Continued ( APPENDIX 1 group group group group group group clade group group group group group group complex, group group group group group group group group group, group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy H. polytaenia H. albomarginata H. bistincta H. pulchella H. miotympanum H. microcephala Hyla decipiens H. leucophyllata H. boans H. eximia H. columbiana H. bogotensis H. parviceps H. microcephala H. parviceps H. pulchella H. bromeliacia H. rubicundula H. geographica H. bogotensis H. pulchella H. pulchella H. bistincta H. albosignata H. bistincta H. pictipes H. circumdata H. circumdata H. miotympanum H. columbiana H. larinopygion Bokermann, 1962 Napoli, 2005 Schmidt, 1933 Goin, 1960 Toal, 1994 Boulenger, 1902 Spix, 1824 (Peters, 1882) Current taxonomy Duellman and Crump, 1974 Cruz and Peixoto, 1985 1984 Napoli and Caramaschi, 1999 Troschel, 1848 Peixoto, 1981 Duellman, 1989 Porras and Wilson, 1987 Cochran, 1948 Duellman and Hoyt, 1961 Cope, 1878 ``1877'' Ardila-Robayo, Ruiz-Carranza, and Boulenger, 1887 Mocquard, 1899 Ustach, Mendelson, McDiarmid, and Duellman, 1969 Carrizo, 1991 ``1990'' Lips, 1996 Andersson, 1945 Cochran and Goin, 1970 (Linnaeus, 1758) Caramaschi and Cruz, 1999 Campbell, 2000 Roa-Trujillo, 1993 Hyla bischof® Hyla bistincta Hyla bivocata Hyla berthalutzae Hyla bifurca Hyla boans Hyla bipunctata Hyla bocourti Hyla bogerti Hyla bogotensis Hyla bokermanni Hyla branneri Hyla brevifrons Hyla buriti Hyla bromeliacia Hyla cachimbo Hyla calcarata Hyla callipeza Hyla caingua Hyla callipleura Hyla callipygia Hyla calthula Hyla calvicollina Hyla calypsa Hyla caramaschii Hyla carnifex Hyla carvalhoi Hyla catracha Hyla caucana 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 155 group, group group, group group group group group group group group group group, group group group group group group group group group group clade clade group group clade group group Ð Ð Ð Ð D. rubicundulus H. polytaenius D. decipiens ) Aplastodiscus cavicola Aplastodiscus albosignatus Plectrohyla celata Plectrohyla bistincta Plectrohyla cembra Plectrohyla bistincta Dendropsophus cerradensisPlectrohyla Dendropsophus charadricola microcephalus Plectrohyla bistincta Charadrahyla chaneque Hypsiboas cordobae Hypsiboas pulchellus Plectrohyla crassa Plectrohyla bistincta Exerodonta chimalapa Exerodonta sumichrasti Hyloscirtus charazani Hyloscirtus armatus Bokermannohyla claresignataBokermannohyla clepsydraDendropsophus columbianus Bokermannohyla claresignata Bokermannohyla claresignata Dendropsophus columbianus Hypsiboas crepitans Hypsiboas faber Bokermannohyla circumdata Bokermannohyla circumdata Hyloscirtus colymba Hyloscirtus bogotensis Hyla chinensisIncerta sedis Plectrohyla chryses Hyla Plectrohyla arborea bistincta Dendropsophus cruziPlectrohyla cyanomma Dendropsophus microcephalus Plectrohyla bistincta Hyla chrysoscelisHyla cinereaHypsiboas cipoensis Hyla versicolor Hypsiboas pulchellus Hyla cinerea Plectrohyla cyclada Plectrohyla bistincta Hypsiboas cymbalum Hypsiboas pulchellus Isthmohyla debilisDendropsophus decipiens Dendropsophus microcephalus Isthmohyla pictipes Bromeliohyla dendroscarta Dendropsophus delarivaiPtychohyla dendrophasma Dendropsophus minutus Continued ( APPENDIX 1 group group group clade group group group group complex, group group group group group group group group group, group group group group group group group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy H. albomarginata H. polytaenia H. albosignata H. bistincta H. bistincta H. rubicundula H. bistincta H. taeniopus H. pulchella H. bistincta H. sumichrasti H. armata H. claresignata H. claresignata H. columbiana H. bogotensis H. boans H. circumdata H. arborea H. bistincta H. bistincta H. microcephala H. versicolor H. pulchella H. cinerea H. miotympanum H. pulchella H. pictipes H. decipiens H. bromeliacia H. minuta H. miliaria Èters, 2001 Campbell, Smith, and Taylor, 1940 Duellman, 1964 A. Lutz and B. Lutz, 1939 Cope, 1880 Boettger, 1892 Napoli and Caramaschi, 1998 (Cope, 1871) Ènther, 1858 Èler and Lt Caldwell, 1974 Current taxonomy Mendelson and Campbell, 1994 Reynolds and Foster, 1992 Unassigned Bokermann, 1963 Vellard, 1970 A. Lutz, 1925 Duellman, 1961 Barrio, 1965 A. Lutz, 1925 Gu Wied-Neuwied, 1824 B. Lutz, 1968 Kh Cruz and Peixoto, 1985 ``1984'' Dunn, 1931 Campbell and Duellman, 2000 Caldwell, 1974 (Schneider, 1799) Adler, 1965 Taylor, 1952 (Brocchi, 1877) Toal and Mendelson, 1995 Pombal and Bastos, 1998 Acevedo, 2000 Hyla celata Hyla cavicola Hyla cembra Hyla cerradensis Hyla charadricola Hyla chaneque Hyla crassa Hyla charazani Hyla chimalapa Hyla chinensis Hyla claresignata Hyla clepsydra Hyla columbiana Hyla colymba Hyla cordobae Hyla crepitans Hyla chryses Hyla chlorostea Hyla cyanomma Hyla cruzi Hyla chrysoscelis Hyla cinerea Hyla cipoensis Hyla circumdata Hyla cyclada Hyla cymbalum Hyla debilis Hyla decipiens Hyla delarivai Hyla dendroscarta Hyla dendrophasma 156 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 group, group group group group group group group group group group group group group group group group group group group group clade group group clade Ð Ð Ð Ð group group D. rubicundulus Unassigned Unassigned ) Hyloscirtus denticulentusScinax dolloi Hyloscirtus bogotensis Scinax ruber Dendropsophus dutrai Dendropsophus marmoratus Dendropsophus ebraccatus Dendropsophus leucophyllatus Dendropsophus elegans Dendropsophus leucophyllatus Hypsiboas denteiEcnomiohyla echinata Hypsiboas albopunctatus Dendropsophus elianeae Dendropsophus microcephalus Aplastodiscus ehrhardti Aplastodiscus albofrenatus Hypsiboas fuentei Hypsiboas freicanecae Hypsiboas pulchellus Hyla euphorbiaceaHyla femoralis Hyla eximia Hypsiboas exastis Hypsiboas faber Hypsiboas ericae Hypsiboas pulchellus Dendropsophus garagoensis Dendropsophus garagoensis Nomen dubium Ecnomiohyla ®mbrimembra Aplastodiscus ¯umineus Aplastodiscus albofrenatus Hyla eximiaBokermannohyla feioi Bokermannohyla circumdata Hyla eximia Hypsiboas faber Hypsiboas faber Dendropsophus gaucheri Dendropsophus parviceps Hypsiboas fasciatus Hypsiboas albopunctatus Bokermannohyla gouveai Bokermannohyla circumdata Isthmohyla graceae Isthmohyla pseudopuma Hypsiboas geographicus Hypsiboas semilineatus Hypsiboas granosus Hypsiboas punctatus Dendropsophus giesleri Dendropsophus parviceps Hypsiboas goianus Hypsiboas pulchellus Tlalocohyla godmani Dendropsophus grandisonae Dendropsophus microcephalus Continued ( APPENDIX 1 group group group group group clade group group group group group group group complex, complex, group group group group group group group group group, group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy H. albomarginata H. albomarginata H. polytaenia H. bogotensis H. marmorata H. leucophyllata H. tuberculosa H. leucophyllata H. rubicundula H. geographica H. albofrenata H. pulchella H. cinerea H. eximia H. boans H. pulchella H. garagoensis H. albofrenata H. miliaria H. eximia H. boans H. circumdata H. parviceps H. geographica H. circumdata H. pseudopuma H. granosa H. geographica H. parviceps H. pulchella H. godmani H. microcephala Ènther, 1858 Taylor, 1948 Gu Spix, 1824 Goin, 1966 Duellman, 1972 Kaplan, 1991 Èller, 1924 Carnaval and Peixoto, 2004 Ènther, 1901 Current taxonomy Cope, 1874 Ènther, 1858 Mu Bosc, 1800 Lescure and Marty, 2000 Gu Duellman, 1962 Cruz and Peixoto, 1985 ``1984'' Napoli and Caramaschi, 2000 Boulenger, 1882 Myers and Duellman, 1982 Peixoto and Cruz, 1992 Gu Wied-Neuwied, 1824 Mertens, 1950 B. Lutz, 1968 C. Goin and O. Goin, 1968 Unassigned Caramaschi and Rodrigues, 2003 Baird, 1854 Caramaschi and Cruz, 2000 Gomes and Peixoto, 1996 Bokermann, 1967 Werner, 1903 Unassigned Laurenti, 1768 Unassigned Wied-Neuwied, 1821 Napoli and Caramaschi, 2004 Hyla dolloi Hyla ebraccata Hyla dutrai Hyla dentei Hyla denticulenta Hyla echinata Hyla ehrhardti Hyla elegans Hyla elianeae Hyla fuentei Hyla euphorbiacea Hyla exastis Hyla ericae Hyla garagoensis Hyla fusca Hyla ¯uminea Hyla freicanecae Hyla ®mbrimembra Hyla eximia Hyla faber Hyla femoralis Hyla gaucheri Hyla fasciata Hyla feioi Hyla graceae Hyla geographica Hyla giesleri Hyla goiana Hyla gouveai Hyla godmani Hyla grandisonae Hyla granosa 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 157 group group, group group, group group group group group group group group group group group group group group clade clade group group group group Ð Ð Ð Ð Ð Ð Ð group D. rubicundulus D. decipiens Unassigned ) Hyloscirtus jahniHyla japonica Hyloscirtus bogotensis Hyla eximia Myersiohyla kanaima Exerodonta juanitae Bokermannohyla izecksohniDendropsophus Bokermannohyla jimi circumdata Dendropsophus microcephalus Isthmohyla insolita Isthmohyla pictipes Isthmohyla infucataMyersiohyla inparquesi Isthmohyla pseudopuma Dendropsophus joannae Dendropsophus microcephalus Hyla intermediaHypsiboas joaquini Hyla arborea Hypsiboas pulchellus Incerta sedis Aplastodiscus ibirapitanga Aplastodiscus albosignatus Nomen dubium Bokermannohyla ibitiguaraBokermannohyla ibitipocaIncerta sedis Hyla immaculata Bokermannohyla pseudopseudis Bokermannohyla circumdata Hyla arborea Bokermannohyla circumdata Hypsiboas hobbsiHypsiboas hutchinsi Hypsiboas Hypsiboas punctatus benitezi Dendropsophus haddadiHyla hallowelliiDendropsophus haraldschultzi Dendropsophus microcephalus Hyla arborea Hyla gratiosaDendropsophus gryllatus Dendropsophus microcephalus Hyla cinerea Hypsiboas guentheri Hypsiboas pulchellus Hypsiboas heilprini Hypsiboas albopunctatus Incerta sedis Plectrohyla hazelae Plectrohyla bistincta Continued ( APPENDIX 1 group group group group group group group group group group complex, group group group group group group group group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy H. albomarginata H. bogotensis H. arborea H. geographica H. miotympanum H. circumdata H. rubicundula H. aromatica H. pictipes H. pseudopuma H. arborea H. microcephala H. pulchella H. albosignata H. circumdata H. arborea H. pseudopseudis H. circumdata H. punctata H. geographica H. arborea H. decipiens H. cinerea H. microcephala H. pulchella H. miotympanum Äaris, 1994 Ètters, 2001 Èena and Sen Bokermann, 1962 Unassigned Boulenger, 1882 Unassigned Cruz, Pimenta and Silvano, Boettger, 1888 Boulenger, 1882 Ènther, 1859 ``1858'' Ayarzagu Thompson, 1912 Current taxonomy Jim and Caramaschi, 1979 Èhler and Lo Cardoso, 1983 (Cope, 1871) Unassigned Boulenger, 1886 Pyburn and Hall, 1984 Caramaschi and Feio, 1990 Gu Goin and Woodley, 1969 Noble, 1923 Unassigned B. Lutz, 1968 LeConte, 1857 ``1856'' Bastos and Pombal, 1996 Snyder, 1972 Duellman, 1968 Ko (Barbour and Dunn, 1921) Unassigned Duellman, 1973 Ruthven, 1919 Unassigned Taylor, 1940 McCranie, Wilson, and Williams, Cochran and Goin, 1970 Heyer, 1985 Rivero, 1961 Napoli and Caramaschi, 1999 ``1993'' 1993 2003 Hyla japonica Hyla kanaima Hyla jahni Hyla jimi Hyla joannae Hyla inparquesi Hyla insolita Hyla intermedia Hyla juanitae Hyla izecksohni Hyla joaquini Hyla infucata Hyla ibirapitanga Hyla inframaculata Hyla ibitiguara Hyla ibitipoca Hyla imitator Hyla immaculata Hyla hypselops Hyla hylax Hyla hutchinsi Hyla hallowellii Hyla haraldschultzi Hyla gryllata Hyla haddadi Hyla gratiosa Hyla guentheri Hyla helenae Hyla hobbsi Hyla hazelae Hyla heilprini 158 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 group group group group H. group group group group group group group group group group group group group group group group group, group, group group group group group clade group clade clade Ð Ð polytaenius H. polytaenius Unassigned ) Scinax karenannae Scinax ruber Dendropsophus koechlini Dendropsophus parviceps Plectrohyla labedactyla Plectrohyla bistincta Hyloscirtus larinopygion Hyloscirtus larinopygion Bokermannohyla langei Bokermannohyla martinsi Dendropsophus labialisIsthmohyla lancasteriHypsiboas lanciformis Dendropsophus labialis Hyloscirtus lascinius Isthmohyla pictipes Hypsiboas albopunctatus Hyloscirtus bogotensis Bokermannohyla lucianaeBokermannohyla luctuosa Bokermannohyla circumdata Bokermannohyla circumdata Hypsiboas latistriatus Hypsiboas pulchellus Dendropsophus leucophyllatus Dendropsophus leucophyllatus Myersiohyla loveridgei Hypsiboas lundii Hypsiboas faber Aplastodiscus leucopygiusDendropsophus limai Aplastodiscus albosignatus Dendropsophus minutus Dendropsophus leali Dendropsophus minimus Hypsiboas leucocheilus Hypsiboas albopunctatus Dendropsophus luteoocellatus Dendropsophus parviceps Hypsiboas lemaiHypsiboas leptolineatus Hypsiboas pulchellus Hypsiboas benitezi Hyloscirtus lindaeTlalocohyla loquax Hyloscirtus larinopygion Bokermannohyla martinsiDendropsophus melanargyreus Bokermannohyla Dendropsophus martinsi marmoratus Dendropsophus mathiassoniExerodonta melanomma Dendropsophus microcephalus Dendropsophus marmoratus Dendropsophus marmoratus Hyloscirtus lynchi Hyloscirtus bogotensis Hypsiboas marginatusHypsiboas marianitae Hypsiboas pulchellus Hypsiboas pulchellus Continued ( APPENDIX 1 group H. group group group group group clade group group complex, group group group group group group clade group group group, group, group group group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy polytaenia H. albomarginata H. polytaenia H. parviceps H. bistincta H. larinopygion H. labialis H. martinsi H. bogotensis H. pictipes H. albopunctata H. pulchella H. circumdata H. circumdata H. boans H. leucophyllata H. albosignata H. minima H. pulchella H. albopunctata H. parviceps H. larinopygion H. godmani H. martinsi H. microcephala H. marmorata H. miotympanum H. bogotensis H. marmorata H. pulchella H. pulchella Cope, 1887 (Beireis, 1783) Roux, 1927 Pyburn, 1993 Unassigned Duellman, 1973 Taylor, 1940 Cochran and Goin, 1970 P. Braun and C. Braun, 1977 Mendelson and Toal, 1996 Caramaschi and Niemeyer, 2003 (Cope, 1871) (Laurenti, 1768) Cruz and Peixoto, 1985 1984. Carrizo, 1992 Current taxonomy Boulenger, 1887 Rivero, 1961 Unassigned Barbour, 1928 Caramaschi and Cruz, 2004 Duellman and Trueb, 1989 Napoli and Pimenta, 2003 Pombal and Haddad, 1993 Bokermann, 1964 Rivero, 1969 Peters, 1863 Gaige and Stuart, 1934 Bokermann, 1965 Duellman and Altig, 1978 Ruiz-Carranza and Ardila-Robayo, Burmeister, 1856 Rivero, 1971 Unassigned Bokermann, 1962 Unassigned Bokermann, 1964 1991 Hyla karenanneae Hyla koechlini Hyla labedactyla Hyla labialis Hyla larinopygion Hyla lascinia Hyla lancasteri Hyla lanciformis Hyla langei Hyla latistriata Hyla lucianae Hyla luctuosa Hyla lundii Hyla leucopygia Hyla limai Hyla lemai Hyla leptolineata Hyla leucocheila Hyla leucophyllata Hyla loveridgei Hyla luteoocellata Hyla leali Hyla lindae Hyla loquax Hyla martinsi Hyla mathiassoni Hyla melanargyrea Hyla melanomma Hyla lynchi Hyla marianitae Hyla marmorata Hyla marginata 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 159 group, group group group group group group group group group group group group group group group group group group group group group clade group Ð Ð Ð Ð Ð Ð Ð Ð Ð D. decipiens ) Plectrohyla pachyderma Plectrohyla bistincta Dendropsophus padreluna Dendropsophus garagoensis Hyloscirtus pacha Hyloscirtus larinopygion Dendropsophus oliveiraiHypsiboas ornatissimus Dendropsophus microcephalus Hypsiboas punctatus Hypsiboas multifasciatusDendropsophus Hypsiboas nahdereri albopunctatus Charadrahyla nephila DendropsophusDendropsophus marmoratus novaisiMegastomatohyla nubicola Dendropsophus marmoratus Aplastodiscus musicusPlectrohyla mykterDendropsophus nanusBokermannohyla Aplastodiscus nanuzae albofrenatus Plectrohyla bistincta Bokermannohyla Dendropsophus circumdata microcephalus Nomen dubium Dendropsophus miyatai Dendropsophus minimus Megastomatohyla mixomaculata Megastomatohyla mixe Ecnomiohyla miotympanum Dendropsophus minutus Dendropsophus minutus Dendropsophus microps Dendropsophus parviceps Hypsiboas microderma Hypsiboas benitezi Ecnomiohyla miliaria Ecnomiohyla minera Dendropsophus minimus Dendropsophus minimus Dendropsophus minusculus Dendropsophus microcephalus Dendropsophus meridianusDendropsophus microcephalus Dendropsophus microcephalus Dendropsophus microcephalus Dendropsophus labialis Hyla meridionalis Hyla arborea Nomen dubium Hypsiboas melanopleurus Hypsiboas pulchellus Continued ( APPENDIX 1 group group group group group group group group group group group group group group group complex, group group group group group group group group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy H. albomarginata H. bistincta H. garagoensis H. larinopygion H. granosa H. decipiens H. marmorata H. marmorata H. albopunctata H. albofrenata H. bistincta H. microcephala H. circumdata H. taeniopus H. mixomaculata H. mixomaculata H. minima H. mixomaculata H. miotympanum H. minuta H. parviceps H. geographica H. tuberculosa H. tuberculosa H. minima H. microcephala H. microcephala H. microcephala H. labialis H. arborea H. pulchella (Schneider, 1799) Unassigned Ènther, 1859 ``1858'' Taylor, 1950 Cope, 1863 Boulenger, 1912 Cope, 1886 Gu Boettger, 1874 Taylor, 1942 Pyburn, 1977 Noble, 1923 Rivero, 1961 Current taxonomy Kaplan and Ruiz, 1997 Rivero, 1971 B. Lutz, 1954 B. Lutz and Bokermann, 1963 Duellman, 1964 ``1963'' Bokermann, 1963 Bokermann and Sazima, 1973 Peters, 1872 (Cope, 1886) Mendelson and Campbell, 1999 Vigle and Goberdhan-Vigle, 1990 Ahl, 1933 Schmidt, 1857 Unassigned Bokermann, 1968 B. Lutz, 1948 Wilson, McCranie, and Williams, Peters, 1872 Adler and Dennis, 1972 Duellman and Hillis, 1990 Boulenger, 1889 Duellman, 1965 1985 Hyla padreluna Hyla pachyderma Hyla pacha Hyla ornatissima Hyla novaisi Hyla oliveirai Hyla multifasciata Hyla musica Hyla mykter Hyla nana Hyla nanuzae Hyla nephila Hyla nubicola Hyla miyatai Hyla nahdereri Hyla molitor Hyla mixomaculata Hyla mixe Hyla miotympanum Hyla microps Hyla miliaria Hyla minera Hyla minima Hyla minuscula Hyla minuta Hyla meridiana Hyla microcephala Hyla meridensis Hyla meridionalis Hyla microderma Hyla melanorabdota Hyla melanopleura 160 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 group group group group group group group group group group group group group group, group group group, group group group group S. uruguayus group group clade clade group clade, Ð Ð Ð Ð group H. polytaenius H. polytaenius Unassigned Unassigned ) Hyloscirtus pantostictus Hyloscirtus larinopygion Scinax pinima Scinax ruber Hypsiboas pardalis Hypsiboas faber Hypsiboas pombaliDendropsophus praestansHyloscirtus psarolaimus Dendropsophus garagoensis Hypsiboas semilineatus Hyloscirtus larinopygion Hyla plicataHypsiboas polytaenius Hypsiboas pulchellus Hyla eximia Plectrohyla psarosema Plectrohyla bistincta Nomen dubium Hyloscirtus palmeri Hyloscirtus bogotensis Hypsiboas palaestes Hypsiboas pulchellus Hyloscirtus piceigularisIsthmohyla pictipesHypsiboas picturatus Hyloscirtus bogotensis Isthmohyla pictipes Hypsiboas punctatus Dendropsophus pauiniensis Dendropsophus parviceps Tlalocohyla picta Dendropsophus parviceps Dendropsophus parviceps Hypsiboas prasinus Hypsiboas pulchellus Exerodonta pinorum Hyloscirtus platydactylus Hyloscirtus bogotensis Hyloscirtus phyllognathusIsthmohyla picadoi Hyloscirtus bogotensis Isthmohyla pictipes Dendropsophus pelidnaMegastomatohyla pellita Dendropsophus labialis Hypsiboas pellucensPlectrohyla pentheter Hypsiboas pellucens Plectrohyla bistincta Exerodonta perkinsi Ecnomiohyla phantasmagoria Dendropsophus phlebodes Dendropsophus microcephalus Hypsiboas phaeopleura Hypsiboas pulchellus Continued ( APPENDIX 1 group complex, group group group group group clade clade group group group group group group group group group group group group, group group group, group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy H. polytaenia H. albomarginata H. polytaenia H. larinopygion H. uruguaya H. boans H. larinopygion H. pulchella H. geographica H. eximia H. bistincta H. bogotensis H. pulchella H. bogotensis H. pictipes H. geographica H. microcephala H. godmani H. parviceps H. miotympanum H. pulchella H. bogotensis H. bogotensis H. labialis H. mixomaculata H. pictipes H. albomarginata H. bistincta H. microcephala H. miotympanum H. tuberculosa H. pulchella Dunn, 1943 Melin, 1941 Caramaschi and Cruz, 2000 Boulenger, 1905 Ruiz-Carranza and Lynch, 1982 Duellman and Hillis, 1990 Heyer, 1977 Duellman and Berger, 1982 Campbell and Duellman, 2000 Current taxonomy Cope, 1870 ``1869'' Stejneger, 1906 Duellman and Trueb, 1983 Unassigned Boulenger, 1882 Werner, 1901 Adler, 1965 Duellman, De La Riva, and Wild, Boulenger, 1899 Taylor, 1937 Spix, 1824 Caramaschi, Pimenta, and Feio, Campbell and Brodie, 1992 Ènther, 1901) Cope, 1863 Unassigned Boulenger, 1908 Cope, 1875 ``1876'' Burmeister, 1856 Duellman, 1989 Dunn, 1937 Bokermann and Sazima, 1973 Brocchi, 1877 Duellman, 1968 (Gu 2004 1997 Hyla pardalis Hyla polytaenia Hyla pombali Hyla praestans Hyla psarosema Hyla palliata Hyla palmeri Hyla palaestes Hyla pantosticta Hyla picta Hyla pictipes Hyla picturata Hyla pinima Hyla parviceps Hyla pinorum Hyla prasina Hyla psarolaima Hyla plicata Hyla pelidna Hyla pellita Hyla pellucens Hyla pentheter Hyla picadoi Hyla piceigularis Hyla pauiniensis Hyla platydactyla Hyla perkinsi Hyla phlebodes Hyla phyllognatha Hyla phaeopleura Hyla phantasmagoria 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 161 group group, group group group group, group group group group group group group group group group group group group group group group group group clade clade group group Ð Ð Ð D. rubicundulus D. rubicundulus Dendropsophus microcephalus pseudomeridianus ) Hypsiboas raniceps Hypsiboas albopunctatus Bokermannohyla ravidaDendropsophus rheaDendropsophus rhodopeplus Bokermannohyla circumdata Hypsiboas rhythmicus Dendropsophus microcephalus Dendropsophus microcephalus Hypsiboas benitezi Hypsiboas riojanusDendropsophus riveroiIsthmohyla rivularis Dendropsophus minimus Hypsibioas pulchellus Isthmohyla pictipes Dendropsophus robertmertensi Dendropsophus microcephalus Hypsiboas roraimaHypsiboas rosenbergi Hypsiboas Hypsiboas benitezi faber Nomen dubium Plectrohyla robertsorum Plectrohyla bistincta Hypsiboas pugnax Hypsiboas faber Nomen dubium Dendropsophus rossalleni Dendropsophus leucophyllatus Isthmohyla pseudopumaHyloscirtus ptychodactylusHypsiboas pulchellus Isthmohyla Hyloscirtus pseudopuma larinopygion Hypsiboas pulchellus Dendropsophus Hypsiboas pulidoiHypsiboas punctatus Hypsiboas Hypsiboas benitezi punctatus Bokermannohyla pseudopseudis Bokermannohyla pseudopseudis Dendropsophus rubicundulus Dendropsophus microcephalus Hypsiboas rubracylusHypsiboas ru®telusDendropsophus ruschii Hypsiboas pellucens Hypsiboas pellucens Dendropsophus parviceps Plectrohyla sabrina Plectrohyla bistincta Ecnomiohyla salvaje Continued ( APPENDIX 1 group group complex, complex, group group group group group group group group group group group group group group group group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy H. albomarginata H. albomarginata H. albopunctata H. circumdata H. rubicundula H. microcephala H. pulchella H. minima H. pictipes H. microcephala H. geographica H. boans H. bistincta H. boans H. leucophyllata H. pulchella H. microcephala H. pseudopuma H. larinopygion H. punctata H. rubicundula H. pseudopseudis H. albomarginata H. parviceps H. bistincta H. tuberculosa Èena. 2002 Unassigned Ètken, 1862 Cruz, Caramaschi, and Taylor, 1937 Ènther, 1901 Miranda-Ribeiro, 1937 Âril and Bibron, 1841 Duellman and Hillis, 1990 Äaris, and Ayarzagu (Schneider, 1799) Unassigned Ènther, 1858 DeGrys, 1938 Unassigned Gu Taylor, 1940 Reinhardt and Lu Gu Sen Boulenger, 1898 Current taxonomy Goin, 1959 Dume (Schneider, 1799) (Cope, 1862) Taylor, 1952 Duellman and Hoogmoed, 1992 Caldwell, 1974 Schmidt, 1857 Koslowsky, 1895 Fouquette, 1961 (Rivero, 1961) Unassigned Wilson, McCranie, and Williams, Weygoldt and Peixoto, 1987 Cochran and Goin, 1970 Caramaschi, Napoli, and Bernardes, Napoli and Caramaschi, 1999 2001 Dias, 2000 ``1861'' 1985 Hyla ravida Hyla rhea Hyla rhodopepla Hyla rhythmicus Hyla riojana Hyla riveroi Hyla rivularis Hyla robertmertensi Hyla roraima Hyla rosenbergi Hyla robertsorum Hyla raniceps Hyla rubicundula Hyla rossalleni Hyla roeschmanni Hyla pulchella Hyla pseudopuma Hyla ptychodactyla Hyla pugnax Hyla pulidoi Hyla punctata Hyla quadrilineata Hyla pseudomeridiana Hyla pseudopseudis Hyla rubracyla Cochran and Goin, 1970Hyla ru®tela Hyla ruschii H. albomarginata Hyla sabrina Hyla salvaje 162 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 group group group group group group group group group group group group group group group group group group, group group group group clade group group group group group Ð Ð Ð group H. polytaenius Unassigned ) Hyla squirellaHyloscirtus staufferorum Hyloscirtus larinopygion HylaExerodonta cinerea sumichrasti Exerodonta sumichrasti Hypsiboas stenocephalus Hypsiboas pulchellus Dendropsophus subocularis Dendropsophus parviceps Exerodonta smaragdina Exerodonta sumichrasti Dendropsophus stingi Hyla simplexPlectrohyla siopela Plectrohyla bistincta Hyla arborea Hyla suweonensis Hyla eximia Dendropsophus soaresi Dendropsophus marmoratus Nomen dubium Tlalocohyla smithii Dendropsophus studerae Dendropsophus microcephalus Hyloscirtus simmonsi Hyloscirtus bogotensis Charadrahyla taeniopus Hypsiboas semilineatusDendropsophus seniculusAplastodiscus sibilatusHypsiboas sibleszi Hypsiboas semilineatus Dendropsophus marmoratus Aplastodiscus albosignatus Hypsiboas punctatus Hypsiboas semiguttatus Hypsiboas pulchellus Hypsiboas secedens Hypsiboas pulchellus Bokermannohyla circumdata Dendropsophus schubarti Dendropsophus microcephalus Dendropsophus sartoriBokermannohyla saxicola Dendropsophus microcephalus Bokermannohyla pseudopseudis Hyla sardaHyla savignyi Hyla arborea Hyla arborea Hyloscirtus sarampiona Hyloscirtus larinopygion Dendropsophus sanborniHyla sanchiangensis Dendropsophus microcephalus Hyla arborea Dendropsophus sarayacuensis Dendropsophus leucophyllatus Continued ( APPENDIX 1 group group group group group group clade group group group complex, group group group group group group group group group, group group group group group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy H. polytaenia H. albomarginata H. cinerea H. larinopygion H. pulchella H. parviceps H. arborea H. bistincta H. arborea H. marmorata H. sumichrasti H. sumichrasti H. godmani H. bogotensis H. microcephala H. taeniopus H. granosa H. pulchella H. geographica H. marmorata H. albosignata H. pulchella H. circumdata H. minima H. arborea H. microcephala H. arborea H. pseudopseudis H. larinopygion H. microcephala H. arborea H. leucophyllata Pope, 1929 Shreve, 1935 Caramaschi and Cruz, 1999 Daudin, 1802 Unassigned Duellman and Coloma, 1993 Kuramoto, 1980 Taylor, 1940 Ruiz-Carranza and Lynch, 1982 Ènther, 1901 Dunn, 1934 A. Lutz, 1925 (Brocchi, 1879) Spix, 1824 Current taxonomy Gu Bokermann, 1963 Duellman, 1989 Schmidt, 1944 Bosc, 1800 B. Lutz, 1963 Carvalho e Silva, Carvalho e Silva, Cope, 1868 Audouin, 1827 Bokermann, 1964 Boettger, 1901 Cardoso and Andrade, 1983 ``1982'' Cruz, Pimenta, and Silvano, 2003 Rivero, 1971 Duellman, 1968 Caramaschi and Jim, 1983 Boulenger, 1901 Smith, 1951 (De Betta, 1853) Kaplan, 1994 Unassigned and Izecksohn, 2003 Hyla staufferorum Hyla stenocephala Hyla stingi Hyla siopela Hyla suweonensis Hyla taeniopus Hyla soaresi Hyla squirella Hyla sumichrasti Hyla surinamensis Hyla smaragdina Hyla smithii Hyla subocularis Hyla studerae Hyla simplex Hyla semilineata Hyla senicula Hyla sibilata Hyla sibleszi Hyla simmonsi Hyla semiguttata Hyla schubarti Hyla secedens Hyla savignyi Hyla sazimai Hyla sartori Hyla saxicola Hyla sarampiona Hyla sanborni Hyla sanchiangensis Hyla sarayacuensis Hyla sarda 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 163 group group, group group group group group group group group group group group group S. uruguayus group group group clade group group group group clade, Ð Ð Ð Ð Ð Ð Ð group group D. rubicundulus Unassigned Unassigned Unassigned ) Ecnomiohyla valancifer Hypsiboas varelae Plectrohyla thorectes Plectrohyla bistincta Ecnomiohyla tuberculosa Scinax uruguayus Scinax ruber Isthmohyla tica Isthmohyla pictipes Hyla ussuriensisHyla versicolor Hyla arborea Hyla versicolor Ecnomiohyla thysanota Dendropsophus timbeba Dendropsophus parviceps Hyla tsinlingensis HylaIncerta arborea sedis Dendropsophus virolinensisDendropsophus walfordi Dendropsophus garagoensis Dendropsophus microcephalus Hyloscirtus tapichalaca Hyloscirtus larinopygion Dendropsophus triangulumDendropsophus tritaeniatusCharadrahyla trux Dendropsophus leucophyllatus Dendropsophus microcephalus Dendropsophus tintinnabulum Hyloscirtus torrenticola Hyloscirtus bogotensis Hyla walkeri Hyla eximia Dendropsophus microcephalus Exerodonta xera Exerodonta sumichrasti Hypsiboas wavriniHyla wrightorum Hypsiboas semilineatus Dendropsophus yaracuyanus Hyla zhaopingensisLysapsus Hyla caraya eximia Hyla arborea Incertae sedis Aplastodiscus weygoldti Aplastodiscus albofrenatus Isthmohyla xanthosticta Isthmohyla pictipes Dendropsophus xapuriensisIsthmohyla Dendropsophus zeteki minutus Isthmohyla pictipes Continued ( APPENDIX 1 group group group group group group group group group group complex, group group group group group group group group group group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy H. albomarginata H. tuberculosa H. pictipes H. uruguaya H. tuberculosa H. arborea H. versicolor H. tuberculosa H. pictipes H. arborea H. garagoensis H. microcephala H. larinopygion H. parviceps H. rubicundula H. bogotensis H. leucophyllata H. taeniopus H. eximia H. microcephala H. sumichrasti H. arborea H. boans H. albofrenata H. eximia H. pictipes H. minuta H. pictipes Tang and Zhang, 1984 Melin, 1941 Unassigned Ènther, 1869 ``1868'' Liu and Hu, 1966 Duellman, 1968 Duellman and Altig, 1978 Kizirian, Coloma, and Paredes- Mijares-Urrutia and Rivero, 2000 Unassigned Boulenger, 1882 Taylor, 1939 ``1938'' Kaplan and Ruiz, 1997 Martins and Cardoso, 1987 Gallardo, 1964 Ð Gu Nikolsky, 1918 Current taxonomy Bokermann, 1965 Firschein and Smith, 1956 LeConte, 1825 Duellman, 1966 Cruz and Peixoto, 1987 ``1985''. Schmidt, 1944 Adler, 1965 Bokermann, 1962 Martins and Cardoso, 1987 Solano, 1971 Unassigned Duellman and Hoogmoed, 1992 Unassigned Cochran, 1952 Parker, 1936 Carrizo, 1992 Unassigned Stuart, 1954 Gaige, 1929 Mendelson and Campbell, 1994 Adler and Dennis, 1972 Starrett, 1966 Recalde, 2003 Hyla varelae Hyla uruguaya Hyla ussuriensis Hyla tuberculosa Hyla valancifer Hyla versicolor Hyla thysanota Hyla tica Hyla timbeba Hyla tritaeniata Hyla tsinlingensis Hyla vigilans Hyla virolinensis Hyla walfordi Hyla tapichalaca Hyla thorectes Hyla tintinnabulum Hyla triangulum Hyla trux Hyla walkeri Hyla werneri Hyla torrenticola Lysapsus caraya Hyla warreni Hyla wavrini Hyla weygoldti Hyla wrightorum Hyla yaracuyana Hyla xanthosticta Hyla xapuriensis Hyla xera Hyla zhaopingensis Hyla zeteki 164 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð ) Osteopilus wilderi Osteopilus vastus Osteopilus septentrionalis Osteopilus pulchrilineatus Osteopilus marianae Osteopilus dominicensis Osteopilus crucialis Osteopilus brunneus Osteocephalus yasuni Osteocephalus subtilis Osteocephalus taurinus Osteocephalus verruciger Osteocephalus planiceps Osteocephalus pearsoni Osteocephalus oophagus Osteocephalus leprieurii Osteocephalus leoniae Itapotihyla langsdorf®i Osteocephalus heyeri Osteocephalus fuscifacies Osteocephalus exophthalmus Osteocephalus elkejungingerae Osteocephalus deridens Osteocephalus cabrerai Osteocephalus buckleyi Nyctimantis rugiceps Lysapsus limellum Lysapsus laevis Continued ( APPENDIX 1 Ð Ð Ð Ð Ð Ð Ð Species group in current taxonomy New taxonomy Species group in new taxonomy Èdl, 2002 Ð Âril and Bibron, Âril and Bibron, Âril and Bibron, (Henle, 1981) Ð Smith and Noonan, (Dume Cope, 1870 ``1869'' Ð (Dume (Werner, 1901) Ð Jungfer, Ron, Seipp, and Jungfer and Schiesari, Cope, 1874 Ð (Dumla (Tschudi, 1838) Ð (Gaige, 1929) Ð Jungfer, Ron, Seipp, and (Cochran and Goin, 1970) Ð Jungfer and Ho Steindachner, 1862 Ð (Boulenger, 1882) Ð Jungfer and Lehr, 2001 Ð Martins and Cardoso, 1987 Ð Ron and Pramuk, 1999 Ð Lynch, 2002 Ð Boulenger, 1882 Ð (Dunn, 1926) Ð (Gosse, 1851) Ð (Harlan, 1826) Ð Cope, 1862 Ð (Dunn, 1925) Ð (Cope, 1871) Ð Current taxonomy Parker, 1935 Ð Âriz, 2000 Âriz, 2000 1841) 1995 1841) 1841) Almenda 2001 Almenda Osteopilus wilderi Osteopilus vastus Osteopilus septentrionalis Osteopilus pulchrilineatus Osteopilus marianae Osteopilus crucialis Osteopilus dominicensis Osteopilus brunneus Osteocephalus subtilis Osteocephalus taurinus Osteocephalus verruciger Osteocephalus yasuni Osteocephalus pearsoni Osteocephalus planiceps Osteocephalus mutabor Osteocephalus oophagus Osteocephalus leprieurii Osteocephalus leoniae Osteocephalus langsdorf®i Osteocephalus heyeri Osteocephalus fuscifacies Osteocephalus exophthalmus Osteocephalus elkejungingerae Osteocephalus deridens Osteocephalus buckleyi Osteocephalus cabrerai Lysapsus limellum Nyctimantis rugiceps Lysapsus laevis 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 165 group group group group group group group group group group group group group group group Ð Ð Ð Ð Ð Ð group group group group group group group ) Plectrohyla lacertosa Plectrohyla guatemalensis Plectrohyla matudai Plectrohyla guatemalensis Plectrohyla hartwegiPlectrohyla ixil Plectrohyla guatemalensis Plectrohyla guatemalensis Plectrohyla glandulosaPlectrohyla guatemalensis Plectrohyla Plectrohyla guatemalensis guatemalensis Plectrohyla chrysopleuraPlectrohyla dasypusPlectrohyla exquisita Plectrohyla guatemalensis Plectrohyla guatemalensis Plectrohyla guatemalensis Plectrohyla avia Plectrohyla guatemalensis Plectrohyla acanthodes Plectrohyla guatemalensis Phyllodytes auratus P. auratus Phyllodytes wuchereri P. auratus Phyllodytes brevirostrisPhyllodytes edelmoi P. luteolus Phyllodytes luteolus P. luteolus Phyllodytes punctatusPhyllodytes tuberculosus P. luteolus P. tuberculosus P. tuberculosus Phyllodytes gyrinaethesPhyllodytes melanomystax P. gyrinaethes P. luteolus Phyllodytes acuminatus Phyllodytes luteolus Phyllodytes kautskyi P. luteolus Trachycephalus venulosus Trachycephalus resini®ctrix Trachycephalus mesophaeus Trachycephalus imitatrix Trachycephalus hadroceps Trachycephalus coriaceus Continued ( APPENDIX 1 group group group group group group group group group group group Ð Ð Ð Species group in current taxonomy New taxonomy Species group in new taxonomy P. auratus P. luteolus P. luteolus P. luteolus P. tuberculosus P. tuberculosus P. auratus P. gyrinaethes P. luteolus P. luteolus Phyllodytes luteolus Brocchi, 1877 Ð Caramaschi, da Silva, Wilson, McCranie, and Bokermann, 1966 (Goeldi, 1907) Ð Peixoto, Caramaschi and Peixoto and Cruz, 1988 (Hensel, 1867) Ð Bokermann, 1966 Duellman and Campbell, (Boulenger, 1883) Ð (Duellman and Hoogmoed, (Peters, 1873) Caramaschi and Peixoto, Bumzahem and Smith, 1954 Ð (Laurenti, 1768) Ð (Peters, 1867) Ð McCranie and Wilson, 1998 Ð Duellman, 1968 Ð (Miranda-Ribeiro, 1926) Ð Hartweg, 1941 Ð Peixoto and Cruz, 1988 McCranie and Wilson, 1981 Ð Peixoto, Caramaschi, and (Wied-Neuwied, 1824) (Boulenger, 1917) Stuart, 1952 Ð Current taxonomy Stuart, 1942 Ð Cruz, 1994 1992 Freire, 2003 2004 Freire, 2003 and Britto-Pereira, 1992 1992) Plectrohyla matudai Plectrohyla ixil Plectrohyla lacertosa Plectrohyla guatemalensis Plectrohyla hartwegi Plectrohyla dasypus Plectrohyla glandulosa Plectrohyla chrysopleura Plectrohyla avia Phyllodytes brevirostris Phyllodytes tuberculosus Phyllodytes wuchereri Plectrohyla acanthodes Phyllodytes edelmoi Phyllodytes melanomystax Phyllodytes punctatus Phyllodytes auratus Phyllodytes kautskyi Phyllodytes luteolus Phyllodytes acuminatus Phrynohyas venulosa Phrynohyas resini®ctrix Phrynohyas mesophaea Phrynohyas imitatrix Phrynohyas hadroceps Phrynohyas coriacea 166 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 group group group group group group group clade Ð Ð Ð Ð Ð Ð Ð Ð Ð clade clade clade clade clade clade clade clade clade clade clade clade clade ) Pseudacris brachyphona Pseudacris nigrita Pseudacris cadaverinaPseudacris clarkiiPseudacris crucifer P. regilla P. nigrita P. crucifer Pseudacris brimleyi P. nigrita Plectrohyla teuchestes Plectrohyla guatemalensis Pseudacris feriarum P. nigrita Plectrohyla tecunumani Plectrohyla guatemalensis Pseudacris illinoensis P. ornata Plectrohyla sagorum Plectrohyla guatemalensis Plectrohyla quecchi Plectrohyla guatemalensis Plectrohyla pycnochila Plectrohyla guatemalensis Plectrohyla psiloderma Plectrohyla guatemalensis Pseudacris maculata P. nigrita Plectrohyla pokomchi Plectrohyla guatemalensis Pseudacris nigrita P. nigrita Pseudacris ornata P. ornata Pseudacris ocularis P. crucifer Ptychohyla acrochorda Pseudacris regillaPseudacris streckeri P. P. regilla ornata Smilisca fodiens Smilisca dentata Pseudis tocantins Pseudis paradoxa Pseudis minuta Pseudis fusca Pseudacris triseriataPseudis cardosoi P. nigrita Continued ( APPENDIX 1 clade clade clade clade clade clade clade clade clade clade clade clade clade clade Ð Ð Ð Ð Ð Species group in current taxonomy New taxonomy Species group in new taxonomy Pseudacris nigrita P. regilla P. nigrita P. crucifer P. nigrita P. nigrita P. ornata P. nigrita P. nigrita P. ornata P. crucifer P. ornata P. regilla P. nigrita (Cope, 1889) Duellman and Campbell, Campbell and Duellman, McCranie and Wilson, Rabb, 1959 Ð (Cope, 1866) Duellman and Campbell, Duellman and Campbell, Smith, 1951 A. Lutz, 1925 Ð Hartweg, 1941 Ð (Agassiz, 1850) (Wied-Neuwied, 1838) (Baird, 1854) A. A. Wright and A. H. Stuart, 1942 Ð Brandt and Walker, 1933 (Bosc and Daudin, 1801) (Wied-Neuwied, 1838) Smith, 1957 Ð Boulenger, 1882 Ð (LeConte, 1825) (Holbrook, 1836) (Baird and Girard, 1852) (Baird, 1854) (Linnaeus, 1758) Ð Caramaschi and Cruz, 1998 Ð Ènther, 1858 Ð Kwet, 2000 Ð Current taxonomy Gu Garman, 1883 Ð 1992 1984 1999 1984 Wright, 1933 2000 Pseudacris clarkii Pseudacris brimleyi Pseudacris brachyphona Pseudacris feriarum Pseudacris cadaverina Pseudacris crucifer Plectrohyla teuchestes Pseudacris illinoensis Plectrohyla tecunumani Plectrohyla sagorum Plectrohyla pycnochila Plectrohyla quecchi Pseudacris maculata Plectrohyla psiloderma Pseudacris nigrita Plectrohyla pokomchi Pseudacris ocularis Pseudacris ornata Pseudacris regilla Pseudacris streckeri Ptychohyla acrochorda Pternohyla fodiens Pternohyla dentata Pseudis tocantins Pseudis paradoxa Pseudis fusca Pseudis minuta Pseudacris triseriata Pseudis cardosoi Pseudis bolbodactyla 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 167 S. perpusillus S. catharinae S. catharinae S. catharinae S. perpusillus S. catharinae S. perpusillus S. catharinae S. catharinae clade, clade, clade, clade, clade, clade, clade, clade, clade, Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð clade clade clade group group group group group group group group group. ) Scinax atratus S. catharinae Scinax aromothyella S. catharinae Scinax ariadne S. catharinae Scinax argyreornatus S. catharinae Scinax arduous S. catharinae Scinax angrensis S. catharinae Scinax altaeScinax alter S. ruber S. ruber Scinax alcatraz S. catharinae Scinax albicans S. catharinae Scinax agilis S. catharinae Scarthyla goinorum Scinax acuminatus S. ruber Ptychohyla zophodes Ptychohyla spinipollex Ptychohyla sanctaecrucis Ptychohyla salvadorensis Ptychohyla panchoi Ptychohyla macrotympanum Ptychohyla leonhardschultzei Ptychohyla legleri Ptychohyla hypomykter Ptychohyla euthysanota Ptychohyla erythromma Continued ( APPENDIX 1 group group group group group group group clade, clade, clade, clade, clade, clade, clade, clade clade Ð Ð Ð clade clade clade Species group in current taxonomy New taxonomy Species group in new taxonomy S. perpusillus S. catharinae S. catharinae S. catharinae S. perpusillus S. catharinae S. perpusillus S. catharinae S. catharinae S. catharinae S. catharinae S. catharinae S. ruber S. ruber S. catharinae S. catharinae S. catharinae S. ruber S. catharinae (Ahl, 1934) Ð (Tanner, 1957) Ð Campbell and Smith, (Mertens, 1952) Ð (Taylor, 1937) Ð (Kellogg, 1928) Ð McCranie and Wilson, (Schmidt, 1936) Ð (Miranda-Ribeiro, 1926) Campbell and Duellman, Faivovich, 2005 Duellman and Campbell, 1982 Ð (Bokermann, 1964) Ð (Cope, 1862) (Taylor, 1958) Ð (B. Lutz, 1973) Current taxonomy (Bokermann,1967) (Peixoto, 2001) (B. Lutz, 1973) (Bokermann, 1967) (Peixoto, ``1988'' 1989) (Cruz & Peixoto, 1983) (Dunn, 1933) (B. Lutz, 1973) 2000 1992 1993 Scinax atratus Scinax aromothyella Scinax ariadne Scinax argyreornatus Scinax arduous Scinax altae Scinax alter Scinax angrensis Scinax alcatraz Scinax albicans Scinax acuminatus Scinax agilis Scarthyla goinorum Ptychohyla spinipollex Ptychohyla zophodes Ptychohyla sanctaecrucis Ptychohyla salvadorensis Ptychohyla macrotympanum Ptychohyla panchoi Ptychohyla leonhardschultzei Ptychohyla legleri Ptychohyla hypomykter Ptychohyla euthysanota Ptychohyla erythromma 168 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 group S. catharinae S. catharinae S. catharinae S. catharinae S. catharinae S. catharinae S. catharinae S. rostratus clade, clade, clade, clade, clade, clade, clade, clade clade clade clade clade clade clade clade clade clade clade clade clade clade clade clade, clade clade clade group group group group group group group ) Scinax ¯avoguttatus S. catharinae Scinax exiguusScinax ¯avidus S. ruber S. ruber Scinax centralisScinax chiquitanusScinax crospedospilusScinax cruentommusScinax curicicaScinax cuspidatus S. catharinae Scinax S. danae S. ruber ruber Scinax duartei S.Scinax ruber elaeochrousScinax eurydice S. ruber S. ruber S. S. ruber ruber S. ruber S. ruber Scinax catharinae S. catharinae Scinax castroviejoi S. ruber Scinax carnevalli S. catharinae Scinax berthae S. catharinae Scinax canastrensisScinax cardosoi S. catharinae S. ruber Scinax blairiScinax boesemaniScinax boulengeriScinax brieniScinax caldarum S. ruber S. S. ruber ruber S. catharinae S. ruber Scinax baumgardneri S. ruber Scinax auratus S. ruber Continued ( APPENDIX 1 group group group group group group group S. rostratus clade, clade, clade, clade, clade, clade, clade, clade clade clade clade clade clade clade clade clade clade clade clade clade clade clade clade, clade clade clade Species group in current taxonomy New taxonomy Species group in new taxonomy S. catharinae S. catharinae S. catharinae S. catharinae S. catharinae S. catharinae group S. catharinae S. ruber S. ruber S. catharinae S. ruber S. ruber S. ruber S. ruber S. ruber S. ruber S. ruber S. ruber S. ruber S. catharinae S. catharinae S. ruber S. catharinae S. ruber S. catharinae S. ruber S. ruber S. ruber S. ruber S. catharinae S. catharinae S. ruber S. ruber (A. Lutz, 1925) (Rivero, 1961) (Duellman, 1972) (A. Lutz and B. Lutz, 1939) (Cardoso and Haddad, 1982) (Cope, 1875) De La Riva, 1993 (De La Riva, 1990) (Boulenger, 1888) (Cope, 1887) (Caramaschi and Kisteumacher, (A. Lutz, 1925) (Goin, 1966) (B. Lutz, 1968) Current taxonomy (Carvalho e Silva and Peixoto, Pombal and Bastos, 1996 (Bokermann, 1968) Pugliese, Pombal, and Sazima, La Marca, 2004 (Duellman, 1986) (Barrio, 1962) (Wied, 1821) (B. Lutz, 1951) (Duellman, 1986) (De Witte, 1930) (Fouquette and Pyburn, 1972) 2004 1989) 1991) Scinax ¯avidus Scinax ¯avoguttatus Scinax cruentommus Scinax cuspidatus Scinax danae Scinax duartei Scinax elaeochrous Scinax eurydice Scinax exiguus Scinax centralis Scinax chiquitanus Scinax catharinae Scinax castroviejoi Scinax carnevallii Scinax blairi Scinax caldarum Scinax cardosoi Scinax boesemani Scinax canastrensis Scinax brieni Scinax berthae Scinax baumgardneri Scinax auratus 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 169 group group group S. catharinae S. catharinae S. catharinae S. perpusillus S. catharinae S. catharinae S. catharinae S. catharinae S. catharinae S. rostratus S. rostratus S. rostratus clade, clade, clade, clade, clade, clade, clade, clade, clade, clade clade clade clade, clade clade, clade clade clade clade clade, clade group group group group group group group group group ) Scinax machadoiScinax manriqueiScinax maracaya S. catharinae S. ruber S. ruber Scinax luizotavioi S. catharinae Scinax longilineus S. catharinae Scinax littoreus S. catharinae Scinax littoralis S. catharinae Scinax lindsayi S. ruber Scinax kennedyi S. ruber Scinax kautskyi S. catharinae Scinax jureia S. catharinae Scinax ictericusScinax jolyi S. ruber S. ruber Scinax humilis S. catharinae Scinax hiemalis S. catharinae Scinax heyeri S. catharinae Scinax granulatusScinax hayii S. ruber S. ruber Scinax fuscomarginatusScinax fuscovariusScinax garbei S. ruber S. ruber S. ruber Scinax funereus S. ruber Continued ( APPENDIX 1 group group group group group group group group group group S. rostratus S. rostratus S. rostratus clade, clade, clade, clade, clade, clade, clade, clade, clade, clade, clade clade clade clade, clade, clade clade clade clade clade, clade clade Species group in current taxonomy New taxonomy Species group in new taxonomy S. catharinae S. catharinae S. catharinae S. perpusillus S. catharinae group S. catharinae S. catharinae group S. catharinae S. catharinae S. catharinae group S. ruber S. ruber S. catharinae S. catharinae S. catharinae S. catharinae S. catharinae S. ruber S. ruber S. catharinae S. ruber S. catharinae S. ruber S. catharinae S. catharinae S. ruber S. catharinae S. ruber S. ruber S. ruber S. ruber S. ruber Âs, Orellana, and (A. Lutz, 1925) (A. Lutz, 1925) (B. Lutz, 1968) (Peters, 1871) (Caramaschi and Kisteumacher, Barrio-Amoro (Cardoso and Sazima, 1980) (Bokermann and Sazima, 1973) (Pyburn 1973) Current taxonomy (Cope, 1874) (Pombal and Gordo, 1991) Duellman and Wiens, 1993 (Haddad and Pombal, 1987) (Pexoto, 1988) (Carvalho e Silva and Peixoto, Pyburn, 1992 (B. Lutz, 1954) (Miranda-Ribeiro, 1926) (Peixoto and Weygoldt, 1986) (Pombal and Gordo, 1991) (Barbour, 1909) Lescure and Marty, 2000 Chacon, 2004 1989) 1991) Scinax manriquei Scinax maracaya Scinax machadoi Scinax luizotavioi Scinax longilineus Scinax littoreus Scinax littoralis Scinax lindsayi Scinax kennedyi Scinax kautskyi Scinax jureia Scinax jolyi Scinax ictericus Scinax humilis Scinax hiemalis Scinax heyeri Scinax granulatus Scinax fuscovarius Scinax garbei Scinax funereus Scinax fuscomarginatus 170 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 group group group group group S. catharinae S. catharinae S. catharinae S. perpusillus S. catharinae S. perpusillus S. rostratus S. rostratus S. rostratus S. rostratus S. rostratus clade clade, clade, clade, clade, clade, clade, clade, clade clade clade, clade clade clade clade, clade clade, clade clade clade clade clade clade, clade group group group group group group ) Scinax trapicheiroi S. catharinae Scinax strigilatusScinax sugillatusScinax fuscovarius S. catharinae S. ruber S. ruber Scinax staufferi S. ruber Scinax rizibilis S. catharinae Scinax rostratus S. ruber Scinax ruberScinax similisScinax squalirostris S. ruber S. ruber S. ruber Scinax ranki S. catharinae Scinax proboscideusScinax quinquefasciatus S. ruber S. ruber Scinax perpusillus S. catharinae Scinax pedromedinaeScinax perereca S. ruber S. ruber Scinax oreitesScinax pachycrusScinax parkeri S. S. ruber ruber S. ruber Scinax obtriangulatus S. catharinae Scinax nasicusScinax nebulosus S. S. ruber ruber Scinax melloi S. catharinae Scinax fuscovarius S. ruber Continued ( APPENDIX 1 group group group group group group S. rostratus S. rostratus S. rostratus S. rostratus S. rostratus clade, clade clade, clade, clade, clade, clade, clade, clade clade clade, clade clade clade clade, clade clade, clade clade clade clade clade, clade clade Species group in current taxonomy New taxonomy Species group in new taxonomy S. catharinae group S. catharinae group S. catharinae group S. perpusillus group group S. catharinae S. perpusillus S. ruber S. catharinae S. catharinae S. ruber S. ruber S. catharinae S. ruber S. ruber S. ruber S. ruber S. catharinae S. ruber S. ruber S. catharinae S. ruber S. ruber S. ruber S. ruber S. ruber S. ruber S. ruber S. catharinae S. ruber S. catharinae (Fowler, 1913) Èller and Hellmich, 1936) (B. Lutz, 1973) (Henle, 1991) (Brongersma, 1933) (Mu (A. Lutz, 1926) (Miranda-Ribeiro, 1926) (B. Lutz, 1954) (A. Lutz and B. Lutz, 1939) (Miranda-Ribeiro, 1937) (Spix, 1824) (Spix, 1824) ( Duellman, 1973) (Peters, 1863) Pombal, Haddad, and Kasahara, Current taxonomy (Cope, 1865) (Bokermann, 1964) (Cope, 1862) (Gaige, 1926) Duellman and Wiens, 1993 (Cochran, 1952) (Peixoto, 1989) (Laurenti, 1768) (Andrade and Cardoso, 1987) 1995 Scinax sugillatus Scinax trapicheiroi Scinax trachythorax Scinax strigilatus Scinax rostratus Scinax ruber Scinax similis Scinax squalirostris Scinax staufferi Scinax rizibilis Scinax ranki Scinax proboscideus Scinax perpusillus Scinax perereca Scinax parkeri Scinax pedromedinae Scinax oreites Scinax nebulosus Scinax megapodius Scinax nasicus Scinax obtriangulatus Scinax melloi 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 171 S. perpusillus clade, Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð clade clade clade group ) Tepuihyla rimarum Tepuihyla luteolabris Tepuihyla galani Tepuihyla edelcae Tepuihyla celsae Tepuihyla aecii Sphaenorhynchus surdus Sphaenorhynchus prasinus Sphaenorhynchus platycephalus Sphaenorhynchus planicola Sphaenorhynchus pauloalvini Sphaenorhynchus palustris Sphaenorhynchus orophilus Sphaenorhynchus dorisae Sphaenorhynchus carneus Sphaenorhynchus bromelicola Smilisca sordida Smilisca sila Smilisca phaeota Smilisca puma Smilisca cyanosticta Scinax wandaeScinax x-signatusSmilisca baudinii S. S. ruber ruber Scinax v-signatus S. catharinae Scinax trilineatus S. ruber Continued ( APPENDIX 1 group clade, Ð Ð Ð Ð Ð Ð Ð Ð clade clade clade Species group in current taxonomy New taxonomy Species group in new taxonomy S. perpusillus S. ruber S. ruber S. ruber S. catharinae Äaris, and Äaris, and Äaris, and Äaris, and Äaris, and (Werner, 1894) Ð Èena, Sen Bokermann, 1966 Ð Bokermann, 1973 Ð Èena, Sen (A. Lutz and B. Lutz, (A. Lutz and B. Lutz, Èena, Sen Bokermann, 1966 Ð Bokermann, 1973 Ð Èena, Sen (Cope, 1868) Ð (Goin, 1957) Ð (Daudin, 1801) Ð (Cochran, 1953) Ð Èena, Sen Âril and Bibron, 1841) Ð (Ayarzagu (Smith, 1953) Ð (Ayarzagu (Ayarzagu (Spix, 1824) (Hoogmoed and Gorzula, 1977) (B. Lutz, 1968) (Dume (Cope, 1862) Ð (Ayarzagu Mijares-Urrutia, Manzanilla- (Peters, 1863) Ð Current taxonomy (Ayarzagu (Pyburn and Fouquette, 1971) (Cope, 1885) Ð Duellman and Trueb, 1966 Ð Gorzula, 1993) Gorzula, 1993) Gorzula, 1993) Gorzula, 1993) Puppo, and La Marca, 1999 Gorzula, 1993) 1938) 1938) Tepuihyla rimarum Tepuihyla luteolabris Tepuihyla galani Tepuihyla edelcae Tepuihyla celsae Tepuihyla aecii Sphaenorhynchus surdus Sphaenorhynchus prasinus Sphaenorhynchus platycephalus Sphaenorhynchus planicola Sphaenorhynchus pauloalvini Sphaenorhynchus palustris Sphaenorhynchus lacteus Sphaenorhynchus orophilus Sphaenorhynchus dorisae Sphaenorhynchus carneus Sphaenorhynchus bromelicola Smilisca sordida Smilisca phaeota Smilisca puma Smilisca sila Smilisca cyanosticta Scinax x-signatus Smilisca baudinii Scinax wandae Scinax trilineatus Scinax v-signatus 172 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 group group group Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Unassigned ) Phyllomedusa atelopoides Phrynomedusa vanzolinii Phrynomedusa marginata Phyllomedusa ayeaye P. hypochondrialis Phrynomedusa ®mbriata Phrynomedusa appendiculata Phasmahyla jandaia Phasmahyla guttata Phasmahyla exilis Phasmahyla cochranae Pachymedusa dacnicolor Hylomantis granulosa Hylomantis aspera Hylomantis aspera Hylomantis aspera Agalychnis spurrelli Agalychnis saltator Agalychnis moreletii Agalychnis litodryas Cruziohyla craspedopus Agalychnis callidryas Cruziohyla calcarifer Agalychnis annae Xenohyla truncata Xenohyla eugenioi Triprion spatulatus Trachycephalus nigromaculatus Trachycephalus jordani Trachycephalus atlas Tepuihyla rodriguezi Tepuihyla talbergae Continued ( APPENDIX 1 group Ð Ð Species group in current taxonomy New taxonomy Species group in new taxonomy Unassigned P. hypochondrialis Tschudi, 1838 Ð (A. Lutz, 1925) Ð Âril, 1853) Ð Duellman, Cadle, and (Izecksohn and Cruz, Cruz, 1991 Ð (Cope, 1864) Ð Miranda-Ribeiro, 1923 Ð (Funkhouser, 1957) Ð (Stejneger and Test, 1891) Ð (Bokermann, 1966) Ð (Cruz, 1989) Ð (B. Lutz, 1966) (Cope, 1862) Ð Boulenger, 1902 Ð Bokermann, 1966 Ð Ènther, 1882 Ð (Rivero, 1968) Ð (Dume (Bokermann and Sazima, (Duellman and Trueb, 1967) Ð Boulenger, 1914 ``1913'' Ð Duellman and Yoshpa, 1996 Ð (A. Lutz, 1925) Ð Taylor, 1955 Ð Gu Peters, 1873 ``1872'' Ð Caramaschi, 1998 Ð (Izecksohn, 1959) Ð (Cope, 1865) Ð (Cruz, 1980) Ð (Duellman, 1963) Ð Current taxonomy Cannatella, 1988 1976) 1978) Phrynomedusa vanzolinii Phyllomedusa atelopoides Phyllomedusa ayeaye Phrynomedusa marginata Phrynomedusa bokermanni Cruz, 1991Phrynomedusa ®mbriata Ð Phrynomedusa bokermanni Phrynomedusa appendiculata Phasmahyla guttata Phasmahyla jandaia Phasmahyla exilis Phasmahyla cochranae Pachymedusa dacnicolor Hylomantis granulosa Agalychnis spurrelli Hylomantis aspera Agalychnis saltator Agalychnis moreletii Agalychnis litodryas Agalychnis craspedopus Agalychnis callidryas Agalychnis calcarifer Phyllomedusinae Agalychnis annae Xenohyla truncata Xenohyla eugenioi Triprion spatulatus Triprion petasatus Trachycephalus nigromaculatus Trachycephalus jordani Tepuihyla rodriguezi Tepuihyla talbergae Trachycephalus atlas 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 173 group group group group group group group group group group group group group group group group group group group group group group group Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned ) Phyllomedusa bicolor Phyllomedusa baltea P. perinesos Phyllomedusa boliviana P. tarsius Hylomantis buckleyiPhyllomedusa burmeisteri P. burmeisteri Hylomantis buckleyi Phyllomedusa coelestis Phyllomedusa camba P. tarsius Phyllomedusa centralis P. hypochondrialis Hylomantis danieliPhyllomedusa distincta Hylomantis buckleyi P. burmeisteri Phyllomedusa tetraploidea P. burmeisteri Hylomantis psilopygionPhyllomedusa rohdeiPhyllomedusa sauvagiiPhyllomedusa tarsius Hylomantis buckleyi P. hypochondrialis P. tarsius P. tarsius Phyllomedusa duellmani P. perinesos Phyllomedusa iheringii P. burmeisteri Phyllomedusa ecuatorianaHylomantis hulliPhyllomedusa hypochondrialis P. perinesos P. hypochondrialis Hylomantis buckleyi Phyllomedusa oreades P. hypochondrialis Phyllomedusa tomopterna Phyllomedusa trinitatis Phyllomedusa palliata Phyllomedusa perinesos P. perinesos Hylomantis lemur Hylomantis buckleyi Phyllomedusa megacephala P. hypochondrialis Hylomantis medinai Hylomantis buckleyi Phyllomedusa vaillantii Phyllomedusa venusta Continued ( APPENDIX 1 group group group group group group group group group group group group group group group group group group group group group group group Species group in current taxonomy New taxonomy Species group in new taxonomy P. perinesos P. tarsius P. buckleyi P. burmeisteri P. tarsius P. hypochondrialis P. buckleyi P. burmeisteri P. buckleyi P. tarsius P. tarsius P. burmeisteri P. hypochondrialis P. perinesos P. perinesos P. buckleyi P. burmeisteri P. hypochondrialis P. hypochondrialis P. perinesos P. buckleyi P. hypochondrialis P. buckleyi (Daudin, 1800) (Miranda-Ribeiro, Pombal and Haddad, Cannatella, 1982 Cannatella, 1980 (Cope, 1868) Unassigned Boulenger, 1882 Cannatella, 1982 Duellman, 1973 Boulenger, 1902 Boulenger, 1882 Unassigned Bokermann, 1965 B. Lutz, 1950 Boulenger, 1885 (Cope, 1874) Unassigned Mertens, 1926 Unassigned Boulenger, 1882 Boulenger, 1882 Funkhouser, 1962 Brandao, 2002 Peters, 1873 ``1872'' Unassigned Duellman and Trueb, 1967 Unassigned (Boddaert, 1772) Unassigned Ruiz-Carranza, Hernandez- (Cope, 1868) De La Riva, 2000 Mertens, 1926 Duellman and Toft, 1979 Boulenger, 1882 Duellman and Mendelson, Current taxonomy Camacho, and Rueda-Almonacid, 1988 1992 1995 1926) Phyllomedusa baltea Phyllomedusa bicolor Phyllomedusa boliviana Phyllomedusa buckleyi Phyllomedusa burmeisteri Phyllomedusa camba Phyllomedusa centralis Phyllomedusa coelestis Phyllomedusa danieli Phyllomedusa distincta Phyllomedusa sauvagii Phyllomedusa tarsius Phyllomedusa tetraploidea Phyllomedusa rohdei Phyllomedusa duellmani Phyllomedusa ecuatoriana Phyllomedusa hulli Phyllomedusa iheringii Phyllomedusa hypochondrialis Phyllomedusa tomopterna Phyllomedusa palliata Phyllomedusa psilopygion Phyllomedusa lemur Phyllomedusa megacephala Phyllomedusa medinai Phyllomedusa perinesos Phyllomedusa trinitatis Phyllomedusa vaillantii Phyllomedusa oreades Phyllomedusa venusta 174 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 2

LOCALITY DATA AND GENBANK ACCESSIONS The table on the following pages lists all spec- MCN, Museo de Ciencias Naturales de la Univ- imens, collection numbers, localities, and Gen- ersidad Nacional de Salta, Salta, Argentina; MCP, Bank accessions of the sequences included in this Museu de CieÃncias e Tecnologia da Ponti®cia analysis. The current taxonomy of hylids is Universidade CatoÂlica de Rio Grande do Sul, Bra- used here, as these names were used for the zil; MCZ, Museum of Comparative Zoology, GenBank submission; see appendix 1 for the Harvard University, Cambridge, MA; MJH, ®eld new taxonomy. All species followed by an aster- numbers of Martin J. Henzl; MLP-A, Museo de isk (*) correspond to sequences retrieved from La Plata, La Plata, Argentina; MLP-DB, Collec- GenBank. In a few cases, the tissues have separate tion Diego Baldo, at MLP; MNCN ADN, collec- numbers of of®cial tissue collections. These are tion of DNA samples of the Museo Nacional de given as footnotes. The list includes collection ab- Ciencias Naturales, Madrid, Spain; MNHN. Mu- breviations for (1) vouchers and or tissues em- seum National d'Histoire Naturelle, Paris; MNK, ployed in this project, (2) preserved specimens re- Museo ``Noel Kempf Mercado'', Santa Cruz, Bo- ferred to in this paper, and (3) vouchers from se- livia; MRT, ®eld numbers of Miguel Trefaut Ro- quences retrieved from GenBank, followed by an drigues (to be accesioned in MZUSP); MVZ, Mu- asterisk (*), with their locality data taken from seum of Vertebrate Zoology, University of Cali- Darst and Cannatella (2004). fornia, Berkeley, CA; MVZFC, MVZ frozen tis- Collection abbreviations are as follows: AF, sue collection; MZFC, Museo de ZoologõÂa de la LaboratoÂrio de CitogeneÂtica de Vertebrados, In- Facultad de Ciencias, Universidad Nacional Au- stituto de BiocieÃncias, Universidade de SaÄo Paulo toÂnoma de Mexico; MZUSP, Museu de Zoologia, (to be accesioned in MZUSP); AM, Australian Universidade de SaÄo Paulo, SaÄo Paulo, Brazil; Museum, Sidney, Australia; AM-CC, Ambrose NHMG, Naturhistoriska Museet, GoÈteborg, Swe- Monell Cryo Collection; AMNH, American Mu- den; NMP6V, National Museum, Prague, Czech seum of Natural History, New York; BMNH, Republic; QCAZ, Museo de ZoologõÂa de la Pon- British Museum (Natural History), London; ti®cia Universidad CatoÂlica del Ecuador; QULC, CFBH, Collection CeÂlio F.B. Haddad, Universi- Queen's University Laboratory Collection, King- dade Estadual Paulista, Rio Claro, SaÄo Paulo, Bra- ston, Canada; RdS, ®eld numbers of Rafael de SaÂ; zil; CWM, Field number of Charles W. Myers (to RNF, ®eld numbers of Robert N. Fisher; ROM, be accessioned in AMNH); DFCH-USFQ, Univ- Royal Ontario Museum, Toronto, Canada; RWM, ersidad San Francisco de Quito, Quito, Ecuador; ®eld numbers of Roy W. McDiarmid (specimens DLR, ®eld numbers of Ignacio De la Riva (to be to be accessioned in USNM); SAMA, South Aus- accessioned in the Museo Nacional de Ciencias tralia Museum, Adelaide, South Australia; SIUC- Naturales, Madrid, Spain); IRSNB, Institut Royal H, Department of Zoology and Center for Sys- des Sciences Naturelles de Belgique, Bruxelles; tematic Biology, Southern Illinois University at ITH, ®eld numbers used in the project Levanta- Carbondale, IL; TMSA, Transvaal Museum, Pre- mento da Fauna de Vertebrados Terrestres do aÂrea toria, South Africa; TNHC, Texas Memorial Mu- sob in¯ueÃncia da Linha de TransmissaÄo (LT) Ita- seum, Texas Natural History Collection, Austin, beraÂ-Tijuco Preto III (to be accessioned in TX; UMMZ, University of Michigan, Museum of MZUSP); IWK, ®eld numbers used by Maureen Zoology, Ann Arbor, MI; USNM, National Mu- A. Donnelly (to be accessioned in the Herpeto- seum of Natural History, Smithsonian Institution, logical Collection of the Florida International Washington DC; UTA, University of Texas at Ar- University); JF, ®eld numbers of Julian Faivovich lington, TX; ZFMK-H, tissue collection of the (to be accessioned in MACN); JPC, ®eld num- Zoologisches Forschungsinstitut und Museum Al- bers of Janalee P. Caldwell; KRL, ®eld numbers exander Koenig, Bonn, Germany; ZMB, Zoolo- of Karen Lips; KU, University of Kansas, Mu- gisches Museum±UniversitaÈt Humboldt, Berlin; seum of Natural History, Lawrence, KS; LSUMZ ZSM, Zoologisches Staatssammlung, Munich, H, tissue collection, Louisiana State University Germany; ZUEC, Museu de HistoÂria Natural, Museum of Zoology, Baton Rouge, LA; MACN, Universidade de Campinas, Campinas, SaÄo Paulo, Museo Argentino de Ciencias Naturales ``Bernar- Brazil; ZUFRJ, Departamento de Zoologia, Insti- dino Rivadavia'', Buenos Aires, Argentina; tuto de Biologia, Universidade Federal do Rio de MAD, ®eld numbers of Maureen Donnelly; Janeiro, Rio de Janeiro, Brazil. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 175 Ân R.N. 12 y N, W Ј Ј Ârito Santo: Â, Piranhas Äo Paulo: 41.59 28.36 Њ Њ Ubatuba (Picinguaba) Volcan Cacao Morales, Sierra de Caral, Finca Quebradas±Cerro Pozo de Agua Co.: powerline access, 0.1 mi W ofMt. Lookout Boys Camp Rd. Co.: Eglin AFB, J.R. Walton Pond. 30 86 de Juarez: Santiago Comaltepec, Vista Hermosa Aracruz Rancho Queimado Guarani: San Vicente: Campo Anexo INTA ``Cuartel Rio Victoria'' Bella Vista: Interseccio Rio Santa Lucia de Xingo EQUENCES S absentia 28S Locality Seventh in CCESSIONS OF A ANK B EN G AND , OCALITIES ,L exon 1 RAG-1 Tyrosinase Rhodopsin UMBERS N b Cytochrome OLLECTION ,C AY843559 AY843782 AY844533 AY844358 AY844019 AY844762 AY844194 USA: Alabama: De Kalb 12S-tRNA valine-16S AY843669 AY843913 AY844660 AY844456 Ð AY844875 Ð Brazil: Sa AY549315 AY549368 AY844556 AY844377 AY844033 AY844782 AY844212 Costa Rica: Guanacaste: AY843584 AY843806 AY844557 AY844378 AY844034 AY844783 Ð Guatemala: Izabal: AY843560 AY843783 AY844534 AY844359 AY844020 AY844763 Ð USA: Florida: Okaloosa AY843566 AY843788 AY844540 AY844363 AY844022 AY844768 AY844198 Mexico: Oaxaca: Ixtlan AY843567 AY843789 AY844541AY843568 AY844364 AY843790 AY844023 AY844542 AY844769 AY844365 AY844199 AY844024 Brazil: Espõ AY844770 AY844200 Brazil: Santa Catarina: AY843570 AY843792 AY844544 AY844367 AY844026 AY844772 AY844202 Argentina: Corrientes: AY843569 AY843791 AY844543 AY844366 AY844025 AY844771 AY844201 Argentina: Misiones: AY843578 AY843800 AY844551 AY844374 AY844030 AY844779 AY844209 Brazil: Alagoas: Represa PECIMENS S H. ) IST OF L sp. 1 (af. ru®oculis soralia ehrhardti brunoi cochranae perviridis greeningi Duellmanohyla Duellmanohyla Hyla Acris crepitans Acris gryllus Anotheca spinosa Aparasphenodon Aplastodiscus Aplastodiscus Argenteohyla siemersi Corythomantis a Voucher Species UTA A-50812 CFBH 5915 LSUMZ H-2164 AMNH A-168422 ENS 10039 CFBH 2715 CFBH 3001 MVZ 207193 MACN 37791 MACN 38644 CFBH 2968 176 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 Â: Ä Äo Ëo Ëa Ëu, on Â: El Cope Ârito Santo: Ârito Santo: Äo Paulo: Near Äo Paulo: Äo Paulo: Near Âpolis, Estac Âpolis, Estac Äo Paulo do Araca Äo Bento do Sul (Rio Biologica de Boraceia Domingos Martins: Sa Ceiba Station, Madewini River, ca. 3 mi (linear) E Timehri Airport km SSE San Juan, 3420 m Near Carauruc way to Serra dos Cavalos Saleso Biologica de Boraceia Campinas Parque Nacional ``Omar Torrijos'' Sa Vermelho) Monte Verde Domingos Martins Saleso Ecuador: Pichincha: 1.8 absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐÐ Cytochrome 12S-tRNA valine-16S AY843685 AY843931 AY844678 AY844467 Ð AY844887 Ð Brazil: Espõ AY843648 AY843887 AY844633 AY844436 AY844093 AY844851 AY844270 Guyana: Demerara: AY843662 AY843905 AY844652 Ð AY844105 AY844867 AY844282 Panama: Cocle AY549316 AY549369 AY844568 AY844384 Ð AY844794 AY844218 Brazil: Pernambuco: AY843604 AY843825 AY844578 AY844392 AY844049 AY844803 AY844223 Brazil: Sa AY549317 AY549370 AY844569AY843636 AY843870 AY844619 Ð Ð AY844041 AY844795 AY844081 AY844837 Ð AY844258 Peru: Loreto: Alpahuayo Brazil: Sa AY843596 AY843817 AY844570 AY844385AY843614 AY844042 AY843840 AY844796 AY844592AY843617 AY844219 AY844402 AY843843 Brazil: Santa AY844058 Catarina: AY844594AY843638 AY844813 AY844405 AY843873 AY844236 AY844622 Brazil: Minas Gerais: AY844425 Ð AY844084 AY844840 AY844261 AY844814 Brazil: Sa Ð Brazil: Espõ * AY326058 Hyla weygoldti Hyla multifasciata Hyla ru®tela Hyla albomarginata Hyla pellucens Hyla arildae Hyla albopunctata Hyla lanciformis Hyla albosignata Hyla callipygia Hyla cavicola Hyla leucopygia b Voucher Species AF 0068 KRL 798 USNM 284519 KU 202734 USNM 303022 ZUEC 12053 MJH 564 CFBH 3184 CFBH 3909 AF 0070 USNM 303038 AMNH A-141040 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 177  Âpio de Piranhas: Äo Agua Blanca: Caballero: Canton San Juan: Amboro National Park Saavedra: Canton Charazani, stream 2 Cerro de la Neblina Cuicatlan, Tutepetongo, 1619 m Carretera Coconales- Zacatepec, 1360 m Can 3.5 km SE Neblina base camp on Rio Baria Municõ Represa de Xingo Vera: Ea. ``Las Gamas'' Prefecture: Hiroshima city Yasufutuichi-cho, Aita absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY843665 AY843907AY549321 AY844654 AY549374 AY844579 AY844393 Ð AY844050AY843618 AY844804 AY843844 AY844224 AY844107 AY844595 Bolivia: Santa Cruz: AY844406AY843672 AY844061 ÐAY843609 Ð Ð AY843834 AY844284 AY844587 : Yarim (2813 AY844399 m) AY844663 AY844239AY843615 AY844054 Bolivia: AY843841 La Paz: AY844593 Bautista Ð AY844403 ÐAY843610 AY844059 AY843835 AY844114 AY844588 AY844230 AY844876 Ð Mexico: AY844291 Oaxaca: Mpo. Venezuela: Ð Amazonas: AY844237AY843621 Mexico: AY843850 Oaxaca: AY844055 AY844601 AY844809 AY844412 AY844231 AY844067 Venezuela: Amazonas: Ð Ð Brazil: Alagoas: AY843600 AY843821AY843601 AY844574 AY843822AY843633 AY844388 AY844575 AY843866 AY844045 AY844389 AY844615 AY844800 AY844046 AY844420 AY844078 AY844833 Ð Ð AY844255 Japan: Hiroshima Vietnam: AY844221 Lao Cai: Sa Pet Pa trade AY843657 AY843900 AY844646 Ð AY844103 AY844863 Ð Argentina: Santa Fe: Hyla inparquesi Hyla bistincta Hyla calthula Hyla boans Hyla crepitans Hyla armata Hyla savignyi Hyla charazani Hyla annectans Hyla arborea Hyla japonica Hyla raniceps d Voucher Species c AMNH-A 165132 RWM 17688 JAC 22650 JAC 21167 RWM 17746 CFBH 2966 AMNH A-165163 ROM 40304 N/A N/A LSUMZ H-230 MACN 37795 178 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 N, Äo Ј Ëa  Â: Parque 30.11 Â: Parque Â) Њ N, W W Ј Ј Ј Äo Paulo: near Äo Paulo: Rio Âpolis, Estac 53.28 53.26 25.62 Њ Њ Њ Austin, Municipal Golf Course Rosa Co.: Co. Rd.N 191 of Munson. 30 82 Biologica de Boraceia Nacional El Cope Nacional ``Omar Torrijos'' Huehuetenango: Sierra de los Cuchumatanes: Finca Chiblac (now Aldea Buenos Aires) Rosa Co.: Co. Rd.N 191 of Munson Saleso Guarani: San Vicente: Campo Anexo INTA ``Cuartel Rio Victoria'' Claro (Itape 86 Co.: Co. Rd. 346mi 1.2 121, 29 absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY549327 AY549380 AY844597 AY844408AY843630 AY844063 AY843862 AY844816 AY844611 AY844241 AY844418 USA: Texas: AY844076 Travis Co. AY844829 AY844252 USA: Florida: Santa AY843620 AY843848 AY844599AY843650 AY844410 AY843890 AY844065 AY844636 AY844818 AY844439AY843612 AY844243 AY844095 AY843837 Panama: Cocle AY844854 AY844590 AY844273 AY844401 Panama: El AY844056 Cope AY844811AY843598 AY844233 AY843819 Guatemala: AY844572 Ð AY844044 AY844798 Ð USA: Florida: Santa AY843651 AY843891 AY844637 Ð AY844096 AY844855 Ð Brazil: Sa AY549334 AY549387 AY844607 ÐAY843639 AY843874 AY844623 Ð Ð AY844825 AY844085 AY844841 AY844262 Ð Brazil: Sa Argentina: Misiones: AY843678 AY843923 AY844670 AY844462 AY844119 AY844882 AY844295 USA: Florida: Alachua Hyla cinerea Hyla gratiosa Hyla colymba Hyla palmeri Hyla bromeliacia Hyla andersonii Hyla pardalis Hyla faber Hyla lundii Hyla squirella e Voucher Species 125627) AMNH A-168404 SIUC H-7079 SIUC H-6924 UTA A-50771 N/A (AMCC MVZ 145385 USNM 303046 MACN 37000 CFBH 4000 AMNH A-168427 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 179 Âia Âia Äo Äo Ëa Ëa Äo Paulo: near Äo Paulo: near Äo Paulo: Âpolis, Estac Âpolis, Estac Âgica de Borace Âgica de Borace Äo Bento do Sul 4 mi (by rd)Dubulay SW Ranch house Ayanganna Saleso Biolo Sa Saleso Biolo Angra dos Reis Ubatuba: Picinguaba Tandayapa Duque de Caxias Houston creek just N Hwy 260, approx. 4 mi E of Payson Carretera Mitla-Ayutla, 1950 m Chignahuapan, 20 km S of Iquitos Cow¯y camp, 80 m Guyana: Warniabo Creek, Guyana: Iwokrama: Y844235 Peru: Anguilla, 50 km W absentia 28S Locality Seventh in ÐÐÐÐ ) Continued ÐÐÐÐA ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐÐ Cytochrome 12S-tRNA valine-16S AY843628 AY843634 AY843868 AY844617 AY844422 AY844079 AY844835 Ð Guyana: Mount AY549322 AY549375 AY844580 Ð Ð Ð AY844225 Brazil: Sa AY549328 AY549381 AY844598 AY844409 AY844064 AY844817 AY844242 Brazil: Santa Catarina: AY549338 AY549391 AY844614 AY844419 AY844077 AY844832 AY844254 Brazil: Sa AY843616 AY843842AY843607 AY843831 Ð AY844584AY843603 AY844397 AY843824 AY844052 AY844404 AY844577 AY844807 AY844060 AY844391 AY844228 AY844048 Brazil:AY843625 Rio AY844802 de Ð Janeiro: AY843855 AY844606 Ð AY844238AY843626 Ecuador: AY843856 Ð Pichincha: USA: Arizona: Gila Co.: AY843684 Ð AY844072 AY843930AY843613 AY844823 AY844677 AY843839 AY844248 AY844466 Mexico: Oaxaca: AY844125 Ð Ð AY844073 AY844824 AY844249 Mexico: Puebla: Ð Pet trade AY549335 AY549388 AY844608 sp. 3 AY843673 AY843916 AY844664 Ð AY844115 Ð Ð Brazil: Rio de Janeiro: sp. 4 AY843674 AY843917 AY844665 AY844458 AY844116 AY844877 Ð Brazil: Sa Hyla kanaima Hyla geographica Hyla astartea Hyla circumdata Hyla hylax Hyla Hyla Hyla carnifex Hyla berthalutzae Hyla arenicolor Hyla euphorbiacea Hyla eximia Hyla walkeri Hyla calcarata Hyla fasciata f Voucher Species ROM 39582 USNM 303032 CFBH 3621 USNM 303036 CFBH 5766 CFBH 5917 DFCH-USFQ 899 CFBH 5418 UMMZ 7755 UTA A-54763 MZFC 4814 AMNH A-168406 NMP6V 71250 MAD 440 AMNH-A 141054 180 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 of Iquitos Tinalandia: 15.5 km SE Santo Domingo de los Colorados, 700 m Ayanganna Duque de Caxias District: Cokscomb Basin Wildlife Santuary Madre del Sur; Carretera Pochutla, 288 m Scrub camp, 80 m Ayanganna Ayanganna Natural Nacional Chingaza SSE Palmas, 2340 m Santa Barbara Chinchipe: Reserva Tapichalaca: road between Yangana and Valladolid Ecuador: Pichincha: Ecuador: Azuay: 2 km Ecuador: Napo: 18 km E Y844267 Peru: Anguilla, 50 km W absentia 28S Locality Seventh in ) Continued ÐÐÐÐA ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐÐ ÐÐÐÐÐÐ ÐÐÐÐÐÐ AY843909 AY844656 AY844453 AY844108 AY844871 AY844286 Brazil: Rio de Janeiro: Cytochrome 12S-tRNA valine-16S AY843644 AY843881 AY843660 AY843903 AY844650AY843778 AY844448AY843779 AY844104AY843654 AY844866 AY843894 AY844280 AY844640 Guyana: Mount AY844442 AY844099AY843668 AY844858 AY843912 AY844276 AY844659 : Stann Creek ÐAY549336 AY843861 AY844610AY843637 AY844111 AY843871 AY844874 AY844620 ÐAY843667 AY844423 AY843911 AY844082 Ð AY844658AY843635 AY844838 AY844455 AY843869 AY844259 AY844110 AY844618 Ð Guyana: Mexico: Mount AY844873 Oaxaca: Sierra AY844288 Guyana: Ð Mount AY844828 AY844080 ÐAY563625 AY844836 AY843925 AY844257 AY844672 Colombia: Guyana: Parque Iwokrama: Muri Ð AY844121 Ð AY844297 Ecuador: Zamora- * AY326052 * AY326055 * AY326057 Hyla microderma Hyla picturata Hyla roraima Hyla semilineata Hyla picta Hyla smithii Hyla granosa Hyla lemai Hyla sibleszi Hyla labialis Hyla pacha Hyla pantosticta Hyla tapichalaca Voucher Species NMP6V 71258/1 KU 202737 ROM 39624 CFBH 5424 RdS 606 UTA A-54773 MAD 085 ROM 39570 ROM 39561 QULC 97005 KU 202760 KU 202732 QCAZ 16704 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 181 Ârbara Äo: Ilha Xiborena Llullapichis: Panguana Angra dos Reis Serra do Teimoso Cordillera Nombre de Dios, Aldea Rio Viejo Depto. Islas del Ibicuy Herrera Depto. Islas del Ibicuy: Ruta 12 vieja, entre Brazo Largo y Arroyo Luciano Santa Ba District: Cokscomb Basin Wildlife Santuary (captive- raised tadpoles from adults collected in this locality) Llullapichis: Panguana Catala absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY843647 AY843886 AY844632 AY844435 AY844092 AY844850 Ð Ecuador: Sucumbios AY843640 AY843877AY843666 AY843910 Ð AY844657AY843608 AY844454 AY843832 AY844109 AY844428 AY844585AY843643 AY844872 AY843880 AY844287 AY844628 Ð Brazil: Ð Rio de AY844430 Janeiro: AY549346 AY843888 AY844053 AY844634 ÐAY843658 AY844808 AY844437 Ð AY844229 Brazil:AY843663 Bahia: AY844846 Ð Jussari: Ð AY843906 AY844266 AY844653 Honduras: Atlantida: Ð AY844450 AY844647 AY844852 AY844106 AY844446 AY844271 AY844868 Peru: Argentina:AY843683 AY844283 Huanuco: Entre Rio Rios: Ð AY843929 Argentina: Entre Rios: AY844676 AY844864 Ð Ð Ð Peru: Loreto: Jenaro AY844886 Ð Brazil: Unknown AY843641 AY843878 AY844626 Ð AY844086 AY844844 AY844264 Brazil: Minas Gerais: AY843664AY843680 Ð AY843926 AY844673 AY844464 AY844122 Ð Ð AY844451 AY844298 Ð Brazil: Acre: Lago AY844869 Ð Peru: Huanuco: Rio AY843624 AY843853 AY844604 AY844415 AY844070 AY844822 AY844247 Belize: Stann Creek Hyla miyatai Hyla senicula Hyla bipunctata Hyla microcephala Hyla nana Hyla rhodopepla Hyla sanborni Hyla walfordi Hyla marmorata Hyla martinsi Hyla sarayacuensis Hyla triangulum Hyla ebraccata g Voucher Species CFBH 5761 MRT5946 UTA A-50632 MACN 37785 MHZ 462 MACN 38638 MJH 129 JPC 10772 MJH 7116 AF 414 MJH 7143 MJH 3844 RdS 790 182 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 Äo Paulo: Guarani: San Vicente: Campo Anexo INTA ``Cuartel Rio Victoria'' Negra, 1833 m Mixe, 2.0 mi W Totontepec, 2045 m Madre del Sur; Carretera Pochutla, 681m Norte, Cuetzalan, Hotel Villas Cuetzalan, 1250 m Huehuetenango: Barillas, Aldea Nucaquexis Mixe; Mun. Santiago Zacatepec: carretera Zacatepec-Jesus Carranza, 28 mi de entronque con carretera a Totontepec, 803 m Llullapichis: anguana Ubatuba: Picinguaba absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY549345 AY549398 ÐAY843602 AY843823 AY844432 AY844576AY843622 AY844089 AY844390 AY843851 AY844047 AY844602 AY844801 AY844413 ÐAY843642 AY844222 AY844068 AY843879 Mexico: Puebla: AY844820 Sierra AY844627 AY844245 AY844429 Mexico: Oaxaca: AY844087 Ð Sierra AY843645 AY844845 AY843884 AY844265 AY844630 Argentina: Mexico: Misiones: Oaxaca: Sierra AY844433 AY844090AY843653 AY844848 AY843893 AY844639 Ð AY844441 AY844098AY843646 AY844857 Mexico: AY843885 AY844275 Puebla: Sierra AY844631 Guatemala: AY844434 AY844091 AY844849 AY844269 Mexico: Oaxaca: Sierra AY843611 AY843836 AY844589AY843629 AY844400 AY843860 Ð Ð AY844810 AY844417 AY844232 AY844075 Peru: Huanuco: AY844827 Rio AY844251 Brazil: Sa Hyla minuta Hyla arborescandens Hyla cyclada Hyla melonomma Hyla miotympanum Hyla perkinsi Hyla mixe Hyla brevifrons Hyla giesleri Voucher Species MACN 33799 UTA A-56283 UTA A-54762 UTA A-54766 JAC 22438 UTA A-54721 JAC 21583 MJH 7101 CFBH S/N 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 183 Âpio Ëois: Rio Â, Chapada ``Chompipe'' vicinity of Volcan Banba Carretera Nueva Delhi- La Guitarra, 1900 m Experimental da Universidade do Acre at km 23 onBranco-Porto Rio Velho Road de Lenc Grisante, Serra do Sincora Diamantina Arenas: Monteverde del Valle Prov. Noryungas: Serrania Bellavista Rancho Queimado Posadas Depto. Chacabuco: Villa Elena: Arroyo ``La calera'' Vicente: Campo Anexo INTA ``Cuartel Rio Victoria'' absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY843675 AY843918 AY844666 AY844459 AY844118 AY844878 Ð Mexico: Guerrero: AY843659 AY843902 AY844649 ÐAY843676 AY844117 AY843919 AY844667 AY844460 Ð AY844101 AY844879 AY844292 Brazil: Bahia: Ð Municõ Costa Rica: Heredia: AY843652 AY843892 AY844638 AY844440 AY844097 AY844856 AY844274 Brazil: Acre: Centro AY843656 AY843897 AY844643AY549319 AY844444 AY549372 AY844075 AY844573AY549323 AY844861 AY844387 AY549376 AY844277 AY844582 Costa Rica: Punta AY844395 ÐAY549324 AY549377 AY844586 ÐAY549326 AY844799 AY844398 AY549379 AY844591AY549330 AY844806 Ð Ð AY549383 AY844226 AY844600 Bolivia: Ð Depto. La AY844411 Paz: Argentina: Tucuman: AY844066 Ta® AY549359 AY844819 AY844057 Ð AY549412 AY844244 AY844812 Argentina: AY844234 San Luis: Argentina: Ð Misiones: Ð Brazil: Ð Santa Catarina: Ð AY844880 Ð Argentina: Misiones: San ) ) ) sp. 5 (aff. sp. 6 (aff. sp. 7 (aff. H. thorectes H. pseudopseudis H. semiguttata Hyla Hyla Hyla rivularis Hyla parviceps Hyla pseudopuma Hyla andina Hyla balzani Hyla bischof® Hyla caingua Hyla cordobae Hyla h Voucher Species JAC 2224 CFBH 5642 MVZ 149750 AMNH A-139315 MVZ 149764 MLPA 2138 DLR 4119 CFBH 3356 MLP-DB 1084 MACN 37692 MACN 37794 184 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 Äo  Âs Â: Piraquara Âs: Alto Äo Paulo: Buri Âpio Itamontes Äo Franciso de  Municõ Paraiso de Goia Sul: Terra de Areia Urubici Municipio de Sa Domingos Sul: Sa Paula Rio Vermelho Carilo Itatiaia: Maringa Sanogasta: El Huaco de Arriba Resistencia: Camino a Isla del Cerrito, altura Peaje Gral. Belgrano Colonia Rodulfo Figueroa, El Carrizal, 1475 m Argentina: Chaco: absentia 28S Locality Seventh in ÐÐÐÐ ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY549360 AY549413 AY844668 Ð Ð Ð AY844293 Brazil: Minas Gerais: AY549332 AY549385 AY844605 AY844416 AY844071 Ð Ð Brazil: Goia AY843631 AY549390 AY844612AY549339 AY549392 AY844616 ÐAY549341 AY844421 AY549394 AY844621 AY844424 ÐAY549342 AY844083 Ð AY549395 AY844839 AY844624 AY844260 AY844834 AY844426 Brazil: AY844256AY549344 Santa AY844830 Catarina: Brazil: AY549397 AY844253 Santa Catarina: AY844625 Ð Brazil: Rio Grande AY844427 do AY844842 Ð AY844263 Brazil: Rio Grande do AY844843 Ð Argentina: Salta: Baritu AY549347 AY549400 AY844642AY549352 AY549405 AY844644 Ð AY844445 AY844102 AY844862 AY844100 AY844278 AY844860 Argentina: Buenos Aires: Ð Brazil: Santa Catarina: AY843655 AY843895 AY844641 AY844443 Ð AY844859 Ð Brazil: Rio de Janeiro: AY549355 AY549408 AY844648 AY844447AY549357 AY549410 AY844655 Ð AY844452 AY844865 Ð AY844279 Argentina: La Rioja: AY844870 AY844285 Brazil: Parana AY549353 AY549406 AY844645 AY843661 AY843904 AY844651 AY844449 Ð Ð AY844281 Brazil: Sa AY843619 AY843845 AY844596 AY844407 AY844062 AY844815 AY844240 Mexico: Chiapas: Hyla latistriata Hyla ericae Hyla guentheri Hyla joaquini Hyla leptolineata Hyla marginata Hyla marianitae Hyla prasina Hyla pulchella Hyla polytaenia Hyla riojana Hyla semiguttata Hyla punctata Hyla rubicundula Hyla chimalapa Voucher Species MZUSP 111556 CFBH 3599 CFBH 3386 CFBH 3625 CFBH 3848 CFBH 3098 MV 0249 CFBH 3388 MACN 37788 CFBH 5752 MACN 37509 CFBH 3579 MACN 37792 IT-H 0653 JAC 21736 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 185 Ј Â: 13.04 Њ  do Sul Â: El Cope N, 82 Ј 31.25 Њ Carretera Texcala- Zapotitlan Salinas, 5227 ft Rodulfo Figueroa, El Carrizal, 1475 m Norte, Cuetzalan, Hotel Villas Cuetzalan, 1250 m Huehuetenango: Finca San Francisco, near Aldea Yalambojoch Co.: US Hwy 90Yellow at River ¯oodplain Cerro Guanay Parque Nacional Omar Torrijos Sul: Cambara Co.: Lochloosa Wildlife Mgmt area near River Styx. 29 absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b AY843882 AY844629 AY844431 AY844088 AY844847 AY844268 Panama: Cocle Cytochrome 12S-tRNA valine-16S AY843649 AY843889 AY844635 AY844438AY843679 AY844094 AY843924 AY844853 AY844671 AY844272 AY844463 Mexico: Oaxaca: AY844120 Colonia AY843623 AY844883 AY843852 AY844296 AY844603 Mexico: Puebla: Sierra AY844414 AY844069AY843776 AY844821AY843777 AY844246 Guatemala: AY843682 AY843928 AY844675 AY844465 AY844124 AY844885 Ð Pet trade AY843686 AY843932 AY844679 AY844468 AY844126 AY844888 AY844300 Mexico: Puebla: AY843627 AY843859 AY844609 Ð AY844074 AY844826 AY844250 USA: Florida: Okaloosa AY843681 AY843927 AY844674AY843605 AY843828 AY844581 Ð AY844394 AY844051 AY844805 AY844123 AY844884 AY844299 Ð Brazil: Rio Grande do USA: Florida: Alachua sp. 8 AY843671 AY843915 AY844662 Ð AY844113 Ð AY844290 Venezuela: Bolivar: Hyla nephila Hyla taeniopus Hyla dendrophasma Hyla miliaria Hyla versicolor Hyla Hyla xera Hyla femoralis Hyla uruguaya Hyla avivoca Voucher Species JAC 21531 JAC 24443 UTA A-51838 SIUC H-06998 UMFS 5545 CWM 19512 JAC 22371 AMNH A-168425 CFBH 5788 AMNH A-168423 186 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 Âpio Äo) Ëa Ân R.N. 12 y Ârito Santo: Ëois: Rio Â, Chapada Rupununi Savanah: Aishalton (on Kubanawan Creek) Bella Vista: Interseccio Rio Santa Lucia Sacha (eggs laid in captivity from adults collected there) Porto Walter, inland from Rio Jurua General Belgrano: 10 km N Bernardo de Irigoyen: Salto Andresito de Lenc Grisante, Serra do Sincora Diamantina Linhares (Povoac Pacaraima, border marker BV (Brazil± Venezuela) 8 Iquitos Ecuador: Napo: Jatun absentia 28S Locality Seventh in ) Continued ÐÐÐÐÐ ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b AY843945 Cytochrome 12S-tRNA valine-16S AY843696 AY843941 AY844689 AY844476 AY844133AY843697 AY844896 AY843942 AY844305 AY844690 Guyana: Southern AY844477AY843780 ÐAY843781 AY844897AY843705 AY843950 Ð AY844696 AY844481 AY844136 Argentina: Corrientes: AY844902 AY844310 Brazil: Acre: 5 km N AY843706 AY843951 AY844697 AY844482 AY844137 AY844903 AY844311 Argentina: Misiones: AY843677 AY843922 AY844669 AY844461 Ð AY844881 AY844294 Brazil: Bahia: Municõ AY843597 AY843818 AY844571 AY844386 AY844043 AY844797 AY844220 Brazil: Espõ AY843606 AY843830 AY844583 AY844396AY843632 Ð AY843864 AY844613 Ð Ð AY844227 Ð Brazil: Roraima: Villa AY844831 Ð Pet trade ) sp. 9 (aff. sp. 2 AY843670 AY843914 AY844661 AY844457 AY844112 Ð AY844289 Peru: 50 km W of cabrerai langsdorf®i H. alvarengai Lysapsus laevis Osteocephalus Lysapsus limellum Nyctimantis rugiceps Osteocephalus Hyla Hyla anceps Hyla benitezi Hyla heilprini Hyla j Voucher Species i MACN 38645 N/A JPC 13178 MACN 38643 CFBH 5652 CFBH 5797 USNM 302435 AMNH A-168405 N/A NMP6V 71202/2 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 187 ϭ 18W Њ N, Ј 42N/52 42 Ârito Santo: Њ Њ W Ј 18 Rio Baria), 140 M Њ ϭ Parati Neblina base camp on Rio Mawarinuma, 140 m on the Berbice River, 200 ft Setiba, Guarapari Rio Baria), 140 m road: 04 Neblina Base Camp on Rio Mawarinuma ( Neblina Base Camp on Rio Mawarinuma ( 52 Parish: Mandeville (eggs laid in captivity from adults collected there) Guantanamo Bay road: 04 Y844314 Jamaica: Manchester absentia 28S Locality Seventh in ) Continued ÐÐÐÐA ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY843710 AY843955 AY843718 AY843963 AY844705 AY844491 AY844147 AY844910 AY844320 Brazil: Rio de Janeiro: AY549362 AY549415 AY844707 AY844493AY843721 AY844149 AY843965 AY844912 AY844708 AY844322 AY844494 Guyana: Dubulay AY844150 Ranch AY844913 AY844324 Brazil: Espõ AY843719 AY843964 AY844706 AY844492 AY844148 AY844911 AY844321 Venezuela: Amazonas: AY843708 AY843953 AY844699 AY844484 AY844139 Ð Ð French Guyana: Kaw AY549361 AY843952 AY844698 AY844483 AY844138 AY844904 AY844312 Venezuela: Amazonas: AY843709 AY843954 AY844700 AY844485 AY844140 AY844905 AY844313 Venezuela: Amazonas: AY843711 AY843956 AY844701AY843712 AY844486 AY843957 AY844141AY843713 AY843958AY843717 Ð Ð AY843962 AY844704 Ð AY844487 AY844490 AY844315 AY844142 AY844146 Pet trade AY844906 AY844316 Ð Cuba: Ð Guantanamo: AY844319 AY844143 French Guyana: AY844907 Kaw AY844317 Pet trade sp. AY843722 AY843966 AY844709 Ð AY844151 AY844914 AY844325 Brazil: Bahia: Uruci-Una mesophaea resinifrictix oophagus leprieurii taurinus dominicensis septentrionalis Osteopilus crucialis Phrynohyas Phrynohyas venulosa Phrynohyas Phyllodytes luteolus Phyllodytes Osteocephalus Osteocephalus Osteocephalus Osteopilus Osteopilus vastus Osteopilus Phrynohyas hadroceps k Voucher Species l N/A CFBH 5780 AMNH-A 131201 AMNH-A 141142 N/A MRT 6144 MNHN 2001.0828 AMNH A-131254 AMNH-A 131245 AMNH A-168410 AMNH A-168415 USNM 317830 MNHN 2001.0814 188 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 ridge above El Rincon Don Justo: Santa Rosalia: km 12.5 carretera a Colonia Rodulfo Figueroa, Diaz Ordaz± 1.4 mi de Rodulfo Figueroa Diego Co: Anza Borrego Co., SR 250 2I-10 mi W Diego Co.: Bowden Canyon Amalga Depto. Islas del Ibicuy: Ruta 12 vieja Depto. Bellavista: Camino San Roque- Bellavista Alamos El Baul, Colonia Rodulfo Figueroa, 1307 m absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY843732 AY843977 AY844720 AY844502 AY844161 AY844925AY843734 AY844333 AY843978 Mexico: Chiapas: camino AY844722AY843735 AY843980 Ð AY844723 AY844162 Ð Ð AY844163 AY844927 AY844334 USA: California: Ð San Pet trade AY843730 AY843967 AY844718AY843731 AY844500 AY843976 AY844159 AY844719 AY844923 AY844501 AY844331 AY844160 Guatemala: San AY844924 Marcos: AY844332 Guatemala: Guatemala: AY843736 AY843981 AY844724 Ð AY844164 Ð Ð USA: Florida: Columbia AY843737 AY843982 AY844725 AY844504AY843738 AY844165 AY843983 AY844726AY843739 Ð AY843984 ÐAY843740 Ð AY843985 AY844166 Ð AY844727 AY844928 AY844506 AY844505 AY844335 AY844167 USA: USA:AY843743 Utah: California: Cache: San Ð AY843986 Ð AY844730 AY844508 AY844929 AY844169 AY844337 AY844336 AY844932 Argentina: Argentina: AY844339 Corrientes: Entre Rios: Mexico: Sonora: Vicinity AY843744 AY843989 AY844731 AY844509 AY844170 AY844933 AY844340 Mexico: Chiapas: Cerro glandulosa guatemalensis euthysanota Plectrohyla Plectrohyla Plectrohyla matudai Pseudacris cadaverina Pseudacris crucifer Pseudacris ocularis Pseudacris regilla Pseudacris triseriata Pseudis minuta Pseudis paradoxa Pternohyla fodiens Ptychohyla Voucher Species MVZ 149403 UTA A-55140 JAC 21707 RNF 2424 N/A AMNH A-168472 RNF 3255 AMNH A-168468 MACN 37786 MACN 38642 MVZ 132995 UTA A-54786 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 189  Nova Empresa ca. 0.2 km WRica Costa Hwy 1 onpaved ®rst road 10 kmentrance N Santa Rosa National Park along Hwy 1 Sul: Pro-Mata Paso de la Patria Atalaya Madre del Sur; Carretera Pochutla, 681 m Parque Nacional Pico Bonito, Quebrada de Oro (tributary of Rio Viejo) Mixe; Mun. Santiago Zacatepec, carretera Zacatepec±Jesus Carranza, 1182 m Mixe Igarape Guatemala: Izabal absentia 28S Locality Seventh in ÐÐÐÐ ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY843755 AY844000 AY844741 AY844516 AY844177 ÐAY843756 AY844001 AY844742 Ð AY844517 Ð Costa Rica: Guanacaste: AY844941 AY844346 Brazil: Rio Grande Do AY843753 AY843998 AY844739AY843754 AY844515 AY843999 AY844176 AY844740 AY844939 Ð Ð Argentina: Corrientes: Ð AY844940 AY844345 Argentina: Buenos Aires: AY843745 AY843990 AY844732 AY843746 AY843991 AY844733 AY844510 AY844171AY843748 AY844934 AY843992 AY844341 AY844735 Mexico: Oaxaca: Sierra AY844512 AY844173 AY844936AY843749 AY844343 AY843994 Honduras: Atlantida: AY844736 AY844513 AY844174 AY844937 AY844344 Mexico: Oaxaca: Sierra AY843752 AY843997 AY844738 AY844514 Ð AY844938 Ð Brazil: Amazonas: sp. AY843747 AY843993 AY844734 AY844511 AY844172 AY844935 AY844342 Mexico: Oaxaca: Sierra hypomykter leonhardschultzei Scinax catharinae Scinax boulengeri Scinax berthae Scinax acuminatus Ptychohyla Ptychohyla Ptychohyla spinipollex Ptychohyla zophodes Ptychohyla Scarthyla goinorum m Voucher Species MCP3734 MLPA 2137 MVZ 207215 MACN 38649 ENS 8486 UTA A-54782 USNM 514381 UTA A-54784 JAC 21606 QULC 2340 190 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 s Woods, 1.5± Ј Äo'' 3.0 km E RioRd., Frio at 1 kmentrance NW Estacion Biologica La Selva Guarani: San Vicente: Campo Anexo INTA ``Cuartel Rio Victoria'' Baradero: Estancia ``El Reton Scrub camp Depto. Islas del Ibicuy: Ruta 12 vieja, entre Brazo Largo y Arroyo Luciano km S Teculutan, on road to Huit Starkey W (by road) Alamos San Andres Tuxtla, Volcan San Martin, Martires de Chicago breeding adults at Baltimore National Aquarium absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY843758 AY844003 AY844744 AY844519 AY844179AY843759 AY844943 AY844004 AY844347 AY844745 Argentina: Misiones: AY844520AY549365 AY844180 AY549418 AY844746AY843760 AY844521 Ð AY844181 AY844944 Ð AY844348 Argentina: Buenos Ð Aires: AY844747AY843761 AY844522 AY844006 AY844182 AY844748 Guyana: Iwokrama: AY844945 Muri AY844523 AY844349 AY844183 Argentina: Entre Rios: Ð Ð Guatemala: Zacapa: 2.9 AY843757 AY844002 AY844743 AY844518 AY844178 AY844942 Ð Costa Rica: Heredia: AY549366 AY844007 AY844749AY843763 AY844008 AY844750 Ð AY844524 AY844184AY843764 AY844947 AY844009 AY844350 AY844751 Ð Mexico: Veracruz: Mpo. Ð AY844946 AY844185 Ð AY844948 AY844351 Mexico: Captive Sonora: raised 10.6 from mi Scinax fuscovarius Scinax nasicus Scinax ruber Scinax squalirostris Scinax staufferi Scinax elaeochrous Smilisca baudinii Smilisca cyanosticta Smilisca phaeota n o Voucher Species JF1973 MACN 38650 IWK 109 MACN 38241 UTA A-50749 MVZ 133014 JAC 22624 RdS 786 MVZ 203919 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 191  Ârito Santo: Setiba, Guarapari Hwy, 9.5 km from Western Highway turnpoint (captive- raised tadpoles, from adults collected in this locality) Restinga de Marica Municipio San Gil: 7 km by road SWGil San Santo Amaro da Imperatriz Heredia: Chilamate (15 km W Puerto Viejo): Reserva ``El Vejuco'' Manaus: Lago Janauri km (airline) SSW Puerto Maldonado, Tambopata Reserve Bolivar: Auyantepui, 2015 m Brazil: Rio de Janeiro: Colombia: Santander: absentia 28S Locality Seventh in ) Continued ÐÐÐÐÐ ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐÐ Cytochrome 12S-tRNA valine-16S AY843775 AY844018 AY843772 AY844016 AY844759 Ð AY844191 Ð Ð Brazil: Espõ AY843774 AY844017 AY844761 AY844532 AY844193 AY844955 AY844357 Belize: Hummingbird AY843766 AY844011 AY844753AY549367 AY844526 AY844012 AY844187 AY844754 AY844527 AY844188 ÐAY843770 Ð ÐAY843771 Ð AY844015 AY844352 AY844758 Peru: Madre de AY844531 Dios: Brazil: 30 Ð Amazonas: AY844190 AY844953 AY844356 AY844530 No data Ð Ð Ð Venezuela: Estado AY843765 AY844010 AY844752 AY844525 AY844186 AY844949 Ð Costa Rica: Provincia sp.* AY326050 sp. AY843589 AY843809 AY844562 AY844379 AY844038 AY844788 AY844215 Brazil: Santa Catarina: nigromaculatus Hemiphractinae dorisae lacteus jordani Trachycephalus Xenohyla truncata Hylidae, Cryptobatrachus Triprion petasatus Flectonotus Sphaenorhynchus Sphaenorhynchus Tepuihyla edelcae Trachycephalus Smilisca puma Voucher Species l l RdS 749 N/A CFBH 5720 MJH 46 USNM 152136 MNHNP 1998-311 UMMZ 218914 N/A VCR 179 192 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 Â: Â: W) Ј 01 Â: El Cope Â: El Cope Њ Ârito Santo: N, 59 Ј 45 Њ Bolivar: Auyantepui, 2325 m 3.3 km S Tix2990 an, m km 65 on Carretera Federico Basadre at Ivita Pakatau Creek (85 m, 4 Parque Nacional ``Omar Torrijos'' District: Cokscomb Basin Wildlife Santuary Parque Nacional ``Omar Torrijos'' Setiba, Guarapari Caballero: Canton San Juan: Amboro Narional Park Ecuador: Chimborazo: Ecuador: Unknown absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐÐ ÐÐÐÐÐÐ Cytochrome 12S-tRNA valine-16S AY843768 AY844013 AY844756 AY844528 ÐAY843562 AY843785 AY844536 AY844951 AY844354 Venezuela: Ð Estado Ð Ð AY844196 Panama: Cocle AY843591 AY843811 Ð Ð AY844040 ÐAY843594 AY843813 AY844566 AY844382 ÐAY843767 Ð Panama: Cocle Ð AY844792 AY844755 Ð Ð Peru: Ucayali: 3 km S AY844189 AY844950 AY844353 Guyana: Iwokrama: AY843563 Ð AY844537 Ð Ð AY844765 Ð Belize: Stann Creek AY843592 Ð AY844564 AY844381 Ð AY844790 Ð Brazil: Espõ AY843590 AY843810 AY844563 AY844380 AY844039 AY844789 Ð Bolivia: Santa Cruz: * AY326051 * AY326043 cf. Phyllomedusinae marsupiata Hylidae, Agalychnis calcarifer Stefania schuberti Gastrotheca cornuta Hemiphractus helioi Stefania evansi Agalychnis callidryas Agalychnis litodryas Gastrotheca ®ssipes Gastrotheca Gastrotheca pseustes Voucher Species KRL 800 MNHN 2002.692 KRL 799 MJH 3689 AMNH A-164211 RdS 537 QCAZ 13217 JLG90 MNK 5286 TNHC 62492 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 193 Â: Â: El Cope s Woods: 1.5± Ј Äo Paulo: Ëos de Caldas Starkey 3.0 km E Rioat Frio 1 Rd km NWto entrance Estacion Biologica La Selva Jaqueira Carretera Tierra Colorada-Ayutla, 187 m Ubatuba: Picinguaba Poc on the Berbice River Parque Nacional ``Omar Torrijos'' Cuzco Amazonico Manaus: Reserva Duke Guarani: San Vicente: Campo Anexo INTA ``Cuartel Rio Victoria'' Llullapichis: Panguana Costa Rica: Heredia: Brazil: Minas Gerais: Peru: Madre de Dios: absentia 28S Locality Seventh in ) Continued ÐÐÐÐÐ ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐÐ ÐÐÐÐÐÐ Cytochrome 12S-tRNA valine-16S AY843687 AY843933 AY844680AY843714 AY844469 AY843959 AY844127 AY844702 AY844889 AY844488 AY844301 AY844144 Brazil:AY843715 Pernambuco: AY844908 AY843960 AY844318 Mexico:AY843716 Guerrero: AY843961 AY844703AY843723 AY844489 AY843968 AY844145 AY844710 AY844909 AY844495 AY844152 AY844915 Ð Ð Brazil: Sa Pet trade AY843687 AY843970 AY844712 Ð AY844154 AY844917 Ð Panama: Cocle AY843724 AY843969 AY844711 AY844496 AY844153 AY844916 Ð Guyana: Dubulay Ranch AY326046 AY843726 AY843971 AY844713AY843727 AY843972 AY844714 Ð ÐAY843728 AY844155 AY843973 AY844918 AY844715 AY844326 AY844156 AY844497 Brazil: Amazonas: AY844919 AY844157 AY844327 AY844920 Argentina: AY844328 Misiones: Peru: Huanuco: Rio * AY326044 * dacnicolor cochranae hypochondrialis palliata tetraploidea tomopterna Hylomantis granulosa Pachymedusa Phasmahyla Phyllomedusa bicolor Phasmahyla guttata Phyllomedusa lemur Phyllomedusa Agalychnis saltator Phyllomedusa Phyllomedusa tarsius Phyllomedusa Phyllomedusa p Voucher Species ZUFRJ 7926 JAC 22009 CFBH 7307 AMNH A 168459 AMNH-A 141109 CFBH 5756 KRL 955 MVZ 203768 KU 205420 MJH 67 MACN 37796 MJH 7076 194 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 N, Ј 17.10 Њ W) Ј 30.56 Њ 58 camp at ca. 18(linear) mi SW Kwakwani (ca. 2 mi downriver from Kurundi River) con¯uence), 200 ft Moroba: Wau Tambul (101 m, 4 Madang: ca. 10 km NW Simbai, Kaironk Village, 2000 m Nord: Valle Phaaye, Nomac River, 8 kmPoum E Wales: 16 km E Retreat Australia: Black Rock, near Kununurra Magidobo, SHP Papua New Guinea: absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐÐ Cytochrome 12S-tRNA valine-16S AY549363 AY549416 AY844716 AY844498 AY844158 AY844921 AY844329 Guyana: Berbice River AY843580 AY843802 AY844553 AY844376 Ð Ð Ð Australia: No data AY843702 AY843947 AY844693AY843703 AY844479 AY843948 AY844694 ÐAY843564 AY843786 Ð AY844538 AY844361 AY844135 Ð Ð Ð AY844766 Ð AY844308 Papua New Ð Guinea: Papua New Guinea: Guyana: Kabocali camp AY843691 AY843937 AY844684 ÐAY843692 AY843938 AY844685 AY844130 AY844892 Ð Ð AY844131 AY844893 New Caledonia: Province Ð Pet trade AY843694 AY843940 AY844687 AY844474 Ð Ð AY844304 Pet trade AY843693 AY843939 AY844686 AY844473 Ð AY844894 Ð Australia: New South AY843695 Ð AY844688 AY844475 AY844132 AY844895 Ð Australia: Western AY843701 AY843946 AY844692 Ð AY844134 Ð Ð Papua New Guinea: * AY326039 vaillanti Pelodryadinae Phyllomedusa Hylidae, Cyclorana australis Nyctimystes kubori Nyctimystes narinosus Allophrynidae Allophryne ruthveni Litoria aurea Litoria caerulea Litoria arfakiana Litoria infrafrenata Litoria freicyneti Litoria meiriana Nyctimistes pulcher q r s Voucher Species SAM 16906 MAD 1512 AMNH A-82845 AMNH-A 166288 AM 52744 AMNH A-168409 TNHC 51936 N/A SAMA 12260 SAMA 17215 SAMA 45336 AMNH A-82822 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 195 Â: Â: El Cope proximidades de Resistencia Sumaco, Volcan Sumaco Wildlife Reserve, Pehang main research ®eld station, ca. 13NW km Kuala Krau at con¯uence Krau and Lompat Rivers Province: nn hill south of Manyemen Alturas 20 entre Bardas Blancas y km 330 Parque Nacional ``Omar Torrijos'' Llullapichis: Panguana anzania: Dodoman Cameroon: Unknown Ecuador: Napo: Lago Malaysia: Pahang: Krau Brazil: no data Costa Rica: South of Las Peru: Huanuco: Rio absentia 28S Locality Seventh in ÐÐÐÐ ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐÐ ÐÐÐÐÐÐ ÐÐÐÐÐÐ ÐÐÐÐÐÐT ÐÐÐÐÐÐ ÐÐÐÐÐÐ Cytochrome 12S-tRNA valine-16S AY326008 AY843574 AY843796 AY844548 AY844371 Ð AY844776 AY844206 Panama: Cocle AY325991 AY326036 AY325997 AY843699 AY843944 Ð AY844478 Ð AY844899 AY844306 Argentina: Chaco: AY843573 AY843795 AY844547 AY844370AY843582 AY843804 AY844555 Ð AY844775 AY844205 Argentina: San Luis, ruta AY843773 Ð AY844760 Ð AY844192 AY844954 Ð Cameroon: Southwest * AY325993 * AY325996 * * * * ephippium prosoblepon klappenbachi guacamayo carens minutus robustus sjoestedti Brachycephalidae Brachycephalus Centrolenidae Centrolene Melanophryniscus Osornophryne Pedostibes hossi Schismaderma Bufo arenarum Dendrophryniscus Bufonidae Atelopus varius Astylosternidae Trichobatrachus Dydinamipus t Voucher Species N/A SIUC H-7053 MACN 38531 QCAZ 4580 N/A TNHC 62001 MACN 38639 MJH 7095 MVZ 223279 N/A DPL 3932 196 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294  Äapiru Darst and Cannatella data Caballero: Canton San Juan: Amboro National Park Itamontes Cape Province: Cedarberg Mountain Range: head of Krom River (2004) and Biju and Bossuyt (2003) Vera: Ea. ``Las Gamas'' Escobar: Loma Verde: Ea. ``Los Cipreses'' Aristobulo del Valle: Balneario Cun Y844207 Argentina: Santa Fe: absentia 28S Locality Seventh in ÐÐÐÐSee ) Continued ÐÐÐÐA ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐÐNo Cytochrome 12S-tRNA valine-16S AY843576 AY843798 AY844549 AY844372 AY844029 AY844777 AY844208 Bolivia: Santa Cruz: AY843577 AY843799 AY844550 AY844373 Ð AY844778 Ð Panama: Bocas del Toro AY843595 AY843814 AY844567 AY844383 Ð AY844793 AY844217 Brazil: Minas Gerais: AY843581 AY843803 AY844554 Ð AY844032 AY844781 AY844211 Panama: Bocas del Toro AY843593 AY843812 AY844565 ÐAY326070 Ð Ð AY844791 AY364397 AY844216AY843575 South AY843797 Africa: Western AY843579 AY843801 AY844552 AY844375 AY844031 AY844780 AY844210 Argentina: Misiones: AY843704 AY843949 AY844695 AY844480 Ð AY844901 AY844309 Argentina: Buenos Aires: * AY326031 * talamancae eurygnathum marmoratum Cycloramphinae schmidti americanus Dendrobatidae Colostethus Cochranella bejaranoi Hyalinobatrachium Dendrobates auratus Phyllobates bicolor Heleophrynidae Heleophryne purcelli Hemisotidae Hemisus Leptodactylidae, Crossodactylus Ceratophrys cranwelli Odontophrynus Voucher Species Ceratophryinae USNM-FS 52055 MNK 5242 CFBH 5729 USNM 31318 TNHC 62488 TMSA 84157 TNHC 62489 MLPA 1414 Leptodactylidae, JF 929 JF 1891 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 197  Äapiru Caballero: Canton San Juan: Amboro National Park W Tu®no, 3520 m Saavedra: Canton Charazani camp at ca. 18(linear) mi SW Kwakwani (ca. 2 mi downriver from Kurundi River con¯uence) Llullapichis: Panguana Escobar: Loma Verde: Establecimiento ``Los Cipreses'' Aristobulo del Valle: Balneario Cun camp at ca. 18(linear) mi SW Kwakwani (ca 2. mi downriver from Kurundi River con¯uence) Ecuador: Carchi: 12 km Y844323 Bolivia: La Paz: Bautista absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐA ÐÐÐÐÐÐ Cytochrome 12S-tRNA valine-16S AY326009 AY843586 Ð AY844559 Ð AY844035 AY844785 AY844213 Bolivia: Santa Cruz: AY843585 AY843807 AY844558AY843688 AY843934 AY844681 Ð AY844470AY843689 Ð AY843935 AY844682 Ð AY844471AY843690 AY844784 AY844128 AY843936 AY844302 AY844764 AY844890 AY844683 Argentina: Buenos Aires: AY844472 AY844129 Ð Ð Ð Peru: Argentina: Huanuco: Misiones: Rio AY844303 Guyana: Berebice River * sp. AY843561 AY843784 AY844535 AY844360 AY844021 Ð AY844195 Guyana: Berebice River sp. AY843720 thymelensis Eleutherodactylinae pluvicanorus Leptodactylinae ocellatus macroglossa Eleutherodactylus Phrynopus Leptodactylidae, Eleutherodactylus Leptodactylidae, Adenomera Edalorhina perezi Leptodactylus Limnomedusa Lithodytes lineatus Voucher Species KU 202519 AMNH-A 165108 AMNH-A 165195 AMNH-A 166312 MJH 7082 MACN 38648 MACN 38641 AMNH-A 166426 198 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 Ân: Ân: Ân: Â: Stream 10 Guarani: San Vicente: Campo Anexo INTA ``Cuartel Rio Victoria'' Rupununi Savanna, Aishalton (on Kubanawau Creek) Yapeyu Alumine km W Primeros Pinos Catan Lil: Laguna del Burro Cushamen: Lago Puelo Huiliches: Termas de Epulafquen Saavedra: Canton Charazani Ambanja: Ramena River camp, Tsaratanana Reserve (730 m) Vohemnar: Sorata Mountain (1320 m) absentia 28S Locality Seventh in ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b Cytochrome 12S-tRNA valine-16S AY843729 AY843975 AY844717 AY844499 Ð AY844922 AY844330 Argentina: Misiones: AY843565 AY843787 AY844539 AY844362 Ð AY844767 AY844197 Argentina: Neuque AY843733 AY843979 AY844721 AY844503AY843741 Ð AY843987 AY844728 AY844507 AY844926 AY844168 AY844930 Ð ÐAY843571 AY843793 Guyana: Southern AY844545 Argentina: Corrientes: AY844368 AY844027 AY844773 AY844203 Argentina: Neuque AY843572 AY843794 AY844546AY843587 AY844369 AY843808 AY844028 AY844560 AY844774 AY844204 Argentina: Ð Chubut: AY844036 AY844786 AY844214 Argentina: Neuque AY843698 AY843943 ÐAY843751 Ð Ð AY364390 Ð Ð AY844898 AY844175 Ð Ð Madagascar: Antsiranana: Ð Madagascar: Antsiranana: sp. AY843769 AY844014 AY844757 AY844529 Ð AY844952 AY844355 Bolivia: La Paz: Bautista Telmatobiinae brachyops falcipes patagonicus femoralis marmorata Leptodactylidae, Physalaemus cuvieri Pleurodema Pseudopaludicola Atelognathus Batrachyla leptopus Mantellidae Mantidactylus Microhylidae Scaphiophryne Voucher Species MACN 37942 MACN 38640 AMNH-A 139118 MACN 38647 MACN 37905 MACN 38008 MACN 37980 AMNH-A 165114 AMNH A-167581 AMNH A-167395 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 199 data data Island: City of Dumaguete Huong Son District: Huon Son Reserve (Rao An region): top of Po-Mu mountain Wales: 30 km N Kenmore Australia: S of Para Reservoir Reserve Province: Con Cuong District: Bong Khe Commune ietnam: Ha Tinh: Philippines: Negros Solomon Islands absentia 28S Locality Seventh in AMCC 101463. AMCC 107020. Obtained by Biju and Bossuyt (2003); voucher of LSUMZ H-9970. LSUMZ H-10864. AMCC 124743. p q r s t u unknown provenance. ÐÐÐÐV ) Continued ( APPENDIX 2 exon 1 RAG-1 Tyrosinase Rhodopsin b ÐÐÐÐÐÐNo ÐÐÐÐÐÐ ÐÐÐÐÐÐNo ÐÐÐÐÐÐ Cytochrome MVZFC 14296. MVZFC 11248. AMCC 101463. MVZFC 14457. MVZFC 12876. AMCC 101720. LSUMZ H-13720. To be accessioned in CFBH collection. h i j k l m n o 12S-tRNA valine-16S AY326071 AY843750 AY843996 AY844737 AY843700 Ð AY844691AY843742 AY843988 AY844729 Ð ÐAY843588 Ð Ð Ð AY844900 AY844561 AY844307 Australia: AY844931 New South Ð AY844338 Australia: South AY844037 AY844787 Ð Vietnam: Nghe An * AY326064 * AY326063 sp.* AY326061 * Limnodynastinae salmini bipunctatus Myobatrachinae limnocharis Rana temporaria Myobatrachidae, Limnodynastes Rhacophoridae Rhacophorus Kaloula conjuncta Neobatrachus sudelli Platymantis Myobatrachidae, Pseudophryne bibroni Ranidae Fejervarya Voucher Species AMCC 101446. AMCC 107369. LSUMZ H-12939. VZFC 14248. ZFMK H-074. MVZ 11676. AMCC 101481. a b c d e f g N/A TNHC 61075 AMNH-A 161418 N/A SAMA 12391 N/A SAMA 73293 AMNH A-161230 200 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 3

MORPHOLOGICAL CHARACTERS Based on Burton's (2004) collection of obser- (1) pertaining to the morphology of the tendo su- vations on hylid foot musculature, we built a data per®cialis hallucis, not to its origin. For this rea- set. Burton (2004) included two appendices, A son, we consider it to be a different character and and B, with the taxa he examined for the different that is why we excluded it here. characters. In the text, however, it is not imme- 4 (Burton's char. A): Structure of m. contrahen- diately clear which of the appendices he refers to tis hallucis. (0) Present and conspicuous. (1) Ab- in some cases. Burton (personal commun.) gra- sent or reduced. ciously provided us with a precise list of the ap- 5 (Burton's char. B): Origin of m. contrahentis pendix to which each character refers. This infor- hallucis (if present). (0) Origin on distal tarsal 1. mation is reproduced below in a character list that (1) Origin on distal tarsal 2±3. includes a brief discussion when relevant. Burton 6 (Burton's char. 29): Presence or absence of (2004) numbered his characters as a continuation m. ¯exor teres hallucis. (0) Absent. (1) Present. of Duellman's (2001) character list. We are not 7 (Burton's char. 30): Presence or absence of incorporating Duellman's (2001) characters be- m. abductor brevis plantae hallucis. (0) Present. cause he only summarized character states for the (1) Absent. COMMENT: Burton (2004: 219) includ- hylid subfamilies without any reference to the in- ed states pertaining to presence or absence, as dividual taxa, therefore assuming monophyly. well as structure, in the same character. Following Hawkins et al. (1997) and Strong and Lipscomb Character List (1999), we consider them as two different char- acters. 0 (Burton's char. 25): Insertions of the m. ¯exor 8 (Burton's char. 30): Structure of the m. ab- digitorum brevis super®cialis. (0) Three inser- ductor brevis plantae hallucis. (0) Narrow. (1) tions. (1) Two insertions. Broad. 1 (Burton's char. 26): Structure of the tendon 9 (Burton's char. 31): Origin of tendo super®- of the m. ¯exor digitorum brevis super®cialis. (0) cialis pro digiti II. (0) Tendon arising from the Undivided. (1) Divided along its length into a me- dial tendon, from which arises tendo super®cialis distal edge of the aponeurosis plantaris. (1) Ten- IV, and a lateral tendon from which arise tendines don arising from a deep, triangular muscle, which super®ciales III and V, with cross tendons be- originates on the distal tarsal 2±3. (2) Tendon tween the divisions. (2) Divided along its length broad at the base, acting as a point of insertion of into a medial tendon, from which arise tendo su- a portion of the m. transversus plantae distalis, so per®cialis IV and m. lumbricalis longus digiti V, that the tendo super®cialis pro digiti II appears to and a lateral tendon from which arise tendo su- be the tendon of insertion of the m. transversus per®cialis V and m. lumbricalis longus digiti IV. plantae distalis. 2 (Burton's char. 27): Structure of the termini 10 (Burton's char. 32): Origin of tendo super- of tendines super®ciales. (0) Tendon neither ex- ®cialis pro digiti III. (0) Tendo super®cialis pro panded nor bifurcated. (1) Tendon bi®d. digiti III arising from the m. ¯exor digitorum 3 (Burton's char. 28): Origin of the tendo su- brevis super®cialis, but with the distal margin of per®cialis hallucis. (0) Tendo super®cialis hallucis the aponeurosis wrapped around the tendon. (1) arises from the mediodistal corner of the aponeu- Tendo super®cialis pro digiti III arising from the. rosis plantaris. (1) (Burton's char. 28.2). The ten- ¯exor digitorum brevis super®cialis, with no con- do super®cialis hallucis tapers from an expanded tribution from the aponeurosis plantaris. (2) Tendo corner of the aponeurosis plantaris; ®bers of the super®cialis pro digiti III arising in part from m. m. transversus plantae distalis originating on dis- ¯exor digitorum brevis super®cialis or the tendo tal tarsal 2±3 insert on the lateral side of the ten- super®cialis pro digiti IV, and in part by a super- don. (2) (Burton's char. 28.3). The tendo super®- ®cial tendon (from which also cutaneous tendons cialis hallucis arises from the aponeurosis, but the arise) that emerges from centrally on the plantar origin is proximal to that of the m. lumbricalis surface of the aponeurosis plantaris. (3) Tendo su- brevis hallucis, so that the tendo passes at an an- per®cialis pro digiti III arising entirely from the gle across that muscle as it passes along the toe, margin of the aponeurosis plantaris. (4) Tendo su- neither along its marginor straight along the mus- per®cialis pro digiti III arising entirely from the cle. (3) (Burton's char. 28.4). The tendo super®- super®cial tendon. cialis hallucis comes from a massive muscle that 11 (Burton's char. 33): Origin of m. ¯exor ossis arises from distal tarsal 2±3. COMMENT: Burton metatarsi II. (0) Tendon arising from the condyle (2004: 218) included within this character a state of the ®bulare alone, in common with the tendon 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 201 of origin of the m. ¯exor ossis metatarsi III. (1) less than 80% of the length of metatarsus II. (1) Tendon arising from distal tarsal 2±3 only. (2) Broad, occupying the entire length of metatarsus Muscle with two originsÐa long distal section II. (2) Oblique, with a narrow, proximal connec- arising from a tendon on the distal condyle of the tion onto metatarsus III, and a broad, distal con- ®bulare, and a short proximal section arising from nection to metatarsus II. COMMENT: Burton (in distal tarsal 2±3. litt., 19 July 2004) warned us that the numbers of 12 (Burton's char. D): Accessory tendon of or- the metatarsals in the description of state 2 of igin of the m. lumbricalis longus digiti III. (0) chars. 41 and 42 were accidentally reversed in his Absent. (1) Present. paper; this reversal is corrected here. 13 (Burton's char. 34): Number of tendons of 22 (Burton's char. 42): Position of m. transver- insertion of m. lumbricalis longissimus digiti IV. sus metatarsus III. (0) Relatively distal, not oc- (0) Two tendons. (1) One tendon. cupying the proximal 15% of either metatarsus. 14 (Burton's char. 35, refers to taxa listed on (1) Proximal. (2) Oblique, with a narrow, proxi- his appendix B): Relationship between the origin mal connection onto metatarsus IV, and a broad, of m. ¯exor ossis metatarsi IV and the joint ten- distal connection to metatarsus III. don of origin of m. ¯exores ossum metatarsorum 23 (Burton's char. 43, refers to taxa listed in his II and III varies. (0) The tendons are adjacent at appendix A): Breadth of m. transversus metatar- their origins. (1) The tendons cross each other. sus III. (0) Narrow, extending less than 70% of COMMENT: Burton (2004: 222) included a third the length of metatarsus III. (1) Broad, occupying state in this character, whose taxonomic distribu- more than 75% of the length of metatarsus III. tion does not match any of the taxa included in 24 (Burton's char. 44): Presence or absence this study. of m. transversus metatarsus IV. (0) Present. (1) 15 (Burton's char. F): Structure of m. ¯exor os- Absent. COMMENTS: Burton included presence, sis metatarsi IV. (0) Inserting on metatarsus IV absence, and several modi®cations within a sin- only. (1) Inserting on both metatarsi IV and V. gle character. We are unsure as to the de®nitions 16 (Burton's char. 36): Length variation of the and limits of the states describing the different m. ¯exor ossis metatarsi IV. (0) Very short, in- origins and insertions of the muscle when pre- serting on the proximal two thirds of metatarsal sent, and thus we only score its presence or ab- IV or less only. (1) Extending the entire length of sence. Metatarsal IV. 17 (Burton's char. 37, refers to taxa listed in his 25 (Burton's char. 45): Relationship of the m. appendix A): Tendons of insertion of m. lumbri- ¯exor ossis metatarsi IV with m. transversus calis longus digiti V. (0) One tendon. (1) Two ten- metatarsus IV, if present. (0) M. ¯exor ossis meta- dons arising equally from both sides of an undi- tarsi IV dorsal to m. transversus metatarsus IV. vided muscle. (2) Two tendons arising from two (1) M. ¯exor ossis metatarsi IV ventral to m. equal muscle slips. (3) (Burton's char. 37.4). Two transversus metatarsus IV. tendons, the medial of which arises from a small, 26 (Burton's char. 46, refers to taxa listed in his appendix A): Nature of origin of m. extensor dig- distal slip. COMMENT: The state 3 of this character described by Burton is present only in Cochra- itorum comunis longus. (0) Fibrous origin from nella siren, a taxon not included in this analysis. the medial surface of the m. tarsalis anticus. (1) 18 (Burton's char. 38, refers to taxa listed in his A long, straplike tendon arising on the lateral side appendix A): Number of slips of the medial m. of the distal end of the tibio®bula, close to the lumbricalis brevis digiti V. (0) Two slips. (1) One origin of the m. tarsalis anticus. slip. COMMENT: Burton included a third state that 27 (Burton's char. 47, refers to taxa listed in his is present in Gastrophryne, a taxon not included appendix A): Nature of insertion of m. extensor in this analysis. digitorum comunis longus. (0) Flat tendon onto 19 (Burton's char. 39, refers to taxa listed in the fascia of one or more dorsal super®cial mus- both appendices): Presence or absence of a tendon cles. (1) Strong tendon(s) directly to the dorsa of from the m. ¯exor digitorum brevis super®cialis one or more metatarsi. to the medial slip of the medial m. lumbricalis 28 (Burton's char. 48): Insertion of m. extensor brevis digiti V. (0) Absent. (1) Present. digitorum comunis longus on metatarsal II. (0) 20 (Burton's char. 40): Insertion of the lateral Present. (1) Absent. COMMENTS: Burton de®ned slip of the medial m. lumbricalis brevis digiti V. the states of character 48 in a complex way, com- (0) Insertion by tendon onto the basal phalanx. (1) bining the different points of insertions into single Insertion pennate. states. We consider it more informative and less 21 (Burton's char. 41, refers to taxa listed in his redundant to consider the different points of in- appendix A): Width and orientation of the m. sertion as different characters. The insertion on transversus metatarsus II. (0) Narrow, occupying metatarsal III is uninformative in the present con- 202 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 text, since it is reported absent only in Stefania 36 (Burton's char. 54): Number of slips in the scalae, a taxon not included in the analysis. m. extensor brevis super®cialis digiti IV. (0) Two 29 (Burton's char. 48): Insertion of m. extensor origins, two separate muscles. (1) One origin, bel- digitorum comunis longus on metatarsal IV. (0) ly undivided. Present. (1) Absent. 37 (Burton's char. 55, refers to taxa listed in his 30 (Burton's char. 49): Origins of the m. exten- appendix A): Nature of the origin of the mm. ex- sor brevis medius hallucis and m. extensor brevis tensores breves super®ciales digiti IV. (0) Both medius digiti II. (0) Separate origins. (1) Adjacent origins pennate. (1) (Burton's char. 55.2): Both origins. origins from long, ¯at tendons. COMMENT: Burton 31 (Burton's char. G): Insertion of the m. ex- described a third state present in Rhacophorus tensor brevis medius hallucis. (0) Insertion in the maculatus, a taxon not included here. basal phalanx of digit I only. (1) Insertion by a Characters C and E were not included because ¯at tendon onto the base of the basal phalanx of the taxonomic distribution of their states is irrel- digit I, plus a strong, narrow tendon that passes evant for hylids. Character 56 was excluded be- along the medial margin of digit II, inserting on cause it actually includes several characters (pres- the basal phalanx. 32 (Burton's char. 50, refers to taxa listed in his ence or absence of mm. extensores breves distales appendix A): Position and nature of insertions of in each digit), and there is no information as to m. abductor brevis dorsalis digiti V. (0) Insertion which of the slips (medial or lateral) is present. pennate, along the proximal half of the lateral margin of metatarsal V, displacing the origins of Morphological Synapomorphies Common to mm. extensores breves profundi digiti V, so that All Trees the lateral m. extensor brevis profundus originates (node numbers as in ®gs. 2±5) on the mediodorsal surface of the metatarsal V. (1) Insertion by a short tendon to the dorsum of Allophryne ruthveni, 10: 2 → 4. Anotheca spi- the metatarsal V. COMMENT: Burton described a nosa,3:0→ 1. Cyclorana australis, 17: 3 → 0. third state that is present in , a taxon Dendropsophus sarayacuensis,6:1→ 0. Hyla eu- not included in this analysis. phorbiacea, 28: 1 → 0. Hypsiboas calcaratus,3: 33 (Burton's char. 51, refers to taxa listed on 1 → 0. Hypsiboas granosus,9:2→ 0. Hypsiboas his appendix A): Nature of the origin of the m. pellucens,3:1→ 0, 9: 2 → 0. Hypsiboas pictur- extensor brevis super®cialis digiti III on the distal atus,6:0→ 1. Hypsiboas punctatus,3:1→ 0. end of the ®bulare. (0) Fibrous origin. (1) Origin Hypsiboas raniceps,5:0→ 1. Hypsiboas ru®te- by a ¯at tendon. → → 34 (Burton's char. 52, refers to taxa listed in his lus,6:0 1. Litoria aurea, 21: 0 1. Litoria freycineti, 18: 0 → 1, 28: 1 → 0. Osteopilus sep- appendix A): Number of insertions of m. extensor → → brevis super®cialis digiti III. (0) Single insertion tentrionalis,6:0 1, 29: 1 0. Osteopilus vas- → onto the dorsum of the m. extensor brevis medius tus, 31: 1 0. Plectrohyla guatemalensis, 12: 0 → → digiti III. (1) Single insertion via a long tendon 1. Scarthyla goinorum, 25: 0 1. Node 289, proximally on the dorsum of basal phalanx III. (2) 1: 0 → 1, 10: 2 → 1. Node 337, 21: 0 → 2. Node Two insertions, a ¯at tendon onto basal phalanx 338, 1: 1 → 0. Node 352, 11: 0 → 1. Node 372, III, as state 1, and a pennate insertion on meta- 3: 0 → 1. Node 375, 1: 1 → 0. Node 390, 28: 1 tarsus III. → 0. Node 422, 10: 1 → 0, 14: 1 → 0, 16: 1 → 35 (Burton's char. 53, refers to taxa listed in his 0, 19: 1 → 0. 22: 1 → 2. Node 462, 28: 1 → 0. appendix A): Presence or absence of m. extensor Node 465, 33: 1 → 0. Node 498, 21: 0 → 1. Node brevis medius digiti III. (0) Present. (1) Absent. 507, 7: 0 → 1.

APPENDIX 4

ADDITIONAL COMMENTS ON SOME SPECIES Hyla albovittata Lichtenstein and Martens, Humboldt, Berlin. The specimen (ZMB 3140), an 1856: Lichtenstein and Martens (1856) described adult male, is in a remarkably good state of pres- this species from ``Brazil'', without further data. ervation, retaining details of pattern and colora- Subsequently, it was not included in Nieden's tion. On study, it is evident that it is a junior syn- (1923) catalog; Duellman (1977) stated that the onym of Hyla pulchella DumeÂril and Bibron, holotype was unknown; however, the holotype is 1841. housed at the Zoologisches Museum±UniversitaÈt Hyla auraria Peters, 1873: This species was de- 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 203 scribed in detail based on a single specimen re- lenid, and later (La Marca, 1997; 1998) employed ported as coming from ``angeblich aus Sudamer- the combination Hyalinobatrachium estevesi, mis- ika'' (Peters, 1873). Subsequently, Boulenger takenly attributing it to Ruiz-Carranza and Lynch (1882) presented a brief description without fur- (1991). The study of its holotype (MCZ 72498) ther comment. Duellman (1977) reported that the indicates that it is a juvenile of an unidenti®ed holotype was ``formerly at ZSM, now lost.'' species that we associate with the Hyloscirtus bo- Duellman (in Frost 1985) stated that the name has gotensis species group. While it could well be a never been associated with a population of an- juvenile of either H. jahni or H. platydactylus, and urans. However, the holotype is extant. The ho- therefore a potential junior synonym of either of lotype of H. auraria (ZSM 1175/0), presumably these species, we tentatively recognize it as a val- a female (it lacks vocal slits), is in relatively good id species pending additional work. state of preservation, but it is very faded. We Hypsiboas pulidoi (Rivero, 1968): This species could not associate it with any known species of was described from ``Monte Duida, 2000 pies, Hylinae nor could we associate it with any of the Territorio Amazonas, Venezuela'' as a Centrolen- genera recognized in this work. idae by Rivero (1968). Later Rivero (1985) in- Hyla palliata Cope, 1863: Cope (1863) de- cluded in its own species group, the Centrolenella scribed this species, stating that it was a specimen pulidoi group. Savage (in Frost, 1985) considered from the Page collection, with provenance ``Par- this species to be a hylid. Furthermore, Rivero aguay''.32 He also provided the Smithsonian Mu- (1985: 361) stated that ``the resemblance of C. seum number 6225. The species was not included pulidoi with some specimens with the same col- in the list of type specimens of the USNM (Coch- oration of H. benitezi (with which it is syntopic) ran, 1961). According to Heyer (personal com- is so remarkable that for some time it was thought mun. to J.F., 21 Jan. 2004), the USNM catalog to consider them synonyms, but C. pulidoi has entry indicates that there were originally two fused tarsal bones, a different coloration, and the specimens cataloged as 6225, and in a card ®le eyes are red in living specimens'' (freely trans- initiated by Cochran of missing type specimens, lated from the Spanish). This species was not in- there is a card indicating that the specimens could cluded in the taxonomic rearrangement of Centro- not be found in 1957. Because the specimens had lenidae by Ruiz-Carranza and Lynch (1991), but not been found since, Heyer noted, ``the most rea- AyarzaguÈena (1992) and La Marca (1992) still sonable conclusion is that the specimens are in- listed it as a centrolenid, and Gorzula and SenÄaris deed lost.'' The description provided by Cope in- (1999) referred to it as ``Centrolenella'' pulidoi. dicates a character combination that could be in- Duellman (1999) employed the combination Hyla dicative of a species of Hypsiboas (no species of pulidoi without further comment; Myers and Don- Bokermannohyla are known for the area surveyed nelly (1997) and Frost (2002) considered it as in- by the Page expedition): ``All the digits of pos- certae sedis. The study of the holotype (MCZ terior extremity palmate to penultimate phalanx; 72499), a female according to Rivero (1968), in- of the anterior the three external are one third dicates that it is a species close to Hypsiboas ben- webbed. Metacarpus of inner digit with a large itezi. The specimen has a slightly enlarged pre- tubercle.'' Nevertheless, in the absence of other pollex, similar to the situation seen in females of evidence, we prefer to consider this species as a H. benitezi. Considering its small size (20.3 mm), nomen dubium. we are unsure as to whether it is an adult female Hyloscirtus estevesi (Rivero, 1968): This spe- or a juvenile. We tentatively consider this species cies was originally described as a member of the as valid, pending a careful comparison with ju- Centrolenidae by Rivero (1968), and was later veniles of Hypsiboas benitezi. The only apparent (Rivero, 1985) included in the Centrolenella pul- difference between Hypsiboas benitezi and H. idoi species group. Savage (in Frost, 1985) con- pulidoi is that the latter has a red iris (Rivero, sidered this species to be a member of the Hyli- 1968), whereas the iris of the former was de- dae, and it was not included in the taxonomic re- scribed by Myers and Donnelly (1997) as ``light arrangement of Centrolenidae by Ruiz-Carranza bronzy brown with ®ne balck venation.'' How- and Lynch (1991). Myers and Donnelly (1997) ever, this issue should be addressed cautiously, and Frost (2002) considered it as incerta sedis. because as noted by Myers and Donnelly (1997), However, La Marca (1992) listed it as a centro- at least two species are probably confounded un- der the name H. benitezi, and these authors de- scribed specimens from Tamacuari, that they con- 32 Although the provenance is ``Paraguay'', this should be taken in a very wide sense, since the Page sidered morphologically different from the topo- expedition travelled from Buenos Aires, through the Pa- types, and iris coloration in topotypic material re- rana river up to Corumba, State of Matto Grosso, Brazil mains undescribed. (Page, 1859). Scinax dolloi (Werner, 1903): Werner (1903) 204 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294 described H. dolloi, based on two specimens, randa-Ribeiro, 1937), this species was considered whose provenance was stated as Brazil, adding a synonym of Hyla fuscovaria by Lutz (1973). ``unfortunately it is unknown with more preci- However, Fouquette and Delahoussaye (1977) sion'' (from the German). The species was in- consider it a valid species, based on differences cluded in Nieden (1923) with a brief description, in sperm morphology from H. fuscovaria. On that and without additional comments by Bokermann basis, they included it in their Ololygon cathari- (1966b), Gorham (1974), and Duellman (1977). nae group. Almeida and Cardoso (1985) present- B. Lutz (1973) included it as a ``doubtful spe- ed an analysis of intraspeci®c variation among cies''. Duellman (in Frost, 1985, 2002) stated that spermatozoa of O. fuscovaria, and suggested that the name had not been associated with any known the differences observed among O. fuscovaria and population. O. megapodia were the same as those seen among Lang (1990) included it on the list of type spec- different specimens of the same population of O. imens housed at the Institut Royal des Sciences fuscovarius. Without comment, Duellman and Naturelles in Brussels, Belgium, commenting that Wiens (1992) considered Hyla megapodia to be a ``although the original type-description lists spe- synonym of Scinax fuscovarius, as did Lavilla ci®cally that no speci®c locality is know the reg- (1992). Based on the lack of comments by these ister has `Haut Maringa, BreÂsil' as locality data''. authors, Frost (2002) continued recognition of The two syntypes (IRSNB 6481) are in a fairly Scinax megapodius as a valid species. Based on good state of preservation, and their study shows the results of Almeida and Cardoso (1985), and that they clearly belong to the genus Scinax, and, considering that there is no published evidence within it, they seem to be related to the ruber that Scinax megapodius is different from S. fus- clade (Faivovich, 2002). Scinax dolloi is morpho- covarius, following Lutz (1973), we treat it as a logically close to Scinax hayii and S. perereca. junior synonym of the latter. While its exact status remains to be elucidated, in Scinax trachythorax: This species was described the meantime we consider it a valid species of by MuÈller and Hellmich (1936) from the locality Scinax. of ``Apa-Bergland (San Luis)'', Paraguay, also re- Scinax karenanneae Pyburn, 1993: Pyburn ferred as ``Estancia San Luis de la Sierra, Apa- (1993) described this species from ``near TimboÂ, Bergland'' (MuÈller and Hellmich, 1936: 114). Lutz Department of VaupeÂs, Colombia''. Although the (1973) considered this species a junior synonym of original description and accompanying ®gures Hyla fuscovaria. Fouquette and Delahoussaye suggest that the species is super®cially very sim- (1977) considered it a valid species, based on dif- ilar to many species of Scinax, Pyburn (1993) ferences in sperm morphology from H. fuscovaria, ruled out the possibility that this species belonged and recognized it as Ololygon trachthorax. Almei- to Scinax due to the sperm with a single tail ®l- da and Cardoso (1985) presented an analysis of ament. Problems with the interpretation of sperm intraspeci®c variation in spermatozoa of O. fusco- morphology data have been discussed earlier, and varia, and suggested that the differences observed in this particular case the poorly known taxonom- among O. fuscovaria and O. trachythorax were the ic distribution of this character state in Hylinae same as those seen among different specimens precludes any interpretation of polarity. within the same population of O. fuscovaria. How- The paratypes of Hyla karenanneae (UTA A- ever, O. trachythorax was recognized as a valid 3768±79) show the synapomorphies of Scinax species by Duellman and Wiens (1992), who em- listed by Faivovich (2002) that can be seen with- ployed the combination Scinax trachythorax. Lav- out deep dissections. Therefore, we propose its illa (1992) considered it a synonym of S. fusco- inclusion in Scinax. This species has a large sub- varius, as did De la Riva et al. (2000), who ex- gular vocal sac, which in the phylogenetic anal- plicitly followed Lutz (1973) and Cei (1980). (This ysis of Scinax of Faivovich (2002) optimized as publication did not incorporate changes introduced a synapomorphy of a clade composed by S. stauf- by Fouquette and Delahoussaye [1977]; Cei [1987] feri, S. cruentommus, S. fuscomarginatus, and an later recognized S. trachythorax as a valid species.) undescribed species from northern Brazil. Considering the comments of Almeida and Car- Scinax megapodius: This species was ®gured doso (1985), and in light of the absence of any by Miranda-Ribeiro (1926), but formally de- published diagnostic character state between S. fus- scribed only later (Miranda-Ribeiro, 1937). Orig- covarius and S. trachythorax, following Lutz inally described from the localities of SaÄo Luiz de (1973), we tentatively consider the latter a junior CaÂceres and Porto EsperidiaÄo, Matto Grosso (Mi- synonym of the former. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 205

APPENDIX 5 SYNAPOMORPHIES INVOLVING DNA SEQUENCES, FOR ALL TAXONOMIC GROUPS OF HYLIDAE WITH THE EXCEPTION OF SPECIES GROUPS WHOSE MONOPHYLY WAS NOT TESTED IN THIS ANALYSIS

Hylidae Pos. 341: T → C Pos. 212: Gap → T Pos. 2280: A → T → → → Cytochrome b Pos. 410: C A Pos. 230: Gap A Pos. 2289: A G → → Pos. 14: T → A Rhodopsin Pos. 302: G A Pos. 2301: G A → → → 12S Pos. 194: T C Pos. 343: Gap A Pos. 2313: T C → → Pos. 646: A → T SIA Pos. 344: Gap G Pos. 2392: A Gap → → → Pos. 1270: G → A Pos. 169: A T Pos. 654: Gap T Pos. 2398: A T → → Pos. 1423: T → A Tyrosinase Pos. 1032: C G Pos. 2551: A G → tRNA valine Pos. 73: T → A RAG-1 Pos. 2563: T C → Pos. 6: A → G Pos. 150: T → C Pos. 357 C T Pos. 2820: A → C Pos. 105: T → C Pos. 270: A → G Rhodopdsin Pos. 3032: T → C → 16S Pos. 300: C → A Pos. 93: C T Pos. 3148: G → A → Pos. 162: T → C Pos. 324: A → G Pos. 163: C T Pos. 3287: T → C Pos. 172: T → A Pos. 348: T → C SIA Pos. 3322: C → T → Pos. 369: C → Gap Pos. 376: G → T Pos. 112: C T Pos. 3330: A → C → Pos. 399: A → T Pos. 511: A → G Pos. 304: T C Pos. 3486: A → G Pos. 483: C → A Tyrosinase 28S Cophomantini → Pos. 1458: Gap → A Pos. 174: G A Pos. 390: C → T → Pos. 1649: Gap → T Cytochrome b Pos. 258: A T RAG-1 → → Pos. 1842: CT → A Pos. 13: A T Pos. 508: T G Pos. 125 A → G → → Pos. 1883: G → C Pos. 153: C T Pos. 532: T C Pos. 284 A → G → Pos. 1948: A → T Pos. 238: T A Aplastodiscus Pos. 419 C → T Pos. 1951: T → A 12S Cytochrome b SIA → Pos. 2381: Gap → T Pos. 159: C A Pos. 31: A → G Pos. 391: C → T Pos. 2844: C → A Pos. 297: T → C Pos. 79: A → C Tyrosinase Pos. 2866: Gap → A Pos. 379: A → G Pos. 137: C → A Pos. 6: G → A Pos. 3032: C → T Pos. 436: T → C Pos. 220: T → C Pos. 130: C → T Pos. 3230: C → T Pos. 571: A → CT Pos. 310: C → A Pos. 157: C → G Pos. 3234: T → A Pos. 622: C → T 12S Pos. 233: C → T 28S Pos. 636: G → A Pos. 117: A → T Pos. 315: C → A Pos. 249: Gap → C Pos. 716: A → CT Pos. 152: A → Gap Pos. 330: T → C Pos. 505: Gap → G Pos. 729: T → C Pos. 174: G → A Pos. 513: G → A Pos. 783: Gap → C Pos. 838: A → T Pos. 206: A → T Aplastodiscus albofrenatus group Pos. 1049: C → G Pos. 1002: C → T Pos. 392: T → C RAG-1 Pos. 1066: C → T Pos. 414: C → T Cytochrome b Pos. 6 A → T Pos. 1203: Gap → T Pos. 558: C → A Pos. 10: A → T Pos. 65 T → C Pos. 1264: G → A Pos. 571: CT → A Pos. 23: T → C Rhodopsin Pos. 1266: A → T Pos. 655: Gap → A Pos. 101: C → T Pos. 281: C → T Pos. 1332: G → A Pos. 823: A → T Pos. 109: A → G Pos. 296: C → T Pos. 1343: CT → Gap Pos. 880: A → C Pos. 111: C → G Pos. 316: T → A Pos. 1374: C → T Pos. 1116: A → T Pos. 132: A → G SIA Pos. 1412: C → T Pos. 1187: T → C Pos. 135: G → C Pos. 331: G → A Pos. 1509: A → G Pos. 1330: A → G Pos. 239: C → T Tyrosinase 16S Pos. 1397: A → Gap Pos. 250: T → C Pos. 160: C → T Pos. 294: A → C Pos. 1408: A → G Pos. 259: C → T Pos. 470: T → A Pos. 498: T → C Pos. 1427: T → C Pos. 268: T → C Pos. 483: A → T Pos. 876: A → G Pos. 1431: T → C Pos. 290: C → T Pos. 877: G → A Pos. 1539: C → T Pos. 322: C → A Hylinae Pos. 1049: T → C Pos. 1573: A → G Pos. 334: A → G 12S Pos. 1228: A → C Pos. 1590: Gap → A 12S Pos. 733: T → A Pos. 1402: A → Gap tRNA valine Pos. 37: T → C Pos. 1296: T → C Pos. 1530: A → C Pos. 6: G → A Pos. 94: Gap → T Pos. 1409: A → G Pos. 1616: Gap → C Pos. 105: C → T Pos. 218: Gap → T Pos. 1426: T → C Pos. 1795: T → A 16S Pos. 251: G → A 16S Pos. 1874: T → C Pos. 376: A → T Pos. 264: C → T Pos. 392: C → A Pos. 1925: A → C Pos. 399: T → C Pos. 333: C → T Pos. 665: T → A Pos. 1998: A → C Pos. 664: A → T Pos. 460: T → A Pos. 1237: A → Gap Pos. 2605: G → A Pos. 800: C → T Pos. 462: T → C Pos. 1705: T → C Pos. 2711: C → Gap Pos. 803: C → T Pos. 484: A → T Pos. 1718: A → C Pos. 2736: A → Gap Pos. 974: A → C Pos. 550: T → C Pos. 2058: C → A Pos. 2802: T → C Pos. 984: T → A Pos. 587: T → C Pos. 2875: A → T Pos. 2866: A → C Pos. 1298: C → T Pos. 625: G → A Pos. 3173: A → G Pos. 3018: T → A Pos. 1403: Gap → C Pos. 641: A → G Pos. 3239: T → A Pos. 3027: T → G Pos. 1710: T → G Pos. 654: T → C Pos. 3274: A → G Pos. 3328: A → T Pos. 1788: Gap → T Pos. 692: T → C Pos. 3301: T → C 28S Pos. 1842: A → Gap Pos. 696: A → G 28S Pos. 150: A → C Pos. 2019: A → T Pos. 788: A → G Pos. 863: Gap → G Pos. 152: C → T Pos. 2030: A → G Pos. 802: T → C RAG-1 Pos. 153: T → G Pos. 2105: A → C Pos. 830: A → G Pos. 2: A → C Pos. 178: G → A Pos. 2130: C → T Pos. 835: T → C Pos. 53: G → A Pos. 211: Gap → C Pos. 2240: A → G Pos. 943: A → G 206 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 1036: C → Gap Pos. 3056: T → G 12S Pos. 1243: A → CT Pos. 1094: A → G Pos. 3071: A → T Pos. 103: Gap → G Pos. 1338: Gap → C Pos. 1105: A → C Pos. 3088: A → T Pos. 132: Gap → C Pos. 1342: A → G Pos. 1128: T → A Pos. 3118: T → C Pos. 164: T → Gap Pos. 1366: C → Gap Pos. 1141: T → C Pos. 3145: C → A Pos. 169: A → G Pos. 1369: T → G Pos. 1211: T → C Pos. 3310: A → T Pos. 310: T → C Pos. 1568: A → T Pos. 1217: T → C Pos. 3516: T → G Pos. 368: A → G Pos. 1599: A → G Pos. 1402: A → C RAG-1 Pos. 615: T → A Pos. 1630: A → C Pos. 1413: C → A Pos. 428 A → T Pos. 646: T → A tRNA valine Pos. 1417: G → T SIA Pos. 650: T → C Pos. 78: T → A Pos. 1441: C → A Pos. 280: C → T Pos. 880: C → T Pos. 109: T → C Pos. 1496: T → C Pos. 349: T → A Pos. 1036: C → T 16S Pos. 1674: A → T Pos. 1326: G → A Pos. 0: G → A Aplastodiscus albosignatus group Pos. 1688: A → G Pos. 1392: C → T Pos. 166: Gap → A Pos. 1762: A → G Cytochrome b Pos. 1626: Gap → G Pos. 443: C → AT → Pos. 1763: T → C Pos. 49: A C tRNA valine Pos. 731: C → Gap → Pos. 1775: T → C Pos. 339: A C Pos. 58: T → C Pos. 749: C → T → tRNA valine Pos. 376: T A 16S Pos. 829: C → T → Pos. 55: A → C Pos. 405: CG T Pos. 136: A → Gap Pos. 860: G → A Pos. 56: T → C 12S Pos. 336: C → T Pos. 1041: Gap → C → 16S Pos. 227: T C Pos. 589: T → C Pos. 1103: T → Gap → Pos. 74: Gap → A Pos. 452: T A Pos. 618: A → G Pos. 1129: G → A → Pos. 234: T → A Pos. 521: A T Pos. 636: T → C Pos. 1330: C → A → Pos. 355: C → T Pos. 611: A G Pos. 656: T → C Pos. 1436: A → Gap → Pos. 483: A → T Pos. 875: C A Pos. 749: C → T Pos. 1757: T → C Pos. 908: A → T Pos. 517: A → T Pos. 876: G → A Pos. 1783: C → T Pos. 958: A → G Pos. 566: A → T Pos. 968: G → A Pos. 1865: T → A Pos. 1048: T → A Pos. 702: A → G Pos. 979: C → T Pos. 1985: A → C Pos. 1579: C → T → Pos. 763: G → A Pos. 1277: G → A Pos. 1998: C G Pos. 1589: C → A → Pos. 808: T → C Pos. 1286: A → G Pos. 2041: A T Pos. 1645: C → T → Pos. 839: C → T Pos. 1314: A → G Pos. 2059: A T Pos. 1674: A → C → Pos. 864: C → T Pos. 1649: C → T Pos. 2570: A G 16S → Pos. 908: T → A Pos. 1718: C → T Pos. 2618: T Gap Pos. 94: C → T → Pos. 1021: T → A Pos. 1788: T → C Pos. 2694: T C Pos. 308: A → Gap → Pos. 1092: A → T Pos. 1799: C → T Pos. 2697: T C Pos. 378: Gap → C → Pos. 1203: A → Gap Pos. 1819: A → T Pos. 2966: A T Pos. 419: Gap → A → Pos. 1211: A → Gap Pos. 1953: T → C Pos. 3027: G A Pos. 648: G → T → Pos. 1360: A → C Pos. 2364: A → Gap Pos. 3173: G Gap Pos. 667: A → C → Pos. 1574: A → T Pos. 2381: T → C Pos. 3324: T C Pos. 668: CT → A → Pos. 1643: A → G Pos. 2552: T → C Pos. 3330: A Gap Pos. 780: A → G → Pos. 1654: T → Gap Pos. 2616: A → T Pos. 3425: C T Pos. 887: C → T Pos. 1688: T → C Pos. 2802: C → Gap 28S Pos. 985: G → A Pos. 443: G → Gap Pos. 1799: C → A Pos. 2821: Gap → T Pos. 1049: C → T RAG-1 Pos. 1823: A → T Pos. 3004: A → Gap Pos. 1174: T → A Pos. 251 G → A Pos. 1888: C → T Pos. 3077: T → C → → Pos. 1900: C → T Pos. 1278: C G → Pos. 380 T C → Pos. 3181: G A Pos. 1945: G → A Pos. 1503: C A → Rhodopsin → Pos. 3266: C T → Pos. 1962: A → G Pos. 1742: Gap C → Pos. 78: G C → Pos. 3281: A G → Pos. 1981: Gap → T Pos. 1780: T C → Pos. 93: T A → Pos. 3297: A C → Pos. 2059: A → C Pos. 1795: A C → Pos. 220: G A → Pos. 3516: T C Pos. 2285: A → T Pos. 2029: T A Tyrosinase → RAG-1 → Pos. 2308: C → T Pos. 2115: T A → Pos. 31: A G → Pos. 311 C T → Pos. 2406: T → A Pos. 2195: T C Pos. 300: A G → Tyrosinase → Pos. 2457: G → A Pos. 2400: Gap G → Pos. 315: C G → Pos. 438: C T → Pos. 2515: A → T Pos. 2663: A T Pos. 357: T C → → Pos. 2545: G → A Pos. 3299: C T Bokermannohyla Pos. 387: T C → → Pos. 2663: A → Gap Pos. 3321: A T Cytochrome b Pos. 403: G A → Pos. 2664: A → Gap Tyrosinase Pos. 116: C → T Pos. 506: C G → Pos. 2672: T → Gap Pos. 25: T A Pos. 361: T → Gap Bokermannohyla circumdata group → Pos. 2685: A → Gap Pos. 166: G A Pos. 370: Gap → A Cytochrome b Pos. 2704: G → Gap Aplastodiscus perviridis group Pos. 376: T → C Pos. 49: A → C Pos. 2742: T → Gap Cytochrome b 12S Pos. 109: A → G Pos. 2780: A → Gap Pos. 46: C → T Pos. 140: C → Gap Pos. 120: A → G Pos. 2844: A → G Pos. 64: T → A Pos. 171: G → Gap Pos. 201: A → C Pos. 2875: A → Gap Pos. 161: A → G Pos. 181: Gap → T Pos. 330: C → T Pos. 2901: T → Gap Pos. 183: A → T Pos. 322: C → T Pos. 334: A → T Pos. 2906: T → Gap Pos. 189: C → T Pos. 729: C → T Pos. 356: T → C Pos. 2929: C → Gap Pos. 201: T → C Pos. 890: A → C Pos. 367: C → T Pos. 2946: G → T Pos. 229: C → T Pos. 943: A → G Pos. 399: C → T Pos. 3010: A → T Pos. 362: T → A Pos. 1084: T → C 12S Pos. 3054: CT → G Pos. 399: C → T Pos. 1145: T → A Pos. 33: G → A 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 207

APPENDIX 5 (Continued)

Pos. 69: C → T Pos. 286: Gap → C Pos. 1718: C → Gap Pos. 139: Gap → A Pos. 131: T → C Pos. 691: G → A Pos. 1985: A → T Pos. 175: Gap → C Pos. 227: T → C Pos. 702: A → G Pos. 2258: A → T Pos. 220: A → T Pos. 370: A → T Pos. 774: T → A Pos. 2544: G → A Pos. 244: A → T Pos. 512: T → C Pos. 960: G → A Pos. 2756: Gap → T Pos. 498: C → T Pos. 547: A → T Pos. 974: A → T Pos. 3140: C → A Pos. 543: T → C Pos. 729: T → A Pos. 1140: A → T Pos. 3288: A → T Pos. 726: A → T Pos. 823: A → G Pos. 1607: A → G Pos. 3326: T → C Pos. 731: C → T Pos. 869: C → T Pos. 1710: T → G 28S Pos. 767: A → C Pos. 1024: C → T Pos. 1953: T → A Pos. 303: Gap → T Pos. 822: A → T Pos. 1144: T → G Pos. 2025: C → T Pos. 346: Gap → C Pos. 862: C → T Pos. 1272: G → A Pos. 2229: C → A Pos. 391: Gap → T Pos. 996: A → T Pos. 1348: T → C Pos. 2250: C → T Pos. 744: Gap → T Pos. 1104: Gap → A Pos. 1408: A → G Pos. 2262: G → A RAG-1 Pos. 1140: AC → T Pos. 1427: T → C Pos. 2330: C → T Pos. 257 C → T Pos. 1175: Gap → A Pos. 1645: A → C Pos. 2473: T → A Pos. 338 C → T Pos. 1491: A → T 16S Pos. 2518: A → G Pos. 425 G → A Pos. 1503: C → A Pos. 11: T → C Pos. 2608: Gap → T Rhodopdsin Pos. 1534: A → C Pos. 411: C → T Pos. 2646: G → A Pos. 256: C → T Pos. 1572: T → C Pos. 498: C → T Pos. 2856: T → A Tyrosinase Pos. 1688: C → A Pos. 630: T → A Pos. 3097: C → A Pos. 3: C → T Pos. 1780: T → C Pos. 692: A → G Pos. 3380: T → C Pos. 72: C → T Pos. 1865: T → A Pos. 726: A → G Pos. 3381: T → A Pos. 257: C → T Pos. 1894: T → A Pos. 751: C → A Pos. 3403: C → T Pos. 1897: T → C Hyloscirtus armatus group Pos. 887: T → A RAG-1 Pos. 1928: C → A Pos. 1049: C → T Pos. 365: T → C Cytochrome b Pos. 1949: T → A Pos. 1085: T → C Pos. 422: T → C Pos. 3: C → T Pos. 1961: A → G Pos. 1492: T → A Pos. 428: A → C Pos. 23: T → C Pos. 2122: G → A Pos. 1649: T → A Pos. 67: C → T Pos. 2308: T → A Hyloscirtus Pos. 1654: T → A Pos. 127: C → T Pos. 2432: A → G Pos. 1688: T → C Cytochrome b Pos. 135: G → A Pos. 2461: C → T Pos. 1880: A → C Pos. 14: A → CT Pos. 167: C → T Pos. 2476: C → T Pos. 2110: C → T Pos. 101: C → AG Pos. 178: C → T Pos. 2552: T → C Pos. 2176: C → T Pos. 134: C → T Pos. 189: C → T Pos. 3059: A → T Pos. 2209: Gap → C Pos. 302: A → C Pos. 248: C → A Pos. 3140: A → T Pos. 2229: C → T Pos. 322: C → A Pos. 290: C → A Pos. 3280: A → C Pos. 2611: Gap → A 12S Pos. 369: T → C Pos. 3281: A → T Pos. 2825: T → A Pos. 460: T → C 12S Pos. 3288: T → C Pos. 2866: C → T Pos. 462: T → A Pos. 22: G → A Pos. 3375: T → A Pos. 3222: T → C Pos. 490: Gap → C Pos. 26: A → G Pos. 3431: C → T Pos. 3516: T → C Pos. 565: A → Gap Pos. 176: A → T Pos. 3442: C → T 28S Pos. 636: A → T Pos. 194: T → C 28S Pos. 240: Gap → C Pos. 817: G → A Pos. 227: T → C Pos. 302: A → G Pos. 498: Gap → G Pos. 842: Gap → C Pos. 411: T → C Pos. 1000: G → Gap Pos. 1174: C → A Pos. 414: C → T Rhodopdsin Bokermannohyla pseudopseudis Pos. 1211: T → A Pos. 455: AC → T Pos. 63: G → A group Pos. 1440: C → A Pos. 547: A → T Pos. 135: C → T Cytochrome b Pos. 1532: Gap → CT Pos. 558: C → T Pos. 270: A → T Pos. 76: A → G tRNA valine Pos. 793: T → C Pos. 279: C → A Pos. 111: C → T Pos. 82: C → T Pos. 835: T → C Tyrosinase Pos. 135: G → A Pos. 89: A → C Pos. 869: C → T Pos. 47: A → G Pos. 140: A → T Pos. 99: G → A Pos. 1043: C → T Pos. 52: C → T Pos. 253: C → T 16S Pos. 1084: T → C Pos. 56: A → C Pos. 334: A → C Pos. 254: T → Gap Pos. 1095: C → T Pos. 109: C → T Pos. 347: A → T Pos. 272: T → AC Pos. 1100: G → A Pos. 167: G → T Pos. 374: C → T Pos. 325: Gap → T Pos. 1101: C → T Pos. 170: A → C Pos. 381: C → T Pos. 427: T → A Pos. 1141: C → T Pos. 188: G → A 12S Pos. 576: T → C Pos. 1153: T → G Pos. 258: T → A Pos. 83: A → G Pos. 602: A → C Pos. 1187: T → C Pos. 273: C → G Pos. 159: A → T Pos. 854: A → T Pos. 1203: T → A Pos. 279: C → T Pos. 164: T → C Pos. 889: A → G Pos. 1303: A → T Pos. 297: C → T Pos. 297: C → T Pos. 914: C → A Pos. 1446: A → C Pos. 343: G → A Pos. 370: A → G Pos. 949: T → C Pos. 1515: A → T Pos. 344: T → C Pos. 452: T → C Pos. 1062: A → Gap Pos. 1574: Gap → A Pos. 529: C → T Pos. 615: T → C Pos. 1192: Gap → C Pos. 1575: Gap → C Pos. 1048: T → A Pos. 1577: A → T Pos. 1630: A → T Hyloscirtus bogotensis group Pos. 1181: Gap → A Pos. 1587: T → A Pos. 1636: C → A Cytochrome b Pos. 1317: C → A Pos. 1616: C → A Pos. 1649: A → C Pos. 126: G → A Pos. 1326: G → A Pos. 1631: T → G tRNA valine Pos. 153: T → C 16S Pos. 1673: AC → Gap Pos. 95: C → T Pos. 168: A → T Pos. 285: Gap → C Pos. 1705: C → A 16S Pos. 220: T → C 208 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 232: C → A Pos. 3458: T → C Pos. 1048: T → A Pos. 2203: A → T Pos. 253: C → T Pos. 3524: C → T Pos. 1107: C → T Pos. 2694: T → C Pos. 338: T → C Pos. 3538: G → A Pos. 1407: G → A Pos. 2846: Gap → C Pos. 376: T → A RAG-1 Pos. 1429: C → T Pos. 3054: T → C 12S Pos. 4 C → A 16S Pos. 3189: G → A Pos. 28: A → G Pos. 5 A → G Pos. 163: Gap → T Pos. 3222: T → Gap Pos. 45: T → C Pos. 143 G → A Pos. 188: A → T Pos. 3516: T → A Pos. 68: A → G Pos. 168 G → A Pos. 272: T → A Hypsiboas faber group Pos. 110: A → Gap Pos. 169 T → C Pos. 876: G → A Pos. 152: A → G Pos. 170 G → A Pos. 996: A → G Cytochrome b → Pos. 164: T → C Pos. 305 C → T Pos. 1169: Gap → T Pos. 173: A T Pos. 295: A → C Pos. 311 C → T Pos. 1692: Gap → A Pos. → Pos. 447: Gap → C Pos. 323 T → C Pos. 1894: T → C 186: A G Pos. 550: T → C Rhodopdsin Pos. 1978: Gap → A 12S → Pos. 619: G → T Pos. 133: C → T Pos. 2182: Gap → A Pos. 131: T C Pos. 622: T → A Pos. 135: C → A Pos. 2217: T → Gap 16S → Pos. 650: T → C Pos. 291: G → A Pos. 2812: T → C Pos. 11: T C → Pos. 767: C → T Pos. 308: T → A Pos. 3086: A → T Pos. 206: A T → Pos. 991: Gap → A Tyrosinase Pos. 3166: C → A Pos. 347: C A → Pos. 1094: A → G Pos. 183: A → G Pos. 3239: A → C Pos. 367: C A → Pos. 1118: C → T Pos. 214: C → T Pos. 3249: A → T Pos. 573: A T → Pos. 1270: A → G Pos. 220: A → G 28S Pos. 663: A C → Pos. 1307: T → C Pos. 294: C → T Pos. 355: Gap → C Pos. 775: C T → Pos. 1509: G → A Pos. 299: A → C Pos. 358: Gap → C Pos. 780: C A Pos. 821: T → C Pos. 1521: G → A Pos. 315: C → T Pos. 57: C → T Pos. 904: T → A Pos. 1568: A → T Pos. 342: C → T Pos. 373: C → T Pos. 1421: Gap → A Pos. 1657: G → A Tyrosinase Hyloscirtus larinopygion group Pos. 1458: A → T tRNA valine Pos. 257: C → T 12S Pos. 1510: A → Gap Pos. 55: A → G Pos. 288: C → T → → Pos. 80: T → Gap Pos. 65: C T → Pos. 1673: A T → Pos. 407: T A → Pos. 85: G → Gap Pos. 454: T C Pos. 1874: T C → → Pos. 90: A → Gap Pos. 490: C T Hypsiboas albopunctatus group Pos. 2381: T A → → Pos. 98: A → G Pos. 601: T C Cytochrome b Pos. 2602: G T → → 16S Pos. 908: A T Pos. 63: T → C Pos. 2663: A T → → Pos. 12: C → T Pos. 1113: T C Pos. 76: A → T Pos. 2820: A C → → Pos. 107: A → Gap Pos. 1116: A T Pos. 109: A → G Pos. 2977: A T → → Pos. 392: A → C Pos. 1174: A T Pos. 126: C → A Pos. 2995: A C → → Pos. 411: C → Gap Pos. 1216: C A Pos. 128: T → C Pos. 3081: A T → → Pos. 452: T → Gap Pos. 1321: T C Pos. 153: T → C Pos. 3351: Gap A → Pos. 665: A → G Pos. 1407: G A Pos. 180: C → A RAG-1 Pos. 1409: G → A Pos. 1 C → A Pos. 691: G → A Pos. 253: C → T Pos. 1426: C → T SIA Pos. 876: G → A Pos. 271: T → C Pos. 1429: C → T Pos. 283: G → A Pos. 891: G → A Pos. 327: A → T Pos. 1678: A → G Pos. 904: A → T Pos. 415: C → T Hypsiboas pellucens group tRNA valine Pos. 947: C → T 12S Pos. 12: C → T 12S Pos. 952: A → T Pos. 131: T → C → 16S Pos. 42: T C Pos. 969: A → G Pos. 227: T → C → Pos. 347: C → T Pos. 183: A T Pos. 1049: C → Gap Pos. 650: A → C → Pos. 742: T → A Pos. 297: C T Pos. 1480: T → C Pos. 1045: T → A → Pos. 819: T → 4 Pos. 319: A T Pos. 1534: A → T Pos. 1158: Gap → C → Pos. 911: A → G Pos. 320: A T Pos. 1780: T → A Pos. 1159: Gap → C → Pos. 920: G → A Pos. 342: T C Pos. 1819: A → Gap Pos. 1217: T → C → Pos. 1092: A → T Pos. 392: T C Pos. 1948: T → C Pos. 1376: T → C → Pos. 1228: C → 4 Pos. 455: C T Pos. 1998: C → A Pos. 1573: A → T → Pos. 1265: A → G Pos. 541: T C Pos. 2041: A → T Pos. 1670: C → T → Pos. 1325: A → C Pos. 550: T C Pos. 2125: T → C 16S → Pos. 1510: A → G Pos. 641: A T Pos. 2457: G → A Pos. 107: A → Gap → Pos. 1561: C → T Pos. 646: T A Pos. 2533: T → C Pos. 173: Gap → A → Pos. 2103: A → T Pos. 661: G A → → → Pos. 2663: A Gap Pos. 2395: A → C Pos. 308: A Gap Pos. 673: C T → → → Pos. 2664: A Gap Pos. 2450: T → C Pos. 998: C T Pos. 716: C Gap → → → Pos. 2672: C Gap Pos. 2768: CT → A Pos. 1092: A T Pos. 731: Gap A → → → Pos. 2719: CT A Pos. 3287: T → C Pos. 1125: A G Pos. 767: T C Pos. 2820: A → Gap Pos. 1129: G → A Pos. 841: A → T Pos. 2856: T → G Hypsiboas Pos. 1183: A → Gap Pos. 1023: T → C Pos. 2966: A → C Cytochrome b Pos. 1300: A → G Pos. 1122: A → T Pos. 2990: A → C Pos. 376: T → A Pos. 1419: T → A Pos. 1187: T → C Pos. 3039: A → T 12S Pos. 1737: C → A Pos. 1203: T → A Pos. 3048: A → Gap Pos. 45: T → C Pos. 1757: C → T Pos. 1214: Gap → A Pos. 3063: G → A Pos. 476: C → A Pos. 1810: T → A Pos. 1233: G → A Pos. 3106: T → C Pos. 650: T → A Pos. 1840: Gap → T Pos. 1316: A → G Pos. 3385: T → C Pos. 958: A → G Pos. 2187: A → T Pos. 1321: T → C 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 209

APPENDIX 5 (Continued)

Pos. 1337: T → C Pos. 2583: A → G Pos. 2985: T → A Pos. 414: C → T Pos. 1369: T → G Pos. 2613: T → A Pos. 3239: C → Gap Pos. 528: A → C Pos. 1392: C → T Pos. 2618: T → A Rhodopsin Pos. 602: A → T Pos. 1441: A → C Pos. 2656: A → G Pos. 10: G → A Pos. 619: G → A Pos. 1445: C → T Pos. 2719: C → T Tyrosinase Pos. 650: A → T Pos. 1549: A → T Pos. 2906: T → C Pos. 91: C → T Pos. 673: C → T Pos. 1579: C → T Pos. 2953: A → G Pos. 154: C → T Pos. 677: A → T Pos. 1605: A → T Pos. 2956: A → T Pos. 177: C → T Pos. 765: A → G Pos. 1630: A → C Pos. 3041: G → A Pos. 178: C → G Pos. 774: A → G tRNA valine Pos. 3077: T → A Pos. 182: G → T Pos. 797: G → A Pos. 101: A → G Pos. 3093: T → C Pos. 211: C → G Pos. 815: T → C 16S Pos. 3111: A → G Pos. 444: G → A Pos. 836: T → C Pos. 12: C → T Pos. 3166: A → C Pos. 875: C → T Hypsiboas punctatus group Pos. 136: A → T Pos. 3234: T → A Pos. 1001: A → C Pos. 206: A → Gap Pos. 3249: T → C Cytochrome b Pos. 1215: A → T → Pos. 334: Gap → A Pos. 3285: G → A Pos. 49: A C Pos. 1330: A → T → Pos. 498: C → A Pos. 3286: C → T Pos. 109: A C Pos. 1336: C → T → Pos. 573: A → T Pos. 3426: A → T Pos. 192: T C Pos. 1372: G → A → Pos. 610: A → T Pos. 3454: T → G Pos. 253: C T Pos. 1378: A → T Pos. 691: G → A Pos. 3518: Gap → T 12S Pos. 1392: C → T → Pos. 736: C → A Pos. 268: T C Pos. 1413: C → T → Pos. 761: T → C Hypsiboas pulchellus group Pos. 1045: T Gap Pos. 1439: C → A → Pos. 790: G → A Cytochrome b Pos. 1317: C T Pos. 1670: C → A Pos. 826: A → G Pos. 26: T → A 16S tRNA valine → Pos. 836: A → C Pos. 126: C → T Pos. 56: C Gap Pos. 94: C → A → Pos. 839: C → T Pos. 145: C → T Pos. 272: A G Pos. 95: C → T → Pos. 892: G → A Pos. 214: C → T Pos. 294: C T 16S → Pos. 904: T → A Pos. 330: C → T Pos. 543: T C Pos. 134: Gap → A → Pos. 911: A → G Pos. 347: A → C Pos. 920: G A Pos. 211: Gap → T → Pos. 928: T → G 12S Pos. 1103: T Gap Pos. 294: C → A → Pos. 946: C → T Pos. 180: C → T Pos. 1259: CT A Pos. 323: C → A → Pos. 980: T → C Pos. 601: T → A Pos. 1654: T C Pos. 472: A → Gap → Pos. 1013: T → A Pos. 650: A → T Pos. 1878: C T Pos. 579: A → T → Pos. 1062: C → T Pos. 1317: A → T Pos. 1887: C T Pos. 580: A → T → Pos. 1173: Gap → C Pos. 1423: A → T Pos. 2308: C T Pos. 606: C → A → Pos. 1235: C → A Pos. 1645: C → T Pos. 2719: C Gap Pos. 611: A → G → Pos. 1245: Gap → G tRNA valine Pos. 2742: T Gap Pos. 654: T → A → Pos. 1261: T → C Pos. 4: A → T Pos. 2753: A Gap Pos. 679: C → T → Pos. 1345: T → A Pos. 101: A → G Pos. 2768: C Gap Pos. 732: A → G → Pos. 1389: A → T 16S Pos. 2906: T A Pos. 819: T → Gap Pos. 2975: C → Gap Pos. 1458: A → Gap Pos. 71: A → C Pos. 911: A → G Pos. 2982: C → Gap Pos. 1468: A → T Pos. 130: T → C Pos. 914: C → T Pos. 2995: A → Gap Pos. 1480: A → T Pos. 254: T → A Pos. 1004: T → G Pos. 3054: T → A Pos. 1510: A → C Pos. 566: A → T Pos. 1021: T → A Pos. 3140: C → T Pos. 1532: T → C Pos. 602: A → T Pos. 1160: C → A Pos. 3222: T → Gap Pos. 1607: A → Gap Pos. 667: A → C Pos. 1242: T → A Pos. 3516: T → A Pos. 1628: Gap → T Pos. 702: A → T Pos. 1246: T → A Pos. 1641: Gap → A Pos. 732: A → G Hypsiboas semilineatus group Pos. 1325: A → C → → → Pos. 1727: A T Pos. 788: C T Cytochrome b Pos. 1436: A T → → → Pos. 1813: A C Pos. 1169: T A Pos. 1: A → T Pos. 1510: A T → → → Pos. 1847: A C Pos. 1235: C A Pos. 46: C → T Pos. 1530: C T → → → Pos. 1932: C A Pos. 1315: T A Pos. 63: T → C Pos. 1596: A T → → → Pos. 1953: A T Pos. 1436: A T Pos. 76: A → T Pos. 1616: C A → → → Pos. 2029: T C Pos. 1468: A C Pos. 153: T → C Pos. 1692: A C Pos. 2030: G → A Pos. 1572: T → A Pos. 167: C → T Pos. 1727: A → C Pos. 2035: C → A Pos. 1579: Gap → C Pos. 180: C → T Pos. 1799: C → A Pos. 2077: A → T Pos. 1607: A → T Pos. 181: T → A Pos. 1847: A → T Pos. 2086: C → T Pos. 1705: T → G Pos. 195: A → C Pos. 1895: A → T Pos. 2091: A → C Pos. 1810: T → C Pos. 232: C → T Pos. 1922: C → A Pos. 2094: A → C Pos. 1813: A → C Pos. 280: C → T Pos. 1950: T → A Pos. 2109: Gap → A Pos. 1878: C → T Pos. 290: C → A Pos. 1970: A → T Pos. 2117: A → Gap Pos. 1887: C → T Pos. 347: A → C Pos. 2035: C → A Pos. 2267: T → A Pos. 1952: T → A Pos. 353: T → C Pos. 2086: C → T Pos. 2308: C → T Pos. 2025: C → T Pos. 374: C → T Pos. 2089: A → C Pos. 2450: T → C Pos. 2089: A → T Pos. 381: C → T Pos. 2125: T → A Pos. 2510: T → C Pos. 2262: G → A 12S Pos. 2156: C → A Pos. 2517: G → A Pos. 2588: C → T Pos. 33: G → A Pos. 2182: A → T Pos. 2518: A → G Pos. 2754: Gap → C Pos. 271: T → A Pos. 2229: C → A Pos. 2525: A → T Pos. 2825: T → A Pos. 332: C → A Pos. 2310: A → C Pos. 2538: C → T Pos. 2856: T → A Pos. 348: T → A Pos. 2313: T → A Pos. 2569: T → C Pos. 2866: C → A Pos. 370: A → C Pos. 2406: T → Gap 210 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 2441: C → A Pos. 1160: T → A Pos. 869: C → T Pos. 159: C → T Pos. 2454: A → T Pos. 1278: T → C 16S Pos. 678: Gap → C Pos. 2457: G → A Pos. 1614: A → C Pos. 162: C → T Pos. 716: A → C Pos. 2551: A → C Pos. 1865: T → C Pos. 259: Gap → A Pos. 729: C → T Pos. 2672: T → Gap Pos. 1951: A → T Pos. 1799: A → C Pos. 838: T → A Pos. 2856: T → A Pos. 2127: G → A Pos. 2025: C → T Pos. 897: A → C Pos. 2929: C → Gap Pos. 2203: A → T Pos. 2680: A → T Pos. 943: A → G Pos. 2953: A → Gap Pos. 2392: A → C Pos. 2820: A → Gap Pos. 965: T → A Pos. 3014: A → G Pos. 2398: A → C Pos. 3173: G → Gap Pos. 1011: A → T Pos. 3125: A → T Pos. 2449: T → A Pos. 3230: T → A Pos. 1094: T → C Pos. 3127: C → T Pos. 2509: C → T Pos. 3326: T → C Pos. 1270: A → G Pos. 3199: C → T Pos. 2566: T → C 28S Pos. 1273: A → G Pos. 3249: T → Gap Pos. 2618: T → A Pos. 400: T → C Pos. 1402: G → A Pos. 3291: A → G Pos. 2780: A → Gap Pos. 419: C → G Pos. 1581: Gap → A Pos. 3330: A → T Pos. 2812: T → C Pos. 1014: G → Gap Pos. 1675: A → T 28S Pos. 2856: T → C Rhodopsin Pos. 1678: T → C Pos. 355: C → Gap Pos. 2906: T → C Pos. 256: C → T 16S Pos. 431: G → Gap Pos. 2997: C → Gap Tyrosinase Pos. 1308: T → C Rhodopsin Pos. 3041: G → Gap Pos. 145: T → C Pos. 1480: T → C Pos. 155: T → C Pos. 3056: T → C Pos. 303: A → G Pos. 1491: T → C Pos. 270: A → T Pos. 3106: T → C Pos. 1878: C → T Dendropsophus Pos. 271: G → C Pos. 3222: T → C Pos. 1922: C → A Pos. 308: T → C Pos. 3287: T → C Cytochrome b Pos. 2086: C → T → SIA Pos. 3385: T → C Pos. 3: C A Pos. 2091: A → T Pos. 183: A → T → Pos. 151: C → T ؉ ؉ Pos. 2105: A T Dendropsophini Hylini Pos. 253: T → C Pos. 241: G → C Pos. 2107: C → T Lophiohylini Pos. 369: T → AC Pos. 253: T → C Pos. 2378: Gap → A Cytochrome b Pos. 414: T → C Pos. 268: A → G Pos. 2618: T → A Pos. 11: A → C 12S Pos. 313: G → A Pos. 2652: T → C Pos. 376: T → A Pos. 636: G → A Pos. 322: C → T Pos. 2780: T → C 12S Pos. 869: T → C Tyrosinase Pos. 2859: Gap → G Pos. 1174: C → T Pos. 1008: T → C Pos. 70: T → G Pos. 2866: A → T Pos. 1440: C → A Pos. 1267: A → T Pos. 96: G → A Pos. 2982: A → C Pos. 1670: T → C Pos. 1402: A → G Pos. 156: C → T Pos. 3059: A → T 16S Pos. 1407: G → A Pos. 174: A → G Pos. 3166: C → T Pos. 107: A → T Pos. 1429: C → T Pos. 260: C → A Pos. 3181: G → A Pos. 399: T → C 16S Pos. 262: T → C Pos. 3268: C → T Pos. 853: T → A Pos. 299: Gap → T Pos. 299: A → C Pos. 3287: T → C Pos. 854: A → T Pos. 392: A → C Pos. 417: C → G Pos. 3326: C → A Pos. 914: C → A Pos. 551: T → Gap Pos. 429: C → T Pos. 3452: A → G Pos. 1062: A → T Pos. 573: A → T Pos. 475: C → T 28S Pos. 1436: A → T Pos. 579: A → T → Pos. 295: Gap → G Pos. 514: G A Pos. 1468: T → A Pos. 686: G → A Pos. 330: Gap → C Pos. 1847: A → G Pos. 761: T → C Myersiohyla Pos. 413: Gap → G Pos. 2267: T → A Pos. 777: A → C 12S Pos. 544: T → G Pos. 2844: A → T Pos. 876: A → G Pos. 39: A → G Pos. 569: A → C Pos. 2966: A → T Pos. 877: G → A Pos. 271: T → C Pos. 763: Gap → C 28S Pos. 979: C → T Pos. 342: T → C Pos. 764: Gap → C Pos. 233: G → Gap Pos. 1469: Gap → T Pos. 356: T → C Pos. 974: Gap → C RAG-1 Pos. 1949: A → C Pos. 392: T → C Pos. 975: Gap → C Pos. 5 A → G Pos. 2080: A → G Pos. 452: T → C Pos. 1025: Gap → G Pos. 125 A → G Pos. 2156: A → C Pos. 547: A → C Pos. 1032: C → G Rhodopsin Pos. 2217: T → C Pos. 615: T → A RAG-1 Pos. 10: A → G Pos. 2244: T → C Pos. 672: C → A Pos. 77 T → C Pos. 105: G → A Pos. 2583: A → G Pos. 835: T → C Pos. 215 G → T Pos. 316: A → G Pos. 2802: T → C Pos. 1043: C → T Pos. 245 C → T Tyrosinase Pos. 3048: T → C Pos. 1645: A → Gap Rhodopsin Pos. 210: G → A Pos. 3230: A → C → → Pos. 1674: A C Pos. 407: T → A Pos. 115: T C Dendropsophus leucophyllatus group → tRNA valine Pos. 408: T → A Pos. 262: G A → → Pos. 56: T C Pos. 506: C → G Cytochrome b Pos. 281: C T 16S Pos. 36: T → C SIA Pos. 94: C → A Dendropsophini Pos. 71: C → A Pos. 112: C → T Pos. 272: T → G Cytochrome b Pos. 116: C → T Pos. 113: C → T Pos. 392: A → T Pos. 137: T → C Pos. 125: C → T Pos. 175: C → T Pos. 434: A → T Pos. 201: A → T Pos. 134: C → T Tyrosinase Pos. 517: A → C Pos. 220: T → C Pos. 153: C → T Pos. 73: G → A Pos. 606: C → T 12S Pos. 173: A → T Pos. 120: C → T Pos. 777: A → C Pos. 451: T → C Pos. 253: C → T Pos. 121: C → T Pos. 848: A → T Pos. 547: A → C Pos. 405: A → C Pos. 170: A → C Pos. 1043: Gap → C Pos. 641: A → Gap 12S Pos. 174: A → G Pos. 1062: A → C Pos. 841: A → C Pos. 37: T → C Pos. 382: A → C 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 211

APPENDIX 5 (Continued)

Pos. 507: T → C Pos. 3326: C → T 16S Pos. 289: C → T Pos. 3425: C → T Pos. 220: C → G Pos. 331: A → G Dendropsophus marmoratus group Pos. 3455: G → A Pos. 427: T → A Pseudis Cytochrome b Pos. 3485: T → C Pos. 876: G → A → Pos. 11: C A Pos. 3491: C → T Pos. 980: C → T Cytochrome b → → Pos. 97: A T Pos. 3549: A → G Pos. 1176: Gap → C Pos. 119: A C → → Pos. 103: C T RAG-1 Pos. 1281: T → C Pos. 192: T C → → Pos. 109: G A Pos. 17 A → G Pos. 1423: Gap → A Pos. 290: C A → → Pos. 204: C A Pos. 77 T → C Pos. 1491: T → Gap Pos. 369: T A → → Pos. 220: C T Pos. 230 C → T Pos. 1519: T → C Pos. 399: C T → Pos. 311: A C Pos. 1532: A → C 12S Dendropsophus microcephalus group → 12S Pos. 2151: T → A Pos. 36: T G → Pos. 10: A → G Cytochrome b Pos. 2376: C → T Pos. 227: T C → → Pos. 28: A → G Pos. 140: A C Pos. 2618: T → A Pos. 235: AT C → → Pos. 44: A → G Pos. 241: A T Pos. 3313: T → C Pos. 452: T C → Pos. 145: C → T Pos. 277: T C Tyrosinase 16S → → Pos. 173: G → A Pos. 330: T C Pos. 438: C → T Pos. 162: T C → → Pos. 319: A → T Pos. 334: A G Pos. 471: C → T Pos. 236: Gap A Pos. 347: T → C Pos. 381: C → T Pos. 434: T → C Pos. 370: A → G 12S Lysapsus Pos. 517: A → G Pos. 528: A → C Pos. 140: C → T Cytochrome b Pos. 854: T → C Pos. 651: C → T Pos. 338: T → C Pos. 111: C → A Pos. 1300: A → G Pos. 672: C → A Pos. 427: T → C Pos. 149: A → C Pos. 1928: CT → A Pos. 769: G → A Pos. 515: C → Gap Pos. 180: C → A Pos. 1953: T → A Pos. 821: C → T Pos. 553: Gap → C Pos. 238: CT → A Pos. 1955: A → C Pos. 1233: G → A Pos. 654: T → C Pos. 265: C → A Pos. 2091: T → C Pos. 1509: A → G Pos. 875: C → T Pos. 274: C → T Pos. 2127: G → A → Pos. 1539: T → C 16S Pos. 334: A → G Pos. 2179: C T → → Pos. 1561: A → T Pos. 192: C A Pos. 420: AC → T Pos. 2240: A G → → tRNA valine Pos. 254: T Gap 12S Pos. 2697: T A → → Pos. 95: C → T Pos. 299: T A Pos. 10: G → A Pos. 2768: C T → 16S Pos. 392: C A Pos. 115: A → T RAG-1 → → Pos. 188: A → Gap Pos. 443: C A Pos. 148: C → A Pos. 5 G A → → Pos. 206: C → A Pos. 464: Gap C Pos. 615: T → C Pos. 20 G A → → Pos. 259: A → Gap Pos. 573: T C Pos. 716: A → G Pos. 169 T A → → Pos. 347: A → C Pos. 580: A C Pos. 733: A → T Pos. 251 G A → Pos. 443: C → T Pos. 914: A C Pos. 890: A → T → Scarthyla goinorum Pos. 580: A → G Pos. 1183: A Gap Pos. 1561: T → C → Cytochrome b Pos. 606: C → A Pos. 1402: A T 16S → Pos. 6: C → T Pos. 625: T → C Pos. 1727: T A Pos. 254: T → Gap Pos. 10: A → T Pos. 1737: T → C → Pos. 660: Gap → G Pos. 370: Gap C → Pos. 1839: CT → A Pos. 39: T C Pos. 667: A → C Pos. 580: A → G → Pos. 1880: CT → A Pos. 49: C T Pos. 668: T → C Pos. 848: A → T → Pos. 1950: T → A Pos. 52: A C Pos. 767: A → C Pos. 1077: C → A → Pos. 1951: A → T Pos. 57: C A Pos. 818: C → Gap Pos. 1468: C → T → Pos. 2080: G → A Pos. 67: C T Pos. 996: A → G Pos. 1705: C → Gap → Pos. 2112: T → C Pos. 68: C T Pos. 1015: T → A Pos. 1744: Gap → A → Pos. 2151: T → C Pos. 91: T C Pos. 1826: C → A Pos. 1824: C → T → Pos. 2250: C → T Pos. 108: T G Pos. 1839: T → A Pos. 1826: C → A → Pos. 2663: T → A Pos. 145: C T Pos. 1894: T → C Pos. 2192: Gap → C → Pos. 2713: T → Gap Pos. 158: A T Pos. 1895: A → G Pos. 2229: T → C → Pos. 2719: T → C Pos. 164: C T Pos. 2161: A → C Pos. 2395: T → C → Pos. 2736: A → C Pos. 189: C T Pos. 2229: T → A Pos. 2831: Gap → A → Pos. 2966: T → A Pos. 201: T A Pos. 2250: C → T Pos. 2913: T → A → Pos. 3032: T → A Pos. 202: G A Pos. 2268: C → A Pos. 2966: T → A → Pos. 3051: Gap → A Pos. 204: C A Pos. 2313: T → C Pos. 2982: T → A → Pos. 3054: T → A Pos. 211: T C Pos. 2356: Gap → A Pos. 3081: A → G Pos. 262: A → G Pos. 2381: T → C Dendropsophus parviceps group Pos. 3266: C → T Pos. 271: C → T Pos. 2551: A → G Cytochrome b Pos. 3280: A → C Pos. 292: T → C Pos. 2652: T → C Pos. 76: A → C Pos. 3297: T → A Pos. 311: A → C Pos. 2663: T → C Pos. 105: A → C RAG-1 Pos. 319: C → T Pos. 2704: G → A Pos. 244: A → T Pos. 34 C → T Pos. 331: C → T Pos. 2812: T → A Pos. 331: C → T Pos. 149 A → C Pos. 376: A → C Pos. 2875: C → A Pos. 420: A → C Pos. 164 G → A Pos. 415: C → T Pos. 2889: A → G 12S Pos. 221 T → C 12S Pos. 2966: T → C Pos. 28: A → G Pos. 326 G → A Pos. 13: G → A Pos. 3046: C → T Pos. 142: C → T Pos. 392 T → G Pos. 22: G → A Pos. 3054: T → A Pos. 174: G → A Rhodopsin Pos. 24: A → C Pos. 3056: T → G Pos. 528: A → C Pos. 87: A → G Pos. 28: A → G Pos. 3118: C → A Pos. 1630: A → C Pos. 185: C → A Pos. 33: A → G Pos. 3130: A → T Pos. 1640: T → A SIA Pos. 61: C → T 212 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 98: T → C Pos. 853: A → T Pos. 2566: T → C tRNA valine Pos. 117: A → C Pos. 854: T → A Pos. 2575: G → A Pos. 5: T → C Pos. 159: C → A Pos. 892: G → A Pos. 2588: C → T Pos. 87: G → T Pos. 169: A → T Pos. 946: C → T Pos. 2604: G → A Pos. 107: A → G Pos. 183: A → G Pos. 952: A → C Pos. 2605: G → A 16S Pos. 231: C → T Pos. 996: A → G Pos. 2618: T → C Pos. 234: T → C Pos. 295: A → C Pos. 1057: T → Gap Pos. 2680: T → A Pos. 349: Gap → A Pos. 320: A → G Pos. 1062: T → G Pos. 2768: C → A Pos. 376: A → C Pos. 452: T → G Pos. 1085: T → C Pos. 2789: C → A Pos. 606: C → A Pos. 454: T → C Pos. 1092: T → C Pos. 2866: A → Gap Pos. 611: A → G Pos. 550: T → C Pos. 1103: T → C Pos. 2889: A → Gap Pos. 914: A → T Pos. 571: A → T Pos. 1113: A → C Pos. 2929: C → Gap Pos. 1088: Gap → C Pos. 600: A → T Pos. 1118: A → C Pos. 2946: G → Gap Pos. 1118: A → T Pos. 646: T → A Pos. 1125: T → C Pos. 2956: C → Gap Pos. 1183: A → Gap Pos. 650: T → C Pos. 1188: Gap → T Pos. 2966: T → Gap Pos. 1219: A → T Pos. 675: A → T Pos. 1189: Gap → T Pos. 3036: T → C Pos. 1324: A → C Pos. 716: A → C Pos. 1200: A → T Pos. 3054: T → C Pos. 1332: A → G Pos. 761: T → A Pos. 1211: A → T Pos. 3071: A → T Pos. 1389: T → A Pos. 814: C → T Pos. 1235: C → A Pos. 3125: A → T Pos. 1472: Gap → T Pos. 838: A → T Pos. 1247: Gap → A Pos. 3127: T → A Pos. 1510: A → T Pos. 900: T → G Pos. 1248: Gap → G Pos. 3138: A → T Pos. 1587: T → A Pos. 1010: T → C Pos. 1249: Gap → A Pos. 3202: Gap → T Pos. 1807: A → C Pos. 1026: T → C Pos. 1278: T → C Pos. 3260: C → T Pos. 1826: C → T Pos. 1084: T → C Pos. 1329: Gap → C Pos. 3285: G → T Pos. 1847: G → T Pos. 1122: T → C Pos. 1332: A → C Pos. 3287: T → C Pos. 1861: T → C Pos. 1145: T → C Pos. 1337: T → Gap Pos. 3290: A → G Pos. 1987: Gap → T Pos. 1211: CT → A Pos. 1424: Gap → C Pos. 3292: C → A Pos. 2156: A → T Pos. 1266: A → G Pos. 1436: T → G Pos. 3318: T → C Pos. 2406: T → A Pos. 1270: A → G Pos. 1451: T → G Pos. 3357: A → T Pos. 2443: Gap → A Pos. 1332: G → A Pos. 1480: T → Gap Pos. 3375: T → A Pos. 2660: C → T Pos. 1342: A → Gap Pos. 1506: Gap → A Pos. 3380: T → A Pos. 2829: Gap → A Pos. 1366: C → A Pos. 1532: C → A Pos. 3429: T → C Pos. 2856: T → C Pos. 1374: C → T Pos. 1585: A → G Pos. 3451: A → G Pos. 2889: A → G Pos. 1392: T → C Pos. 1587: T → C Pos. 3487: T → C Pos. 2906: T → C Pos. 1405: A → G Pos. 1607: A → G Pos. 3491: C → A Pos. 2975: A → C Pos. 1431: T → C Pos. 1614: A → C RAG-1 Pos. 2982: T → C Pos. 1439: C → T Pos. 1649: A → Gap Pos. 5 G → T Pos. 3035: C → T Pos. 1517: A → T Pos. 1654: A → T Pos. 29 G → A Pos. 3036: T → G Pos. 1521: G → A Pos. 1673: A → T Pos. 137 T → C Pos. 3056: T → C Pos. 1531: C → T Pos. 1727: A → T Pos. 173 C → T Pos. 3090: G → A Pos. 1579: A → T Pos. 1757: T → Gap Pos. 182 A → G Pos. 3175: Gap → A Pos. 1589: T → A Pos. 1795: T → G Pos. 200 C → A Pos. 3199: A → C Pos. 1615: Gap → T Pos. 1799: C → A Pos. 260 C → T Pos. 3268: C → T Pos. 1657: G → Gap Pos. 1823: T → C Pos. 297 T → C Pos. 3283: A → G Pos. 1659: C → T Pos. 1865: T → A Pos. 368 C → T Pos. 3294: T → C Pos. 1762: A → G Pos. 1874: T → A Pos. 395 T → C Pos. 3361: Gap → CT tRNA valine Pos. 1887: T → C Rhodopsin 28S Pos. 22: Gap → T Pos. 1894: T → C Pos. 54: A → T Pos. 219: Gap → A Pos. 39: C → T Pos. 1971: C → T Pos. 135: C → G Pos. 238: G → C Pos. 82: C → T Pos. 1997: G → C Pos. 181: A → G Pos. 322: Gap → A Pos. 99: G → A Pos. 1999: Gap → T Pos. 244: G → T Pos. 327: T → A 16S Pos. 2019: A → T Pos. 299: T → A Pos. 394: Gap → T Pos. 3: A → C Pos. 2057: A → C Pos. 305: C → T Pos. 397: Gap → T Pos. 56: C → Gap Pos. 2058: A → T SIA Pos. 403: Gap → G Pos. 254: T → A Pos. 2059: A → T Pos. 21: A → G Pos. 542: Gap → A Pos. 301: Gap → C Pos. 2069: A → T Pos. 169: T → A Pos. 558: G → T Pos. 355: C → T Pos. 2070: A → C Pos. 385: T → C Pos. 569: A → C Pos. 383: T → A Pos. 2086: C → T Pos. 1144: C → A Pos. 427: T → C Pos. 2089: C → G Scinax Pos. 1145: G → A Pos. 452: T → C Pos. 2112: T → A Cytochrome b RAG-1 Pos. 483: A → C Pos. 2250: C → T Pos. 97: A → C Pos. 4 C → G Pos. 634: A → T Pos. 2288: A → G Pos. 192: T → C Pos. 11 A → G Pos. 636: T → C Pos. 2308: T → C 12S Pos. 116 C → G Pos. 667: A → G Pos. 2310: A → C Pos. 333: C → A Pos. 165 C → A Pos. 668: T → C Pos. 2315: A → G Pos. 636: G → A Pos. 169 T → C Pos. 686: G → A Pos. 2364: A → Gap Pos. 745: Gap → C Pos. 170 G → A Pos. 689: A → T Pos. 2407: Gap → C Pos. 1113: C → T Pos. 185 T → C Pos. 809: T → C Pos. 2510: T → A Pos. 1147: A → G Pos. 194 G → A Pos. 814: T → A Pos. 2518: A → T Pos. 1245: T → A Pos. 410 A → C Pos. 844: A → C Pos. 2544: G → A Pos. 1267: A → T Pos. 425 G → A Pos. 848: A → C Pos. 2548: T → C Pos. 1670: C → A Rhodopsin 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 213

APPENDIX 5 (Continued)

Pos. 10: G → A Pos. 2310: A → T Pos. 1795: T → C Pos. 1415: Gap → T Pos. 123: T → C Pos. 2376: A → G Pos. 1874: T → C Pos. 1426: C → T SIA Pos. 2422: C → T Pos. 1951: A → T Pos. 1496: T → C Pos. 211: C → T Pos. 2584: A → T Pos. 2029: T → C Pos. 1539: T → A Pos. 218: C → T Pos. 2600: G → A Pos. 2030: G → A Pos. 1651: A → T Pos. 241: G → C Pos. 2616: A → T Pos. 2163: Gap → T Pos. 1761: T → C Pos. 250: C → T Pos. 2768: C → T Pos. 2267: A → T tRNA valine Pos. 280: C → T Pos. 2789: C → T Pos. 2672: A → T Pos. 39: C → T Pos. 2802: T → A Pos. 2674: T → C Pos. 56: T → C Scinax catharinae clade Pos. 2866: A → C Pos. 2719: T → C Pos. 74: A → T Cytochrome b Pos. 2913: T → C Pos. 2753: T → C Pos. 75: A → T Pos. 3: C → A Pos. 2946: G → Gap Pos. 3027: A → C 16S Pos. 10: A → G Pos. 2997: C → T Pos. 3054: T → C Pos. 12: C → T Pos. 53: G → A Pos. 3127: T → A Pos. 3075: T → A Pos. 255: Gap → G Pos. 109: G → C Pos. 3138: A → G Pos. 3166: C → T Pos. 548: A → T Pos. 152: T → C Pos. 3146: T → A Pos. 3516: A → T Pos. 771: T → A Pos. 199: G → A Pos. 3249: A → G 28S Pos. 780: C → A Pos. 239: C → T Pos. 3277: G → A Pos. 381: Gap → T Pos. 818: C → A Pos. 244: A → G Pos. 3295: T → C Pos. 393: Gap → G Pos. 827: T → C Pos. 288: A → T Pos. 3297: T → A Pos. 395: Gap → C Pos. 829: C → T Pos. 299: T → C Pos. 3431: C → T Pos. 396: Gap → C Pos. 860: G → A Pos. 327: C → T 28S Pos. 415: Gap → G Pos. 902: T → A Pos. 353: C → T Pos. 1467: G → Gap Rhodopsin Pos. 950: C → T Pos. 359: A → T Pos. 1476: Gap → C Pos. 120: C → T Pos. 1010: G → A Pos. 376: A → C Rhodopsin Pos. 160: C → T Pos. 1019: C → T 12S Pos. 135: C → T Pos. 244: G → T Pos. 1204: Gap → A Pos. 227: T → Gap Pos. 145: C → T Pos. 1331: T → C Sphaenorhynchus Pos. 241: T → A Pos. 202: T → C Pos. 1347: Gap → A Pos. 297: T → C Pos. 291: G → T Cytochrome b Pos. 1389: T → C Pos. 414: C → T Pos. 292: T → A Pos. 17: A → T Pos. 1419: T → A Pos. 460: T → A SIA Pos. 26: T → A Pos. 1443: T → G Pos. 659: Gap → C Pos. 72: T → C Pos. 36: A → C Pos. 1458: A → T Pos. 965: T → C Pos. 199: G → A Pos. 45: C → T Pos. 1503: C → T Pos. 1122: T → C Pos. 292: G → C Pos. 49: C → T Pos. 1510: A → T Pos. 1307: T → C Pos. 382: G → A Pos. 68: C → T Pos. 1800: Gap → T Pos. 1392: T → A Pos. 397: T → A Pos. 115: C → T Pos. 1826: C → A Pos. 1422: G → A Pos. 214: C → T Pos. 1839: T → A Pos. 1441: C → A Scinax ruber clade Pos. 244: A → T Pos. 1883: C → A tRNA valine Cytochrome b Pos. 289: C → T Pos. 1948: GT → A Pos. 59: C → T Pos. 241: A → T Pos. 331: C → T Pos. 2019: A → T Pos. 69: G → A 12S Pos. 356: T → C Pos. 2043: A → T 16S Pos. 42: T → C Pos. 381: C → T Pos. 2086: C → T Pos. 76: Gap → A Pos. 250: A → C 12S Pos. 2098: G → Gap Pos. 254: T → C Pos. 600: A → G Pos. 36: A → T Pos. 2108: Gap → T Pos. 279: Gap → G Pos. 642: Gap → A Pos. 68: A → C Pos. 2120: A → T Pos. 367: T → Gap Pos. 650: T → C Pos. 196: G → A Pos. 2544: G → A Pos. 383: T → C Pos. 654: T → C Pos. 206: A → T Pos. 2551: A → T Pos. 736: T → C Pos. 673: C → G Pos. 251: G → A Pos. 2672: A → T Pos. 742: T → C Pos. 729: T → A Pos. 256: C → T Pos. 2975: A → T Pos. 836: A → T Pos. 759: A → C Pos. 319: A → G Pos. 3059: A → C Pos. 1052: Gap → C Pos. 869: T → C Pos. 343: T → C Pos. 3081: A → G Pos. 1078: Gap → A Pos. 958: A → G Pos. 484: A → T Pos. 3145: T → A Pos. 1174: T → Gap Pos. 1135: G → A Pos. 521: T → A Pos. 3166: C → A Pos. 1348: Gap → A Pos. 1144: T → A Pos. 672: C → A Pos. 3277: G → A Pos. 1534: C → T Pos. 1153: T → G Pos. 743: A → T Pos. 3299: C → T Pos. 1544: G → A Pos. 1509: A → G Pos. 760: C → T Pos. 3313: T → A Pos. 1718: C → A tRNA valine Pos. 765: G → A Pos. 3425: C → T Pos. 1737: T → A Pos. 95: C → T Pos. 769: G → A Pos. 3455: G → A Pos. 1842: A → C 16S Pos. 821: C → T RAG-1 Pos. 1883: C → A Pos. 58: C → T Pos. 965: T → A Pos. 15 C → A Pos. 1948: G → C Pos. 107: T → A Pos. 1052: A → T Pos. 44 A → G Pos. 1985: A → C Pos. 427: T → A Pos. 1113: C → Gap Pos. 47 C → T Pos. 1997: G → A Pos. 517: A → T Pos. 1123: Gap → A Pos. 58 A → G Pos. 2027: A → T Pos. 726: A → C Pos. 1233: G → A Pos. 64 A → G Pos. 2054: C → T Pos. 1203: T → A Pos. 1245: T → C Pos. 89 T → C Pos. 2086: C → T Pos. 1246: T → C Pos. 1332: G → A Pos. 164 G → A Pos. 2110: A → C Pos. 1337: T → C Pos. 1343: CT → Gap Pos. 194 G → A Pos. 2112: T → C Pos. 1438: Gap → A Pos. 1366: C → T Pos. 248 A → C Pos. 2205: T → C Pos. 1529: A → C Pos. 1374: C → T Pos. 272 C → T Pos. 2208: A → C Pos. 1530: A → T Pos. 1409: G → A Pos. 275 C → T Pos. 2266: T → C Pos. 1614: A → G Pos. 1412: C → A Pos. 317 T → C 214 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 332 G → A Pos. 313: A → G Pos. 1025: T → C Pos. 1649: A → T Pos. 357 C → T Pos. 322: C → A Pos. 1160: T → C Pos. 1670: C → A Pos. 365 T → C Pos. 353: C → T Pos. 1174: T → A Pos. 1678: A → C Pos. 371 A → C Pos. 362: T → G Pos. 1183: A → C tRNA valine Pos. 386 T → A Pos. 402: T → C Pos. 1246: T → C Pos. 39: C → A Pos. 398 A → T Pos. 411: T → C Pos. 1259: T → C 28S Pos. 410 A → C Pos. 420: A → T Pos. 1272: T → A Pos. 150: A → T Pos. 425 G → A 12S Pos. 1274: A → G Pos. 153: T → C Rhodopsin Pos. 13: G → A Pos. 1309: Gap → C Pos. 342: C → G Pos. 45: C → T Pos. 140: C → T Pos. 1324: A → G Pos. 400: T → Gap Pos. 93: C → T Pos. 148: C → A Pos. 1436: T → G Pos. 454: G → C Pos. 160: C → T Pos. 159: C → A Pos. 1443: T → C Pos. 516: G → C Pos. 220: G → T Pos. 171: G → T Pos. 1534: C → A Pos. 563: G → C Pos. 224: G → T Pos. 320: A → C Pos. 1741: C → T Pos. 569: A → T Pos. 235: C → T Pos. 379: A → G Pos. 1896: A → C Pos. 863: G → Gap Pos. 272: C → T Pos. 455: C → T Pos. 1925: A → T Pos. 870: G → Gap Pos. 290: C → T Pos. 499: Gap → T Pos. 2027: A → T Pos. 876: A → Gap Pos. 308: T → A Pos. 528: A → G Pos. 2028: G → C Pos. 1003: Gap →G Pos. 314: C → T Pos. 547: C → Gap Pos. 2089: C → T Pos. 1017: Gap →T Tyrosinase Pos. 600: A → G Pos. 2112: T → C Pos. 1080: Gap →G Pos. 7: T → A Pos. 645: Gap → A Pos. 2115: A → T Pos. 1103: G → C Pos. 10: A → C Pos. 654: T → Gap Pos. 2130: C → T RAG-1 Pos. 11: C → T Pos. 683: A → C Pos. 2154: T → A Pos. 1: C → T Pos. 20: T → A Pos. 733: T → G Pos. 2161: A → T Pos. 101: T → C Pos. 72: C → T Pos. 774: A → G Pos. 2229: T → G Pos. 114: T → A Pos. 139: A → G Pos. 815: T → C Pos. 2240: A → G Pos. 115: C → G Pos. 183: A → G Pos. 817: G → A Pos. 2262: AG → T Pos. 143: G → C Pos. 197: C → T Pos. 927: A → T Pos. 2616: A → C Pos. 151: A → C → Pos. 209: T → C Pos. 1043: C → T Pos. 2618: T C Pos. 169: T → C → Pos. 210: A → G Pos. 1094: A → T Pos. 2664: A T Pos. 178: A → G → Pos. 211: C → A Pos. 1278: G → A Pos. 2694: T C Pos. 194: G → A → Pos. 276: T → C Pos. 1303: A → G Pos. 2801: Gap T Pos. 359: A → C → Pos. 288: C → T Pos. 1321: T → A Pos. 2865: Gap C Pos. 374: G → A → Pos. 291: G → C Pos. 1376: A → G Pos. 2956: A G Rhodopsin → Pos. 294: C → T Pos. 1399: A → G Pos. 3018: T A Pos. 12: A → G → Pos. 330: T → C Pos. 1434: T → C Pos. 3027: T C Pos. 220: G → A → Pos. 333: A → G Pos. 1441: C → A Pos. 3056: T C Pos. 271: C → G → Pos. 375: T → C Pos. 1549: AT → C Pos. 3086: T A Pos. 281: T → C → Pos. 376: T → G Pos. 1649: A → T Pos. 3234: T C Pos. 287: C → T → Pos. 393: C → T Pos. 1670: C → T Pos. 3426: A G SIA → Pos. 406: C → A tRNA valine Pos. 3454: T C Pos. 280: C → T → Pos. 408: A → C Pos. 46: T → G Pos. 3487: T C Pos. 349: T → A Pos. 423: T → C Pos. 75: A → C Tyrosinase Hylini Pos. 424: G → A Pos. 76: A → G Pos. 6: G → A Pos. 447: A → G Pos. 86: T → C Cytochrome b Pos. 33: T → A Pos. 472: Gap → T 16S Pos. 29: Gap → C Pos. 86: A → C Pos. 478: G → Gap Pos. 130: C → T Pos. 31: A → C Pos. 160: T → C Pos. 481: T → C Pos. 191: Gap → T Pos. 33: C → Gap Pos. 175: A → 4 Pos. 508: T → C Pos. 192: C → A Pos. 57: C → A Pos. 180: 4 → T Pos. 513: G → A Pos. 259: A → G Pos. 90: T → A Pos. 394: C → A Pos. 272: T → C Pos. 101: C → T Pos. 454: C → G Xenohyla Pos. 323: C → A Pos. 126: G → T Pos. 455: T → C Cytochrome b Pos. 336: C → A Pos. 127: C → T Pos. 6: C → T Pos. 427: T → A Pos. 137: T → A Acris Pos. 10: A → G Pos. 434: A → T Pos. 353: C → T Cytochrome b Pos. 32: A → G Pos. 472: T → A 12S Pos. 40: A → G Pos. 49: C → A Pos. 498: T → C Pos. 117: A → CT Pos. 63: C → Gap Pos. 52: A → T Pos. 543: T → C Pos. 140: C → T Pos. 68: C → T Pos. 88: C → T Pos. 654: T → C Pos. 148: C → T Pos. 125: T → C Pos. 108: A → G Pos. 668: T → A Pos. 432: T → A Pos. 137: A → C Pos. 137: C → T Pos. 718: T → C Pos. 455: C → T Pos. 152: T → C Pos. 164: C → T Pos. 742: T → C Pos. 528: A → T Pos. 155: A → C Pos. 170: A → T Pos. 755: A → C Pos. 594: A → G Pos. 201: A → C Pos. 199: G → A Pos. 767: A → T Pos. 595: A → T Pos. 207: C → T Pos. 201: T → C Pos. 775: T → G Pos. 716: A → T Pos. 223: A → C Pos. 229: C → T Pos. 784: C → A Pos. 1008: T → C Pos. 302: A → T Pos. 262: A → C Pos. 792: A → G Pos. 1094: A → T Pos. 306: A → C Pos. 271: C → T Pos. 821: T → A Pos. 1211: T → C Pos. 311: A → C Pos. 277: T → C Pos. 854: T → C Pos. 1265: C → T Pos. 362: A → T Pos. 290: C → T Pos. 900: T → C Pos. 1417: G → T Pos. 369: A → T Pos. 292: T → C Pos. 908: T → C Pos. 1422: G → A Pos. 387: T → A 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 215

APPENDIX 5 (Continued)

Pos. 396: A → C Pos. 2982: T → C Pos. 183: C → T Pos. 1273: A → G Pos. 408: C → T Pos. 3140: C → T Pos. 189: C → T Pos. 1274: T → C 12S Pos. 3280: A → T Pos. 212: T → A Pos. 1278: G → A Pos. 142: C → T RAG-1 Pos. 213: G → A Pos. 1296: C → T Pos. 206: A → C Pos. 5 G → A Pos. 214: C → T Pos. 1317: C → T Pos. 229: Gap → A Pos. 71 G → A Pos. 217: A → G Pos. 1366: C → T Pos. 233: Gap → A Pos. 125 G → A Pos. 247: C → T Pos. 1378: G → A Pos. 332: A → C Pos. 170 G → A Pos. 248: C → A Pos. 1385: G → A Pos. 457: T → A Pos. 359 C → T Pos. 249: T → C Pos. 1408: A → G Pos. 547: A → T Pos. 422 T → C Pos. 256: A → T Pos. 1427: T → C Pos. 670: A → T Rhodopsin Pos. 290: C → T Pos. 1434: T → C Pos. 778: A → C Pos. 21: C → T Pos. 299: T → C Pos. 1439: C → A Pos. 841: A → T Pos. 54: A → G Pos. 316: C → T Pos. 1449: G → A Pos. 864: C → T Pos. 60: T → C Pos. 353: T → C Pos. 1544: Gap → T Pos. 908: A → C Pos. 166: C → T Pos. 359: A → G Pos. 1585: A → T Pos. 927: A → T Pos. 211: G → A Pos. 363: A → G Pos. 1645: T → C Pos. 965: C → T SIA Pos. 376: A → G Pos. 1649: T → C Pos. 1245: T → A Pos. 160: T → C Pos. 408: C → T Pos. 1651: A → T Pos. 1307: T → A Pos. 247: C → G Pos. 417: G → C Pos. 1664: A → G Pos. 1332: G → A Pos. 259: A → T 12S Pos. 1670: T → C Pos. 1423: A → T Pos. 268: A → G Pos. 9: T → C Pos. 1674: A → C Pos. 1568: A → T Pos. 397: T → A Pos. 22: G → A Pos. 1693: C → T Pos. 1649: T → C Tyrosinase Pos. 45: C → T Pos. 1699: Gap → T Pos. 1674: A → C Pos. 9: T → C Pos. 83: G → A tRNA valine tRNA valine Pos. 10: A → C Pos. 88: C → T Pos. 46: T → C Pos. 6: G → A Pos. 20: T → C Pos. 102: T → C Pos. 55: A → G Pos. 39: A → T Pos. 25: T → C Pos. 174: A → G Pos. 99: G → A Pos. 105: C → T Pos. 28: T → C Pos. 271: C → A 16S 16S Pos. 34: T → C Pos. 313: C → T Pos. 94: C → T Pos. 172: A → C Pos. 43: T → C Pos. 347: T → C Pos. 118: C → T Pos. 188: A → C Pos. 73: A → G Pos. 383: G → A Pos. 130: C → T Pos. 272: G → A Pos. 102: A → G Pos. 389: T → C Pos. 206: T → C Pos. 443: C → G Pos. 127: T → C Pos. 391: A → T Pos. 272: G → A Pos. 452: T → C Pos. 150: C → T Pos. 414: C → A Pos. 536: C → T Pos. 459: T → C Pos. 167: G → A Pos. 422: Gap → T Pos. 559: T → C Pos. 498: T → C Pos. 168: T → C Pos. 423: Gap → T Pos. 566: T → C Pos. 517: T → C Pos. 169: G → C Pos. 432: A → Gap Pos. 610: T → C Pos. 784: C → T Pos. 180: T → C Pos. 455: C → T Pos. 611: A → G Pos. 848: C → A Pos. 195: A → G Pos. 460: T → C Pos. 668: T → C Pos. 853: A → G Pos. 204: A → C Pos. 480: A → G Pos. 699: A → Gap Pos. 914: A → C Pos. 215: G → C Pos. 489: G → Gap Pos. 712: A → Gap Pos. 950: C → A Pos. 231: A → C Pos. 512: T → A Pos. 742: T → A Pos. 1077: T → A Pos. 254: A → G Pos. 600: T → G Pos. 771: T → C Pos. 1235: C → A Pos. 307: A → G Pos. 602: A → T Pos. 818: C → T Pos. 1265: A → T Pos. 312: T → C Pos. 608: A → G Pos. 821: A → T Pos. 1325: A → Gap Pos. 315: A → G Pos. 611: A → G Pos. 876: A → G Pos. 1375: Gap → C Pos. 321: C → G Pos. 654: T → C Pos. 952: A → G Pos. 1480: T → Gap Pos. 330: T → C Pos. 661: A → G Pos. 959: G → A Pos. 1673: A → T Pos. 352: C → T Pos. 686: G → A Pos. 1022: A → C Pos. 1699: A → T Pos. 384: A → G Pos. 726: A → T Pos. 1025: T → C Pos. 1807: A → C Pos. 387: T → C Pos. 788: G → A Pos. 1085: A → Gap Pos. 1819: A → T Pos. 407: A → G Pos. 797: T → C Pos. 1121: Gap → T Pos. 1870: A → C Pos. 447: A → G Pos. 802: C → T Pos. 1140: A → T Pos. 1949: A → T Pos. 453: T → C Pos. 900: T → G Pos. 1183: A → G Pos. 1965: T → A Pos. 491: C → A Pos. 928: A → G Pos. 1223: T → C Pos. 2030: G → A Pos. 493: T → G Pos. 958: A → G Pos. 1246: T → C Pos. 2072: T → C Pos. 496: A → G Pos. 963: Gap → T Pos. 1278: C → T Pos. 2080: A → G Pos. 507: T → C Pos. 995: T → C Pos. 1292: T → G Pos. 2122: T → G Pos. 1002: C → T Pos. 1510: A → G Pos. 2179: C → T Anotheca spinosa Pos. 1023: T → C Pos. 1529: A → G Pos. 2203: T → C Cytochrome b Pos. 1043: C → T Pos. 1548: T → C Pos. 2233: T → A Pos. 10: A → T Pos. 1095: C → T Pos. 1600: C → A Pos. 2244: T → C Pos. 24: G → A Pos. 1096: G → A Pos. 1607: C → T Pos. 2250: C → T Pos. 52: A → T Pos. 1100: G → A Pos. 1635: Gap → C Pos. 2253: A → T Pos. 53: G → A Pos. 1101: T → G Pos. 1710: T → A Pos. 2381: T → C Pos. 57: A → C Pos. 1113: T → C Pos. 1718: T → C Pos. 2422: C → T Pos. 91: T → C Pos. 1177: C → T Pos. 1727: A → C Pos. 2577: G → T Pos. 155: A → G Pos. 1194: T → C Pos. 1813: T → C Pos. 2676: A → T Pos. 167: T → C Pos. 1211: T → C Pos. 2032: A → Gap Pos. 2787: T → A Pos. 170: A → T Pos. 1215: A → C Pos. 2039: G → A Pos. 2889: A → C Pos. 173: A → G Pos. 1265: T → C Pos. 2059: A → C 216 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 2071: T → C Pos. 526: C → T Pos. 763: G → A Pos. 112: C → T Pos. 2130: T → C Pos. 537: T → G Pos. 780: C → T Pos. 127: T → C Pos. 2138: Gap → C Pos. 788: C → T Pos. 176: A → G Bromeliohyla bromeliacia Pos. 2156: C → T Pos. 890: G → A Pos. 197: T → A Pos. 2169: A → G Cytochrome b Pos. 941: G → A Pos. 254: A → G → Pos. 2170: A → G Pos. 62: T C Pos. 948: C → T Pos. 263: C → T → Pos. 2217: T → C Pos. 63: C T Pos. 979: C → T Pos. 267: C → T → Pos. 2229: T → C Pos. 76: C T Pos. 1085: A → G Pos. 269: C → T → Pos. 2262: G → A Pos. 116: C T Pos. 1187: A → T Pos. 297: C → T → Pos. 2267: A → G Pos. 149: A T Pos. 1211: A → Gap Pos. 299: A → C → Pos. 2280: A → T Pos. 161: A G Pos. 1235: C → Gap Pos. 300: A → G Pos. 2364: A → Gap Pos. 183: A → T Pos. 1289: A → G Pos. 354: G → C Pos. 2392: A → G Pos. 186: A → G Pos. 1314: A → G Charadrahyla Pos. 2518: A → G Pos. 241: A → G Pos. 1328: A → G Pos. 2524: T → C Pos. 283: C → T Pos. 1332: G → A Cytochrome b Pos. 2544: A → G Pos. 286: C → T Pos. 1468: A → T Pos. 128: A → T Pos. 2615: A → G Pos. 331: T → Gap Pos. 1561: C → T Pos. 274: T → C Pos. 2655: A → G Pos. 359: A → G Pos. 1574: A → T Pos. 353: T → C Pos. 2660: C → T Pos. 369: A → C Pos. 1596: A → T 12S Pos. 2694: T → C Pos. 381: C → T Pos. 1673: A → G Pos. 183: A → G Pos. 2719: T → C Pos. 405: CT → A Pos. 1757: CT → A Pos. 328: G → A Pos. 2768: T → C Pos. 420: A → G Pos. 1799: A → T Pos. 337: C → T Pos. 2787: T → C 12s Pos. 1861: C → T Pos. 454: T → C Pos. 2960: T → G Pos. 28: A → G Pos. 1925: A → T Pos. 571: A → C Pos. 3014: T → C Pos. 180: C → T Pos. 1975: A → C Pos. 1002: C → T Pos. 3036: T → A Pos. 206: A → T Pos. 1985: A → T Pos. 1010: T → A Pos. 3039: A → G Pos. 310: T → C Pos. 2029: T → C Pos. 1061: T → C Pos. 3071: A → G Pos. 370: T → C Pos. 2063: A → G Pos. 1113: C → Gap Pos. 3094: T → C Pos. 412: T → C Pos. 2094: A → G Pos. 1116: C → T Pos. 3281: A → C Pos. 421: A → C Pos. 2110: A → G Pos. 1236: T → C Pos. 3282: T → C Pos. 438: A → T Pos. 2151: C → T Pos. 1343: T → C Pos. 3297: C → T Pos. 452: T → C Pos. 2201: Gap → C Pos. 1383: C → A Pos. 3321: A → G Pos. 454: T → C Pos. 2202: Gap → A Pos. 1441: C → A Pos. 3324: T → C Pos. 455: T → C Pos. 2233: T → C Pos. 1461: C → T Pos. 3363: Gap → T Pos. 512: T → C Pos. 2312: T → A tRNA valine Pos. 3380: A → T Pos. 541: A → T Pos. 2423: A → C Pos. 61: C → T Pos. 3419: G → A Pos. 627: Gap → T Pos. 2450: C → T 16S Pos. 3458: T → C Pos. 631: Gap → G Pos. 2620: C → T Pos. 2: T → C Pos. 3462: C → T Pos. 641: A → C Pos. 2655: A → G Pos. 130: C → T RAG-1 Pos. 736: C → T Pos. 2697: T → C Pos. 452: T → C Pos. 11 A → G Pos. 1002: C → T Pos. 2753: A → G Pos. 770: Gap → C Pos. 77 T → C Pos. 1094: T → C Pos. 2856: T → C Pos. 780: C → Gap Pos. 89 T → C Pos. 1136: A → G Pos. 3010: C → T Pos. 1174: T → C Pos. 149 A → C Pos. 1187: C → T Pos. 3143: A → G Pos. 1265: A → G Pos. 179 A → G Pos. 1233: G → A Pos. 3199: A → T Pos. 1328: A → G Pos. 185 G → T Pos. 1374: C → T Pos. 3291: A → G Pos. 1330: C → T Pos. 263 G → A Pos. 1407: G → A Pos. 3303: C → T Pos. 1332: G → T Pos. 293 G → A Pos. 1429: C → T Pos. 3310: A → T Pos. 1643: T → A Pos. 395 C → T Pos. 1455: T → C Pos. 3320: G → A Pos. 1673: A → C Rhodopsin Pos. 1469: Gap → T Pos. 3324: T → C Pos. 1817: A → T Pos. 28: A → T Pos. 1496: T → C Pos. 3326: T → C Pos. 1861: C → A Pos. 57: C → T Pos. 1639: Gap → T Pos. 3425: C → T Pos. 1870: A → C Pos. 89: A → T tRNA valine Pos. 3455: G → A Pos. 2253: A → G Pos. 93: C → A Pos. 2: A → T Pos. 3458: T → C Pos. 2268: C → A Pos. 114: C → T Pos. 55: A → C 28s Pos. 2461: C → T SIA Pos. 74: C → G Pos. 561: C → A Pos. 2569: T → C Pos. 21: A → G Pos. 94: C → T Pos. 812: C → A Pos. 2616: A → T Pos. 292: G → C Pos. 98: A → G RAG-1 Pos. 2694: T → C Tyrosinase 16S Pos. 179: A → G Pos. 2780: A → Gap Pos. 0: A → T Pos. 8: A → G Rhodopsin Pos. 2802: T → A Pos. 6: A → T Pos. 111: Gap → A Pos. 9: C → T Pos. 2913: T → C Pos. 46: G → C Pos. 152: Gap → T Pos. 95: C → T Pos. 3010: C → A Pos. 97: G → A Pos. 162: C → T Pos. 154: C → T Pos. 3111: G → A Pos. 124: T → C Pos. 383: A → G Pos. 244: G → T Pos. 3118: C → A Pos. 139: A → C Pos. 459: T → G Pos. 268: A → T Pos. 3130: A → T Pos. 164: A → G Pos. 589: C → T Pos. 279: C → A Pos. 3154: A → G Pos. 194: A → G Pos. 618: A → G SIA Pos. 3389: C → T Pos. 357: C → T Pos. 640: A → T Pos. 133: C → A Pos. 3425: C → T Pos. 418: G → A Pos. 648: G → A Pos. 256: A → G SIA Pos. 426: C → A Pos. 736: T → C Tyrosinase Pos. 175: C → T Pos. 484: T → C Pos. 754: A → G Pos. 106: C → T Pos. 376: T → C 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 217

APPENDIX 5 (Continued)

Tyrosinase Pos. 369: A → T Pos. 1160: T → C Pos. 367: C → T Pos. 86: C → A 12S Pos. 1351: Gap → A Pos. 380: C → T Pos. 102: A → G Pos. 102: T → C Pos. 1389: T → A Pos. 383: T → C Pos. 172: A → G Pos. 164: C → A Pos. 1468: A → T Pos. 417: A → C Pos. 432: T → C Pos. 322: C → T Pos. 1534: C → T 12S Pos. 427: C → T Pos. 1587: T → C Pos. 24: A → G Duellmanohyla 16S Pos. 1817: A → T Pos. 115: A → T Cytochrome b Pos. 1118: A → C Pos. 1819: A → T Pos. 159: A → T → Pos. 229: C T Pos. 1183: T → A Pos. 1839: T → C Pos. 231: T → C → Pos. 277: T C Pos. 1230: Gap → T Pos. 2024: G → A Pos. 241: T → C → Pos. 292: T C Pos. 1235: C → A Pos. 2067: A → T Pos. 333: C → A → Pos. 313: T C Pos. 1491: A → T Pos. 2130: T → A Pos. 452: T → C → Pos. 366: T C Pos. 1585: A → G Pos. 2263: C → T Pos. 541: T → C → Pos. 376: T C Pos. 1741: C → T Pos. 2615: A → C Pos. 558: A → C → Pos. 399: T C Pos. 1870: A → T Pos. 2676: A → T Pos. 594: T → C 12S Pos. 1925: A → T Pos. 2780: A → C Pos. 641: A → G → Pos. 13: A G Pos. 2069: T → A Pos. 2812: T → A Pos. 733: A → T → Pos. 22: G A Pos. 2089: A → C Pos. 2929: C → T Pos. 778: A → G → Pos. 131: T Gap Pos. 2190: C → Gap Pos. 2946: G → Gap Pos. 869: C → T → Pos. 272: A G Pos. 2229: T → C Pos. 3081: A → T Pos. 1043: C → T → Pos. 414: C T Pos. 2441: C → T Pos. 3234: A → T Pos. 1211: C → T → Pos. 427: C T Pos. 2457: G → A Pos. 3290: A → G Pos. 1549: A → T → Pos. 726: A Gap Pos. 3056: C → A Pos. 3426: G → T Pos. 1625: T → C → Pos. 1010: T A Pos. 3173: G → A Pos. 3439: T → C 16S Pos. 1333: A → C Pos. 3222: T → Gap Pos. 3454: C → A Pos. 107: C → A Pos. 1405: A → G Pos. 3249: T → C 28S Pos. 234: T → C Pos. 1408: A → G Pos. 3285: G → A Pos. 544: G → C Pos. 472: C → A Pos. 1412: C → T Pos. 3315: A → T RAG-1 Pos. 656: T → C Pos. 1427: T → C RAG-1 Pos. 32 A → G Pos. 708: A → G Pos. 1431: T → C Pos. 242 G → A Pos. 128 T → C Pos. 718: T → C Pos. 1500: Gap → A Rhodopsin Pos. 155 T → C Pos. 736: T → C 16S Pos. 28: A → T Pos. 248 A → G Pos. 758: C → T Pos. 172: A → C Pos. 281: C → T Pos. 293 G → A Pos. 774: T → G Pos. 234: A → Gap Pos. 316: A → G Pos. 413 T → C Pos. 780: C → T Pos. 272: G → T Rhodopsin Pos. 834: A → G Pos. 376: T → C Exerodonta Pos. 232: C → T Pos. 862: T → C Pos. 755: T → A Cytochrome b Pos. 259: C → T Pos. 914: A → T Pos. 949: T → C Pos. 71: A → C Pos. 281: C → T Pos. 1574: A → T Pos. 1160: T → C Pos. 115: C → T Pos. 299: T → C Pos. 1699: A → C Pos. 1699: A → C Pos. 232: C → A SIA Pos. 1727: A → T Pos. 1826: T → C Pos. 247: C → T Pos. 81: C → T Pos. 1826: T → C Pos. 2164: Gap → T Pos. 256: A → T → → Pos. 2308: C → T Pos. 106: C A Pos. 2057: T C Pos. 334: A → G → → Pos. 2551: A → G Pos. 205: T C Pos. 2069: T C Pos. 411: T → C → → Pos. 2742: T → A Pos. 211: C T Pos. 2200: T C 12S → → Pos. 2787: A → Gap Pos. 331: G A Pos. 2248: A G Pos. 227: T → C → → Pos. 3054: A → G Pos. 376: T C Pos. 2381: T A Pos. 322: C → A → Pos. 3222: T → C Tyrosinase Pos. 2587: T C Pos. 370: A → G → → Pos. 3249: T → C Pos. 4: C T Pos. 2615: C T Pos. 392: T → C → → Pos. 3375: T → C Pos. 105: G C Pos. 2715: Gap T Pos. 594: G → T → → Pos. 3487: T → C Pos. 179: A G Pos. 2982: T C Pos. 673: T → C → → RAG-1 Pos. 257: C T Pos. 2995: A C Pos. 760: C → A → → Pos. 35 A → G Pos. 327: T C Pos. 3010: C T Pos. 1376: A → G → → Rhodopsin Pos. 514: G C Pos. 3087: Gap C Pos. 1392: T → A → Pos. 28: A → T Pos. 3125: T C Pos. 1585: A → G Exerodonta sumichrasti → SIA Pos. 3209: T C Pos. 1601: T → A group Pos. 175: C → T Pos. 3230: T → A Pos. 1602: T → A Cytochrome b Pos. 241: G → A RAG-1 → → Tyrosinase Pos. 1636: A T Pos. 24: G A Pos. 392 T → A → → Pos. 70: T → G Pos. 1649: T C Pos. 45: C T Rhodopsin → → Pos. 517: T → C Pos. 1651: A G Pos. 126: T C Pos. 9: C → T → Pos. 527: A → G 16S Pos. 153: C T Pos. 36: G → A Pos. 151: Gap → T Pos. 167: C → T Pos. 133: C → T Ecnomiohyla Pos. 284: Gap → A Pos. 176: C → T Pos. 167: A → C Cytochrome b Pos. 434: A → T Pos. 189: C → T SIA Pos. 49: C → T Pos. 443: C → T Pos. 198: T → C Pos. 21: A → G Pos. 136: C → T Pos. 755: A → T Pos. 214: C → T Pos. 205: C → A Pos. 152: T → C Pos. 758: A → C Pos. 217: A → G Tyrosinase Pos. 176: C → T Pos. 853: A → T Pos. 241: A → G Pos. 420: A → G Pos. 183: A → T Pos. 890: G → A Pos. 296: C → T Pos. 189: C → T Pos. 948: C → T Pos. 331: C → T Hyla Pos. 229: C → T Pos. 1153: A → C Pos. 366: T → C Cytochrome b 218 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 11: C → A Pos. 245: C → T Pos. 565: T → C Pos. 2112: CT → A Pos. 67: C → T Pos. 315: G → A Pos. 571: A → C Pos. 2156: C → T Pos. 250: T → C Pos. 738: A → T Pos. 2208: AT → C Hyla cinerea group Pos. 417: G → A Pos. 1278: G → A Pos. 2217: T → C 12S Cytochrome b Pos. 1579: A → Gap Pos. 2544: A → G → Pos. 560: Gap → T Pos. 53: G A Pos. 1671: Gap → T Pos. 2776: A → Gap → Pos. 778: A → G Pos. 108: G A 16S Pos. 2820: A → T → Pos. 814: C → T Pos. 125: T C Pos. 521: A → T Pos. 2982: T → C → Pos. 1101: T → C Pos. 149: A T Pos. 573: A → T Pos. 3056: C → T → Pos. 1346: T → C Pos. 183: A T Pos. 822: A → T Pos. 3111: G → A → Pos. 1549: A → Gap Pos. 214: C T Pos. 906: T → C Pos. 3154: A → G → 16S Pos. 286: C T Pos. 965: C → T Pos. 3173: T → C → Pos. 543: T → C Pos. 338: T C Pos. 1092: A → G Pos. 3237: T → A → Pos. 780: C → A Pos. 366: T C Pos. 1167: A → T Pos. 3281: A → G Pos. 1103: A → T 12S Pos. 1203: T → C Pos. 3282: T → C → Pos. 1246: T → A Pos. 597: T C Pos. 1223: C → T Rhodopsin → Pos. 1436: T → A Pos. 1105: A T Pos. 1718: C → T Pos. 93: C → T → Pos. 1713: Gap → A Pos. 1113: T C Pos. 1741: C → A Pos. 124: C → A → Pos. 1925: T → C Pos. 1422: G A Pos. 1749: T → C → Megastomatohyla mixe Pos. 2267: A → T Pos. 1589: C A Pos. 1799: A → T Pos. 2787: T → Gap 16S Pos. 1807: A → G Cytochrome b → Pos. 2812: T → A Pos. 107: C A Pos. 1925: C → T Pos. 10: C → A → Pos. 2858: Gap → C Pos. 177: Gap C Pos. 2057: C → T Pos. 46: C → T → Rhodopsin Pos. 272: G A Pos. 2089: A → T Pos. 49: C → A Pos. 517: T → C Pos. 316: A → G Pos. 2177: C → T Pos. 57: A → G Pos. 521: A → T Tyrosinase Pos. 2233: T → C Pos. 101: T → A Pos. 1603: T → C Pos. 73: G → A Pos. 2280: A → G Pos. 109: G → A Pos. 1699: T → C Pos. 484: T → C Pos. 2508: T → C Pos. 125: T → C Pos. 1874: T → C Pos. 493: T → C Pos. 2997: C → T Pos. 137: C → T Pos. 2058: C → A Pos. 3010: C → T Pos. 145: C → T Hyla arborea group Pos. 2156: C → A Pos. 3140: C → T Pos. 164: C → T Pos. 2161: A → T Cytochrome b Pos. 3389: C → T Pos. 168: A → G Pos. 2280: A → T Pos. 145: C → T Pos. 3524: C → T Pos. 184: A → C RAG-1 Pos. 271: C → T Pos. 3538: G → A Pos. 204: C → A Pos. 83 A → G 12S Rhodopsin Pos. 214: C → T Pos. 284 A → G Pos. 13: A → G Pos. 316: G → A Pos. 223: A → C SIA Pos. 34: T → C SIA Pos. 238: T → A Pos. 250: C → T Pos. 152: T → A Pos. 211: C → T Pos. 241: A → C Pos. 20: T → G Pos. 169: T → C Tyrosinase Pos. 292: T → C Pos. 257: C → T Pos. 268: T → C Pos. 120: A → T Pos. 302: A → G Pos. 506: G → A Pos. 455: C → T Pos. 327: C → A Isthmohyla Pos. 880: C → G Hyla eximia group Pos. 338: T → C → → Pos. 1039: Gap T Cytochrome b Cytochrome b Pos. 366: T C → → → Pos. 1043: C A Pos. 153: T → C Pos. 68: T C Pos. 383: A T → → → Pos. 1365: Gap C Pos. 167: T → C Pos. 91: T C Pos. 414: T A → → → Pos. 1561: A T Pos. 238: T → C Pos. 167: T C Pos. 415: C T → 16S 16S Pos. 247: C T 12S → → → Pos. 664: A T Pos. 162: T → C Pos. 265: C T Pos. 34: T C → → → Pos. 718: T C Pos. 566: T → C Pos. 376: A C Pos. 61: C T → → Pos. 1057: T C Pos. 1376: T → C 12S Pos. 68: A C → → → Pos. 1389: T A Pos. 1842: A → G Pos. 117: C T Pos. 69: C T → → → Pos. 1402: A C Pos. 2107: A → G Pos. 169: T A Pos. 110: A Gap → → → Pos. 1799: A C Pos. 2620: C → T Pos. 348: T C Pos. 183: A T Pos. 2089: A → C Pos. 550: T → A Pos. 269: A → T Pos. 2820: A → C Hyla versicolor group Pos. 565: T → C Pos. 326: A → G Pos. 2856: T → A Cytochrome b Pos. 726: A → T Pos. 339: T → C Pos. 3239: A → Gap Pos. 49: C → G Pos. 1002: C → T Pos. 434: G → A Pos. 3282: T → C Pos. 103: C → T tRNA valine Pos. 440: A → G RAG-1 Pos. 108: G → A Pos. 4: A → G Pos. 451: T → C Pos. 4 C → T Pos. 161: A → G 16S Pos. 452: T → A Pos. 380 C → T Pos. 214: C → T Pos. 323: C → T Pos. 480: A → G Pos. 395 C → T Pos. 286: C → T Pos. 355: T → C Pos. 521: T → C Rhodopsin Pos. 289: C → T Pos. 559: T → C Pos. 558: A → Gap Pos. 93: C → A Pos. 313: C → T Pos. 580: T → C Pos. 579: Gap → G Pos. 245: G → T Pos. 356: C → T Pos. 611: A → G Pos. 619: G → T Pos. 262: G → A Pos. 383: A → T Pos. 1015: T → A Pos. 646: C → T Tyrosinase Pos. 417: A → C Pos. 1657: Gap → C Pos. 650: T → G Pos. 29: C → A 12S Pos. 1727: A → C Pos. 726: A → C Pos. 31: A → C Pos. 285: A → T Pos. 1865: C → T Pos. 736: C → A Pos. 120: A → T Pos. 352: G → A Pos. 2043: A → T Pos. 738: A → C Pos. 186: C → A Pos. 560: T → Gap Pos. 2107: A → G Pos. 769: G → A 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 219

APPENDIX 5 (Continued)

Pos. 821: C → T Pos. 1331: A → T Pos. 205: C → T Pos. 172: A → G Pos. 835: T → C Pos. 1332: G → A Pos. 219: C → T Pos. 300: A → G Pos. 869: C → T Pos. 1405: T → A Pos. 256: C → T Pos. 324: G → A Pos. 908: A → C Pos. 1480: C → A SIA Pos. 416: A → G Pos. 989: A → G Pos. 1544: A → G Pos. 6: G → A Pos. 475: C → T Pos. 1036: C → T Pos. 1572: T → C Pos. 127: A → G Plectrohyla bistincta group Pos. 1043: C → A Pos. 1574: A → T Pos. 211: C → T Pos. 1048: T → C Pos. 1614: A → G Pos. 235: G → A Cytochrome b → Pos. 1067: C → T Pos. 1727: A → T Pos. 259: A → G Pos. 101: T AG → Pos. 1089: T → C Pos. 1740: Gap → T Pos. 322: C → T Pos. 204: A T → Pos. 1105: A → Gap Pos. 1768: A → Gap Pos. 373: C → T Pos. 319: C T → Pos. 1122: T → C Pos. 1861: C → T Tyrosinase Pos. 356: T C Pos. 1128: T → C Pos. 1865: C → A Pos. 19: T → G 12S → Pos. 1144: T → C Pos. 1928: C → T Pos. 26: C → A Pos. 295: A C → Pos. 1244: A → G Pos. 1932: T → C Pos. 96: A → G Pos. 427: C T → Pos. 1245: T → C Pos. 1977: G → C Pos. 133: AC → G Pos. 512: T A → Pos. 1278: G → A Pos. 1997: G → A Pos. 179: A → G Pos. 1002: C T → Pos. 1327: A → G Pos. 2054: C → A Pos. 191: A → G Pos. 1005: C A Pos. 1366: C → T Pos. 2068: C → T Pos. 261: A → G 16S → Pos. 1392: T → A Pos. 2070: A → C Pos. 307: A → G Pos. 517: T C → Pos. 1405: A → G Pos. 2107: A → C Pos. 308: A → C Pos. 1219: A T → Pos. 1408: A → G Pos. 2110: A → T Pos. 394: A → G Pos. 1223: C T → Pos. 1412: C → T Pos. 2130: T → A Pos. 456: G → C Pos. 1618: Gap T → Pos. 1418: A → C Pos. 2177: C → T Pos. 484: T → C Pos. 1649: T A Pos. 2190: C → A Pos. 1427: T → C Pos. 2298: C → T Pos. 511: G → A Pos. 1431: T → C Pos. 2398: A → C RAG-1 → Pos. 1439: C → T Pos. 2450: C → T Plectrohyla Pos. 74 T C → → Pos. 1455: T C Pos. 2544: A G Cytochrome b Plectrohyla guatemalensis → → → Pos. 1537: Gap T Pos. 2588: C T Pos. 45: C T group Pos. 1561: A → C Pos. 2605: G → A Pos. 189: C → T Cytochrome b Pos. 1568: A → G Pos. 2669: A → G Pos. 238: T → A Pos. 3: C → T Pos. 1651: A → T Pos. 2683: Gap → A Pos. 310: A → C Pos. 111: C → T Pos. 1664: A → T Pos. 2691: C → T Pos. 402: T → C Pos. 131: A → G tRNA valine Pos. 2787: T → Gap 12S Pos. 229: C → T Pos. 39: A → G Pos. 2812: T → C Pos. 9: T → C Pos. 244: A → T Pos. 46: T → C Pos. 2906: T → A Pos. 502: Gap → C Pos. 271: C → T Pos. 59: C → T Pos. 2946: G → T Pos. 601: A → G Pos. 383: T → C Pos. 69: G → A Pos. 2990: A → Gap Pos. 650: T → C Pos. 396: A → G Pos. 76: AG → T Pos. 2997: C → Gap Pos. 1113: C → T 12S 16S Pos. 3004: A → T Pos. 1118: C → T Pos. 180: C → T Pos. 0: G → A Pos. 3014: T → Gap Pos. 1579: A → G Pos. 251: G → A → → Pos. 107: C T Pos. 3036: T C 16S Pos. 646: C → T → → → Pos. 130: C A Pos. 3127: T C Pos. 188: A T Pos. 751: A → C → → → Pos. 234: A T Pos. 3143: A G Pos. 459: T A Pos. 1270: A → G → → → Pos. 294: A Gap Pos. 3145: T C Pos. 654: T A Pos. 1307: T → C → → → Pos. 323: C T Pos. 3236: Gap T Pos. 906: T A Pos. 1321: T → A → → → Pos. 376: A T Pos. 3268: C T Pos. 1085: T A Pos. 1521: G → A → → → Pos. 418: T C Pos. 3278: C T Pos. 1103: T C Pos. 1659: C → T → → → Pos. 600: Gap A Pos. 3287: T C Pos. 1741: C T tRNA valine → → → Pos. 630: A T Pos. 3298: G A Pos. 1826: T C Pos. 110: T → A → → → Pos. 636: T C Pos. 3385: T C Pos. 1948: T C 16S → → → Pos. 665: A T Pos. 3426: G A Pos. 2039: G A Pos. 12: C → T → → → Pos. 702: A G Pos. 3454: C T Pos. 2154: C A Pos. 355: C → T → → → Pos. 731: T C Pos. 3486: A G Pos. 2229: T A Pos. 498: T → C Pos. 784: C → A Pos. 3545: A → G Pos. 2267: A → T Pos. 691: G → A Pos. 807: G → A 28s Pos. 2820: A → T Pos. 767: A → G Pos. 818: C → T Pos. 205: A → G Pos. 2985: T → C Pos. 839: C → T Pos. 839: C → T Pos. 569: T → C Pos. 3326: T → C Pos. 1092: T → A Pos. 876: A → G Pos. 779: Gap → C 28S Pos. 1458: T → C Pos. 906: T → A Pos. 780: Gap → C Pos. 525: G → Gap Pos. 1718: T → C Pos. 908: T → A Pos. 1073: G → A RAG-1 Pos. 2057: T → C Pos. 954: G → A Pos. 1078: C → A Pos. 362 C → A Pos. 2240: A → G Pos. 968: G → A RAG-1 Pos. 395 T → C Pos. 2854: Gap → C Pos. 1012: T → Gap Pos. 117: A → G SIA Pos. 3010: C → T Pos. 1092: T → A Pos. 137: T → C Pos. 3: T → C Pos. 3027: T → C Pos. 1153: A → C Pos. 155: T → C Pos. 142: C → G Pos. 3242: Gap → T Pos. 1167: T → C Pos. 179: A → G Pos. 148: C → T 28S Pos. 1228: A → Gap Rhodopsin Tyrosinase Pos. 891: C → T Pos. 1253: Gap → C Pos. 28: A → T Pos. 37: C → T Pos. 1259: T → C Pos. 39: A → G Pos. 58: G → A Pseudacris Pos. 1310: C → A Pos. 135: C → T Pos. 86: C → A Cytochrome b 220 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 36: A → CT Pos. 336: G → A Pos. 777: A → C Pos. 137: C → T Pos. 39: T → C Pos. 386: A → T Pos. 853: A → T Pos. 140: A → C Pos. 71: A → C Pos. 566: Gap → A Pos. 874: T → C Pos. 145: C → T Pos. 153: C → T Pos. 600: T → A Pos. 906: T → C Pos. 149: A → G Pos. 189: C → T Pos. 729: T → A Pos. 982: A → G Pos. 153: T → C Pos. 253: T → C Pos. 880: C → A Pos. 1024: C → T Pos. 158: C → T Pos. 274: T → C Pos. 1101: T → C Pos. 1183: T → A Pos. 164: C → T Pos. 319: C → T Pos. 1316: A → T Pos. 1275: G → A Pos. 176: C → T Pos. 327: C → A Pos. 1330: A → T Pos. 1376: T → Gap Pos. 180: C → T Pos. 354: A → G Pos. 1614: T → Gap Pos. 1451: T → C Pos. 204: C → A Pos. 383: A → T Pos. 1632: Gap → C Pos. 1458: T → A Pos. 241: A → G 12S Pos. 1678: T → C Pos. 1870: A → T Pos. 265: C → T Pos. 556: Gap → A tRNA valine Pos. 1874: T → A Pos. 286: C → T Pos. 838: A → T Pos. 39: A → G Pos. 1878: C → A Pos. 311: A → G Pos. 843: T → C 16S Pos. 1928: C → A Pos. 367: C → T Pos. 1113: C → T Pos. 443: T → A Pos. 1948: T → A Pos. 399: C → T tRNA valine Pos. 853: A → G Pos. 1994: A → T 12S Pos. 59: C → T Pos. 906: T → C Pos. 2008: C → T Pos. 13: A → G Pos. 69: G → A Pos. 1103: A → T Pos. 2059: A → T Pos. 38: T → C 16S Pos. 1235: A → T Pos. 2069: T → A Pos. 41: T → C Pos. 664: A → T Pos. 1468: A → C Pos. 2151: T → C Pos. 70: C → T Pos. 1085: T → A Pos. 1743: Gap → T Pos. 2200: T → A Pos. 117: C → A Pos. 1211: A → Gap Pos. 2117: A → T Pos. 2398: A → T Pos. 149: Gap → A Pos. 1223: C → Gap Pos. 2267: A → T Pos. 2587: T → C Pos. 169: T → A Pos. 1561: C → T Pos. 2820: A → C Pos. 2785: A → C Pos. 227: T → C Pos. 1710: T → C Pos. 2849: A → T Pos. 2913: T → C Pos. 326: A → G Pos. 2025: C → T Pos. 3127: T → C Pos. 2975: A → T Pos. 352: A → G Pos. 2112: T → A SIA Pos. 3056: C → A Pos. 532: Gap → C → Pos. 2836: Gap T Pos. 232: A → G Pos. 3118: C → T Pos. 547: T → C → Pos. 3035: C T Pos. 292: G → A Pos. 3260: C → T Pos. 550: T → C → Pos. 3208: Gap T Pos. 3291: A → G Pos. 565: T → C Tlalocohyla 28S Pos. 3318: T → C Pos. 582: T → G → Pos. 464: G T Cytochrome b Pos. 3357: A → T Pos. 716: A → C → Pos. 525: G Gap Pos. 90: A → T Pos. 3428: C → T Pos. 733: T → A → Pos. 909: C A Pos. 128: A → T Pos. 3429: T → C Pos. 738: A → G Tyrosinase Pos. 158: C → T Pos. 3451: A → G Pos. 778: A → G → Pos. 191: A G Pos. 244: A → T Rhodopsin Pos. 814: C → T → Pos. 283: G T Pos. 259: C → T Pos. 185: C → A Pos. 864: C → Gap → Pos. 324: G A Pos. 322: A → C Pos. 262: G → A Pos. 869: C → T → Pos. 382: A C Pos. 330: C → T Pos. 296: T → G Pos. 880: C → T → Pos. 396: A C Pos. 381: C → T Pos. 300: C → T Pos. 1105: C → T → → Ptychohyla Pos. 387: T A SIA Pos. 1122: T C 12S → Pos. 1362: T → C Cytochrome b Pos. 3: T C Pos. 40: C → T → Pos. 1402: A → T Pos. 111: C → T Pos. 289: A C Pos. 61: C → A → Pos. 1405: A → G 12S Pos. 340: A G Pos. 131: T → C Pos. 1423: A → C Pos. 1113: C → T Tyrosinase Pos. 231: T → A → Pos. 1431: T → C Pos. 1422: A → G Pos. 0: A C Pos. 297: T → C → Pos. 1440: T → A 16S Pos. 6: A G Pos. 348: T → C → Pos. 1441: C → T Pos. 308: A → G Pos. 26: C G Pos. 353: G → A → Pos. 1549: A → C Pos. 1298: C → T Pos. 49: C T Pos. 378: G → A → Pos. 1561: A → T Pos. 1532: C → T Pos. 118: T C Pos. 437: C → T → Pos. 1761: C → T Pos. 1953: T → A Pos. 155: C G Pos. 521: T → G → Pos. 1762: G → A Pos. 2143: Gap → T Pos. 170: A C Pos. 528: A → C → tRNA valine Pos. 2785: T → C Pos. 171: G C Pos. 582: C → A Pos. 4: A → G Pos. 3278: C → T Pos. 177: A → C Pos. 970: A → C Pos. 59: C → T Pos. 3298: G → A Pos. 254: A → G Pos. 1001: A → C Pos. 327: T → C Pos. 69: G → A Smilisca Pos. 1122: T → A Pos. 453: T → C Pos. 90: A → G Cytochrome b Pos. 1265: T → C Pos. 466: A → C Pos. 101: A → G Pos. 119: CT → A Pos. 1346: T → A Pos. 108: T → C Triprion Pos. 198: T → A Pos. 1417: T → C 16S Pos. 274: T → C Pos. 1531: C → Gap Cytochrome b Pos. 162: T → G Pos. 280: C → T 16S Pos. 2: C → T Pos. 434: A → T Pos. 330: C → T Pos. 188: A → C Pos. 23: T → C Pos. 517: T → C Pos. 383: A → T Pos. 323: C → A Pos. 39: C → T Pos. 543: T → C Pos. 411: T → C Pos. 336: C → A Pos. 68: T → C Pos. 630: A → G 12S Pos. 399: A → T Pos. 79: A → G Pos. 656: T → C Pos. 206: A → G Pos. 459: T → A Pos. 88: C → T Pos. 726: A → T Pos. 231: T → A Pos. 589: C → T Pos. 94: C → T Pos. 780: C → T Pos. 244: A → T Pos. 634: T → A Pos. 126: T → G Pos. 839: T → C Pos. 330: C → T Pos. 718: T → C Pos. 127: T → C Pos. 890: A → G 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 221

APPENDIX 5 (Continued)

Pos. 914: A → G Pos. 2151: T → C Pos. 36: T → C Pos. 1468: A → G Pos. 1103: A → G Pos. 2618: T → A Pos. 145: A → G Pos. 1470: C → T Pos. 1174: T → C Pos. 2787: Gap → T Pos. 148: C → T Pos. 1718: T → C Pos. 1259: T → C 28S Pos. 211: C → T Pos. 1737: T → C Pos. 1436: T → A Pos. 249: C → Gap Pos. 235: G → A Pos. 1795: C → T Pos. 1443: T → C Pos. 327: T → Gap Pos. 373: C → T Pos. 1874: C → A Pos. 1480: T → C SIA Tyrosinase Pos. 1878: T → C Pos. 1650: Gap → C Pos. 331: A → G Pos. 0: AC → T Pos. 1928: T → C Pos. 1737: C → T Tyrosinase Pos. 4: C → G Pos. 1998: A → C Pos. 1741: C → A Pos. 315: C → A Pos. 212: G → A Pos. 2027: A → G Pos. 1817: A → G Pos. 429: T → C Pos. 268: C → T Pos. 2028: G → A Pos. 1948: T → C Pos. 481: T → G Pos. 333: A → T Pos. 2029: T → C Pos. 1953: T → C Pos. 372: T → C Pos. 2063: A → G Lophiohylini Pos. 2063: A → G Pos. 396: A → G Pos. 2072: T → C Pos. 2089: A → T Cytochrome b Pos. 2130: C → T Aparasphenodon brunoi Pos. 2142: C → A Pos. 3: C → A Pos. 2151: C → T Pos. 2587: T → C Pos. 36: A → C Cytochrome b Pos. 2203: A → C Pos. 2613: A → G Pos. 265: C → A Pos. 42: T → C Pos. 2240: A → G Pos. 2849: A → G Pos. 268: A → C Pos. 71: A → G Pos. 2253: A → G Pos. 2913: T → C Pos. 302: A → C Pos. 76: C → A Pos. 2395: A → G Pos. 2985: T → C 12S Pos. 97: C → T Pos. 2566: C → T Pos. 3081: A → T Pos. 24: A → T Pos. 105: A → G Pos. 2568: C → T Pos. 3209: G → A Pos. 285: A → C Pos. 108: G → A Pos. 2844: G → C Pos. 3249: C → T Pos. 593: T → C Pos. 152: C → T Pos. 2856: A → T Pos. 3326: C → T Pos. 672: C → A Pos. 164: C → T Pos. 2866: A → T RAG-1 Pos. 771: C → T Pos. 167: C → T Pos. 2982: C → T Pos. 68: A → C Pos. 817: G → A Pos. 183: C → T Pos. 2990: C → T Pos. 107: A → G Pos. 908: A → T Pos. 214: C → T Pos. 3014: T → C Pos. 122: A → G Pos. 1589: T → A Pos. 223: A → T Pos. 3032: T → C Pos. 302: C → T tRNA valine Pos. 235: A → G Pos. 3127: T → C SIA Pos. 6: G → A Pos. 247: C → T Pos. 3189: G → A Pos. 48: C → T Pos. 105: C → T Pos. 250: C → T Argenteohyla siemersi Pos. 106: C → A 16S Pos. 296: C → T Tyrosinase Pos. 138: Gap → AC Pos. 327: C → T Cytochrome b Pos. 12: C → T Pos. 573: A → T Pos. 330: C → T Pos. 3: C → T Pos. 22: G → A Pos. 736: T → A Pos. 331: C → T Pos. 17: A → G Pos. 49: C → T Pos. 758: A → T Pos. 367: C → T Pos. 57: A → G Pos. 248: G → T Pos. 814: T → A Pos. 396: A → G Pos. 63: C → T Pos. 268: C → T Pos. 836: A → C Pos. 399: C → T Pos. 76: C → T Pos. 312: C → T Pos. 878: C → T Pos. 414: C → T Pos. 108: G → C Pos. 394: A → C Pos. 978: G → A Pos. 415: C → T Pos. 109: G → A Pos. 401: G → A Pos. 1160: T → A Pos. 420: C → A Pos. 128: A → G Pos. 416: G → A Pos. 1174: T → C 12s Pos. 186: A → G Pos. 432: C → T Pos. 1419: T → C Pos. 10: A → G Pos. 223: A → G Pos. 450: C → G Pos. 1470: Gap → C Pos. 66: G → A Pos. 238: T → A Pos. 456: G → C Pos. 1710: T → C Pos. 68: A → C Pos. 239: C → T Pos. 481: G → T Pos. 1789: Gap → T Pos. 159: C → G Pos. 292: T → A Pos. 493: T → C Pos. 1842: A → Gap Pos. 183: A → C Pos. 311: A → G Pos. 506: G → A Pos. 1880: A → T Pos. 194: T → C Pos. 319: C → T Pos. 514: G → A Pos. 1953: T → A Pos. 206: A → T Pos. 334: G → A Pos. 2041: A → C Pos. 227: C → T Pos. 344: A → G ؉ Hylini Lophiohylini Pos. 2091: T → C Pos. 452: T → C Pos. 378: T → C Cytochrome b Pos. 2110: A → T Pos. 521: T → C Pos. 396: A → T Pos. 14: A → T Pos. 2156: A → C Pos. 550: C → T Pos. 408: A → T Pos. 97: A → C Pos. 2525: A → T Pos. 594: A → C 12S Pos. 310: C → A Pos. 2694: T → A Pos. 646: C → T Pos. 36: A → G 12S Pos. 2889: A → C Pos. 693: G → A Pos. 133: Gap → A Pos. 231: A → T Pos. 3004: A → C Pos. 864: C → Gap Pos. 141: Gap → T Pos. 761: T → C Pos. 3297: T → A Pos. 965: C → T Pos. 159: C → A Pos. 890: A → C 28S Pos. 970: A → C Pos. 285: C → A Pos. 965: T → C Pos. 390: C → T Pos. 1043: C → T Pos. 492: Gap → T Pos. 1116: A → C Pos. 532: Gap → A Pos. 1270: A → G Pos. 493: Gap → T 16S Pos. 544: G → C Pos. 1392: T → A Pos. 672: A → C Pos. 272: T → G RAG-1 Pos. 1402: G → C Pos. 673: C → T Pos. 383: T → A Pos. 89 T → C Pos. 1599: C → T Pos. 880: A → T Pos. 848: A → C Pos. 233 A → G Pos. 1636: C → T Pos. 1010: T → C Pos. 906: A → T Pos. 248 A → C Pos. 1670: C → T Pos. 1084: T → C Pos. 1223: Gap → C Pos. 317 T → C 16S Pos. 1309: A → T Pos. 1796: Gap → A Pos. 341 C → T Pos. 1085: T → C Pos. 1346: T → C Pos. 1817: T → A Pos. 371 A → T Pos. 1310: C → T Pos. 1392: T → C Pos. 2057: A → CT SIA Pos. 1325: C → T Pos. 1413: A → T 222 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 1422: G → A Pos. 416: A → G Pos. 997: C → T Pos. 475: C → T Pos. 1589: A → C Pos. 1025: T → C Corythomantis greenengi Itapotihyla langsdorf®i Pos. 1674: C → T Pos. 1049: T → Gap tRNA valine Cytochrome b Pos. 1080: Gap → A Cytochrome b → → Pos. 72: G → A Pos. 10: A C Pos. 1085: T → C Pos. 13: A C → → Pos. 98: G → A Pos. 45: C T Pos. 1174: C → A Pos. 14: T A → → 16S Pos. 60: A G Pos. 1261: G → T Pos. 17: A C → → Pos. 0: G → A Pos. 67: C T Pos. 1267: Gap → G Pos. 24: G A → → Pos. 11: C → T Pos. 71: A C Pos. 1451: T → G Pos. 36: C G → → Pos. 138: A → T Pos. 126: G A Pos. 1530: A → G Pos. 63: C T → → Pos. 172: A → C Pos. 127: C T Pos. 1614: A → T Pos. 91: T C Pos. 308: A → G Pos. 155: A → G Pos. 1620: T → C Pos. 115: C → T Pos. 356: T → C Pos. 211: C → T Pos. 1654: A → T Pos. 158: C → G Pos. 452: T → C Pos. 268: T → A Pos. 1705: T → A Pos. 227: A → T Pos. 726: A → C Pos. 274: C → T Pos. 1741: T → A Pos. 241: A → C Pos. 827: T → C Pos. 327: C → A Pos. 1817: A → Gap Pos. 244: A → T Pos. 831: A → T Pos. 381: C → T Pos. 1844: Gap → C Pos. 259: C → T Pos. 839: C → T Pos. 393: C → T Pos. 1865: T → A Pos. 277: T → C Pos. 1022: G → A Pos. 411: T → C Pos. 1893: G → A Pos. 296: C → T Pos. 1049: T → C 12S Pos. 1952: T → C Pos. 299: T → C Pos. 1062: T → C Pos. 18: T → C Pos. 2025: C → T Pos. 319: C → T Pos. 1278: T → C Pos. 24: T → C Pos. 2034: A → G Pos. 327: C → T Pos. 1443: T → C Pos. 34: T → C Pos. 2041: CT → G Pos. 334: A → C Pos. 1458: A → G Pos. 152: A → C Pos. 2043: A → T Pos. 344: A → G Pos. 1510: A → G Pos. 250: A → T Pos. 2058: A → C Pos. 363: A → G Pos. 1649: T → C Pos. 440: A → G Pos. 2068: T → C Pos. 383: A → T Pos. 1795: C → A Pos. 452: T → C Pos. 2107: A → T Pos. 396: A → C Pos. 1874: C → T Pos. 454: T → C Pos. 2120: A → T Pos. 420: A → G Pos. 1944: A → G Pos. 460: T → A Pos. 2122: T → C 12S Pos. 2016: T → C Pos. 576: A → T Pos. 2130: C → T Pos. 18: T → C Pos. 2024: G → A Pos. 593: C → T Pos. 2154: T → C Pos. 26: A → G Pos. 2091: C → T Pos. 683: A → G Pos. 2156: C → T Pos. 33: A → G Pos. 2125: T → C Pos. 729: T → C Pos. 2190: A → G Pos. 36: A → T Pos. 2187: A → G Pos. 775: G → A Pos. 2229: A → T Pos. 148: C → T Pos. 2203: A → T Pos. 814: C → T Pos. 2525: T → A Pos. 169: A → C Pos. 2233: T → C Pos. 864: C → T Pos. 2812: T → A Pos. 206: A → G Pos. 2250: C → A Pos. 875: C → A Pos. 2872: Gap → C Pos. 297: T → A Pos. 2263: C → T Pos. 965: C → T Pos. 3014: T → A Pos. 452: T → C Pos. 2267: T → C Pos. 1048: T → C Pos. 3032: T → C Pos. 541: C → A Pos. 2285: A → G Pos. 1144: T → C Pos. 3125: A → T Pos. 594: A → G Pos. 2345: C → T Pos. 1194: A → C 28S Pos. 615: T → C Pos. 2392: A → T Pos. 1297: T → C Pos. 563: G → T Pos. 650: T → C Pos. 2416: G → A Pos. 1307: T → C Pos. 569: A → T Pos. 672: A → G Pos. 2450: C → T Pos. 1315: A → C RAG-1 Pos. 683: A → G Pos. 2728: Gap → A Pos. 1316: A → G Pos. 59 G → A Pos. 743: A → T Pos. 2889: C → Gap Pos. 1376: A → G Pos. 110 C → T Pos. 761: C → T Pos. 3039: A → G Pos. 1509: A → G Pos. 131 G → A Pos. 880: A → T Pos. 3059: A → C Pos. 1585: A → T Pos. 197 T → C Pos. 989: A → G Pos. 3116: Gap → G 16S Pos. 201 A → C Pos. 1008: T → C Pos. 3199: A → G Pos. 3: A → G Pos. 233 G → A Pos. 1010: T → A Pos. 3285: G → A Pos. 107: T → A Pos. 398 A → C Pos. 1048: T → A Pos. 3397: Gap → G Pos. 138: A → C Rhodopsin Pos. 1118: C → A 28S Pos. 220: C → T Pos. 9: C → T Pos. 1269: T → C Pos. 262: C → Gap Pos. 411: C → A Pos. 135: C → T Pos. 1321: T → C Pos. 505: G → Gap Pos. 452: T → A Pos. 219: C → T Pos. 1343: T → C Pos. 532: A → T Pos. 543: T → C SIA Pos. 1392: T → C RAG-1 Pos. 606: C → A Pos. 27: G → A Pos. 1422: G → A Pos. 6: T → C Pos. 622: Gap → C Pos. 100: A → T Pos. 1429: C → A Pos. 128 T → G Pos. 625: T → C Pos. 151: C → A Pos. 1439: C → T Pos. 183 C → G Pos. 634: T → Gap Pos. 241: G → A Pos. 1631: Gap → T Pos. 324 G → C Pos. 665: A → C Tyrosinase Pos. 1649: A → Gap Pos. 380 C → T Pos. 667: A → G Pos. 58: G → A Pos. 1761: T → C SIA Pos. 668: T → C Pos. 144: G → C 16S Pos. 205: T → G Pos. 736: A → T Pos. 230: C → T Pos. 172: A → C Tyrosinase Pos. 751: C → A Pos. 257: C → T Pos. 347: C → T Pos. 91: C → T Pos. 758: T → C Pos. 270: G → A Pos. 355: C → A Pos. 284: C → T Pos. 777: A → T Pos. 321: C → T Pos. 376: A → T Pos. 312: T → C Pos. 787: T → C Pos. 342: C → T Pos. 498: T → C Pos. 324: G → A Pos. 844: A → T Pos. 360: G → T Pos. 548: A → C Pos. 339: C → A Pos. 863: C → T Pos. 435: C → T Pos. 634: A → C Pos. 351: C → T Pos. 890: G → A Pos. 450: C → T Pos. 753: A → T 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 223

APPENDIX 5 (Continued)

Pos. 757: A → G Pos. 101: T → A Pos. 2966: C → T Pos. 580: A → C Pos. 848: C → A Pos. 140: A → G Pos. 2975: A → G Pos. 625: T → G Pos. 863: C → T Pos. 145: T → G Pos. 2997: C → T Pos. 780: C → A Pos. 1004: G → A Pos. 150: T → C Pos. 3081: A → T Pos. 839: C → A Pos. 1077: T → G Pos. 161: A → G Pos. 3106: T → A Pos. 853: A → T Pos. 1211: A → G Pos. 170: A → C Pos. 3138: A → G Pos. 1353: A → T Pos. 1228: A → C Pos. 189: C → T Pos. 3230: C → T Pos. 1470: C → A Pos. 1246: T → A Pos. 201: T → C Pos. 3239: A → T Pos. 1607: T → C Pos. 1259: T → A Pos. 213: G → C Pos. 3272: Gap → T Pos. 1789: T → A Pos. 1278: T → C Pos. 217: T → A Pos. 3285: G → T Pos. 1823: T → C Pos. 1419: C → A Pos. 232: A → C Pos. 3326: C → T Pos. 2089: C → A Pos. 1443: T → G Pos. 238: T → G Pos. 3406: T → C Pos. 2233: T → C Pos. 1468: A → G Pos. 262: A → C Pos. 3425: C → T Pos. 2820: A → T Pos. 1727: A → Gap Pos. 268: T → A Pos. 3486: A → G Pos. 3054: T → C Pos. 1823: T → C Pos. 274: C → T Pos. 3516: A → C Osteocephalus Pos. 1932: T → A Pos. 290: C → T RAG-1 Pos. 1949: A → G Pos. 299: T → C 12S Pos. 58 A → G → Pos. 2043: A → C Pos. 316: C → T Pos. 46: A T Pos. 230 C → T → Pos. 2059: A → C Pos. 347: A → G Pos. 386: A T Pos. 266 C → T → Pos. 2089: C → T Pos. 365: T → C Pos. 521: T C Pos. 404 T → C → Pos. 2110: T → C Pos. 366: T → C Pos. 646: T C Pos. 425 G → A → Pos. 2112: T → A Pos. 376: T → C Pos. 673: T Gap Tyrosinase → Pos. 2115: A → T Pos. 383: A → G Pos. 675: A C Pos. 43: T → C → Pos. 2130: C → T Pos. 390: A → G Pos. 1327: A G Pos. 127: T → C Pos. 1579: G → T Pos. 2156: C → T Pos. 394: A → G Pos. 157: C → T tRNA valine Pos. 2176: C → T Pos. 408: A → G Pos. 218: G → A Pos. 98: G → A Pos. 2525: T → C 16S Pos. 294: C → T 16S Pos. 2669: A → T Pos. 996: A → G Pos. 357: T → C Pos. 367: T → A Pos. 2844: T → A Pos. 1103: T → C Pos. 381: C → T Pos. 498: T → A Pos. 2901: T → C Pos. 1153: C → T Pos. 396: G → A Pos. 576: A → T Pos. 2956: A → G Pos. 1228: A → G Pos. 444: G → T Pos. 616: A → G Pos. 2997: C → G Pos. 1242: T → C Pos. 526: C → T Pos. 1015: T → A Pos. 3010: T → A Pos. 1246: T → G Pos. 1741: T → C Phyllodytes Pos. 3014: T → A Pos. 1443: T → Gap Pos. 1813: T → A Pos. 3018: T → C Pos. 1503: A → G Cytochrome b Pos. 1839: C → A Pos. 3032: T → C Pos. 1574: A → T Pos. 10: A → C Pos. 1847: A → T Pos. 3239: A → G Pos. 1602: T → C Pos. 33: C → T Pos. 1948: C → A Pos. 3287: T → A Pos. 1607: T → G Pos. 46: C → T Pos. 2019: A → T 28S Pos. 1654: A → Gap Pos. 48: Gap → A Pos. 2041: C → A Pos. 312: C → T Pos. 1727: A → T Pos. 53: G → Gap Pos. 2058: A → T Pos. 1482: G → C Pos. 1766: Gap → C Pos. 68: C → A Pos. 2059: A → C → Pos. 1826: C → T Pos. 71: A → C Pos. 1483: T G Pos. 2080: A → C Pos. 1894: T → C Pos. 79: A → C RAG-1 Pos. 2117: T → C → Pos. 1925: C → T Pos. 111: C → T Pos. 4 C T Pos. 2244: T → A → Pos. 1960: A → G Pos. 136: C → T Pos. 44 A G Pos. 2308: T → C → Pos. 2030: G → A Pos. 183: A → T Pos. 71 G A Pos. 2450: C → T → Pos. 2034: A → G Pos. 199: G → A Pos. 173 C T Pos. 2508: T → C → Pos. 2091: C → A Pos. 201: A → T Pos. 311 C T Pos. 2509: C → T → Pos. 2094: A → G Pos. 214: C → T Pos. 357 C T Pos. 2538: C → T Pos. 2115: A → G Pos. 223: A → T Rhodopsin Pos. 2780: A → T → Pos. 2117: T → C Pos. 241: A → T Pos. 316: G A Pos. 3018: T → A Pos. 2200: A → G Pos. 244: A → C Tyrosinase RAG-1 → Pos. 2229: A → G Pos. 246: A → G Pos. 104: G A Pos. 127 T → C Pos. 148: C → T Pos. 2233: T → G Pos. 290: C → T Pos. 203: G → A Pos. 2265: T → C Osteopilus Pos. 331: CT → A Pos. 270: G → A Pos. 2279: T → A Cytochrome b Pos. 402: T → C Pos. 297: C → T Pos. 2288: A → G Pos. 127: C → T Pos. 403: G → A Pos. 399: A → T Pos. 2315: A → G Pos. 128: A → CT Pos. 414: T → A Pos. 444: G → A Pos. 2461: C → T Pos. 201: A → C 12S Pos. 459: C → T Pos. 2508: T → C Pos. 299: T → C Pos. 22: G → A Pos. 471: C → T Pos. 2518: A → C 12S Pos. 34: T → C Pos. 2525: T → C Pos. 36: A → G Pos. 45: T → C Nyctimantis rugiceps Pos. 2544: G → A Pos. 110: A → C Pos. 46: A → T Cytochrome b Pos. 2564: T → C Pos. 131: T → A Pos. 61: C → A Pos. 10: A → C Pos. 2570: A → T Pos. 368: A → G Pos. 251: G → A Pos. 39: C → T Pos. 2616: A → G Pos. 592: C → T Pos. 278: C → T Pos. 45: C → T Pos. 2643: A → G Pos. 781: A → C Pos. 281: A → C Pos. 53: G → A Pos. 2694: A → G Pos. 864: C → T Pos. 293: G → A Pos. 57: A → T Pos. 2737: Gap → T Pos. 1245: C → T Pos. 313: C → T Pos. 62: G → A Pos. 2889: C → A Pos. 1683: C → A Pos. 322: C → A Pos. 91: T → C Pos. 2937: A → T 16S Pos. 348: T → C 224 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 427: C → A Pos. 2139: Gap → C Pos. 507: T → G Pos. 2063: A → G Pos. 455: C → Gap Pos. 2268: C → A Pos. 529: C → T Pos. 2067: A → G Pos. 480: A → G Pos. 2284: G → A Pos. 537: T → G Pos. 2154: T → C Pos. 521: T → C Pos. 2312: T → A Pos. 2177: C → T Tepuihyla edelcae Pos. 547: A → Gap Pos. 2319: T → C Pos. 2217: T → C Pos. 601: A → C Pos. 2441: C → Gap 12S Pos. 2395: A → T → Pos. 619: G → A Pos. 2450: C → T Pos. 26: A G Pos. 2533: T → C → Pos. 621: A → G Pos. 2457: G → A Pos. 231: T A Pos. 2564: T → C → Pos. 670: A → G Pos. 2477: C → T Pos. 251: G A Pos. 2566: T → C → Pos. 816: A → T Pos. 2484: T → C Pos. 449: Gap C Pos. 2616: A → G → Pos. 864: C → T Pos. 2496: G → A Pos. 451: T C Pos. 2676: A → G Pos. 1061: T → A Pos. 2503: C → A Pos. 452: T → C Pos. 3010: T → A Pos. 1128: T → C Pos. 2518: A → G Pos. 454: T → C Pos. 3027: T → C Pos. 1135: G → A Pos. 2551: A → G Pos. 528: A → T Pos. 3056: T → C Pos. 1177: C → T Pos. 2568: C → T Pos. 594: A → G Pos. 3077: T → C Pos. 1187: C → T Pos. 2652: T → C Pos. 696: A → G Pos. 3111: G → A Pos. 1233: G → A Pos. 2711: C → T Pos. 875: C → A Pos. 3138: A → G Pos. 1316: A → G Pos. 2800: Gap → C Pos. 970: A → C Pos. 3140: C → T Pos. 1383: C → A Pos. 2856: T → A Pos. 989: A → G Pos. 3166: C → T Pos. 1405: A → G Pos. 2982: T → A Pos. 999: T → C Pos. 3222: C → T Pos. 1431: T → C Pos. 3039: A → T Pos. 1010: T → C Pos. 3234: T → A Pos. 1509: A → G Pos. 3041: G → A Pos. 1144: T → C Pos. 3287: T → C Pos. 1602: T → A Pos. 3127: T → C Pos. 1211: T → C Pos. 3295: T → C Pos. 1640: T → C Pos. 3166: C → Gap Pos. 1309: C → G Pos. 3298: G → A Pos. 1664: A → C Pos. 3173: G → A Pos. 1441: T → C Pos. 3439: T → C Pos. 1692: G → A Pos. 3189: G → A Pos. 1602: T → A RAG-1 tRNA valine Pos. 3267: Gap → T Pos. 1640: T → C Pos. 419: C → T Pos. 56: T → C Pos. 3277: G → A Pos. 1683: C → T Pos. 61: C → T Pos. 3299: C → T 16S Trachycephalus Pos. 76: A → G Pos. 3439: T → C Pos. 56: C → Gap Cytochrome b Pos. 77: A → T Pos. 3447: G → A Pos. 162: C → T Pos. 36: C → A Pos. 94: C → T Pos. 3449: C → A Pos. 220: T → A Pos. 173: A → C 16S Pos. 3458: T → C Pos. 336: C → A Pos. 201: A → C Pos. 2: T → C 28S Pos. 376: A → T Pos. 247: C → T Pos. 12: C → A Pos. 260: Gap → C Pos. 383: C → G 12S Pos. 130: C → A Pos. 261: Gap → C Pos. 411: C → T Pos. 169: A → T Pos. 367: AT → C Pos. 283: Gap → T Pos. 589: T → C Pos. 838: A → T Pos. 383: A → C Pos. 318: Gap → A Pos. 630: A → G Pos. 880: A → C Pos. 452: T → C Pos. 440: Gap → G Pos. 668: T → A Pos. 1636: C → Gap Pos. 483: A → T Pos. 441: Gap → G Pos. 671: A → G Pos. 1674: C → T Pos. 536: C → T Pos. 484: C → G Pos. 718: T → C 16S Pos. 579: A → G Pos. 738: Gap → G Pos. 736: A → G Pos. 130: C → A Pos. 592: T → C Pos. 741: Gap → C Pos. 742: T → A Pos. 188: AT → C Pos. 623: Gap → C Pos. 925: Gap → G Pos. 754: A → G Pos. 718: T → A Pos. 625: T → C Pos. 1048: Gap → G Pos. 755: A → G Pos. 836: C → A Pos. 658: A → Gap Rhodopsin Pos. 758: T → C Pos. 1259: T → C Pos. 668: T → Gap Pos. 10: G → A Pos. 814: A → T Pos. 1443: T → C Pos. 691: G → A Pos. 279: C → A Pos. 890: G → A Pos. 1470: C → A Pos. 780: C → T Pos. 296: T → C Pos. 996: A → G Pos. 1534: T → C Pos. 784: C → T Pos. 311: C → T Pos. 1012: T → C Pos. 2229: A → C Pos. 941: G → C SIA Pos. 1018: T → C Pos. 2525: T → C Pos. 960: G → A Pos. 106: C → T Pos. 1057: C → T Pos. 2753: A → C Pos. 968: G → A Pos. 250: C → T Pos. 1082: Gap → C Pos. 2827: Gap → T Pos. 969: A → G Tyrosinase Pos. 1160: A → C Pos. 3287: T → C Pos. 1009: G → A Pos. 22: G → A Pos. 1174: C → T RAG-1 Pos. 1085: T → A Pos. 43: T → C Pos. 1328: A → G Pos. 6 T → C Pos. 1140: A → T Pos. 52: C → T Pos. 1419: C → T Pos. 125 G → A Pos. 1223: C → A Pos. 73: A → G Pos. 1436: T → C Pos. 242 G → A Pos. 1259: T → C Pos. 103: G → A Pos. 1470: C → T Rhodopsin Pos. 1289: A → G Pos. 127: T → C Pos. 1534: T → C Pos. 96: T → C Pos. 1480: T → C Pos. 157: C → A Pos. 1699: A → T Pos. 154: C → A Pos. 1585: A → G Pos. 177: C → T Pos. 1705: T → G Pos. 160: C → T Pos. 1592: G → C Pos. 209: T → C Pos. 1727: A → T Pos. 209: C → T Pos. 1603: T → C Pos. 215: G → A Pos. 1783: C → T Pos. 220: G → A Pos. 1673: A → C Pos. 233: C → A Pos. 1796: A → T Tyrosinase Pos. 1699: A → C Pos. 256: G → A Pos. 1799: A → T Pos. 70: T → A Pos. 1839: T → C Pos. 282: A → C Pos. 1823: T → A Pos. 251: C → T Pos. 1925: A → T Pos. 285: C → T Pos. 1880: T → C Pos. 351: C → T Pos. 1928: C → G Pos. 343: G → A Pos. 1883: C → T Pos. 456: G → A Pos. 2030: G → A Pos. 345: G → T Pos. 1894: T → C Pos. 490: G → A Pos. 2058: A → C Pos. 490: G → A Pos. 2039: G → A Pos. 497: C → A 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 225

APPENDIX 5 (Continued)

→ Pos. 511: G A Pos. 1948: T → C 16S Pos. 550: T → A Phyllomedusinae Pos. 2045: A → C Pos. 220: T → A Pos. 599: T → C Cytochrome b Pos. 2069: A → T Pos. 479: Gap → A Pos. 613: C → T → Pos. 11: A C Pos. 2070: A → C Pos. 536: C → T Pos. 646: T → C Pos. 53: G → A Pos. 2127: G → A Pos. 904: T → C Pos. 673: C → T Pos. 71: A → T → → Pos. 78: C → Gap Pos. 2154: T A Pos. 2151: T C Pos. 692: T → C Pos. 88: C → T Pos. 2161: A → T Pos. 2312: T → A Pos. 729: T → A → Pos. 126: G A Pos. 2179: C → T Pos. 3097: C → T Pos. 776: G → A Pos. 134: C → T Pos. 2203: A → T Pos. 3111: G → A → Pos. 136: C → T Pos. 812: C T Pos. 204: C → T Pos. 2396: Gap → C Pos. 3290: A → T Pos. 862: Gap → T 12S Pos. 2669: A → T Pos. 869: C → A Cruziohyla calcarifer Pos. 13: G → A Pos. 2768: C → T Pos. 875: C → G Pos. 22: G → A Cytochrome b Pos. 2906: T → C Pos. 908: A → C Pos. 83: A → G Pos. 10: A → C Pos. 2953: A → G Pos. 1002: C → T Pos. 235: A → T Pos. 13: A → C Pos. 3041: G → A Pos. 1061: T → C Pos. 278: C → T Pos. 33: C → T Pos. 3097: A → C Pos. 1116: A → T Pos. 281: A → T Pos. 64: C → T Pos. 3126: A → T Pos. 1144: T → C Pos. 293: G → A Pos. 105: A → C Pos. 3145: T → A Pos. 1194: A → C Pos. 313: C → A → → Pos. 108: A C Pos. 3222: T C Pos. 1307: T → A Pos. 389: T → A → → Pos. 115: C T Pos. 3234: A Gap Pos. 1408: A → C Pos. 528: A → T → → Pos. 116: C T Pos. 3285: G A Pos. 1600: Gap → C Pos. 602: A → C → → Pos. 137: T A Pos. 3292: C T Pos. 1670: T → C Pos. 641: AT → G Pos. 144: C → T Pos. 3429: T → C Pos. 658: A → G → tRNA valine → Pos. 152: T C Pos. 3451: A G Pos. 3: A → T Pos. 672: C → A Pos. 158: C → G 28S → Pos. 771: C → T → Pos. 11: G A → Pos. 183: C A Pos. 223: Gap G Pos. 54: C → T Pos. 775: G → A Pos. 202: G → A Pos. 232: Gap → G Pos. 814: C → T → 16S → Pos. 214: C T Pos. 327: T G Pos. 3: A → Gap Pos. 817: G → A Pos. 265: C → T Pos. 505: G → T → Pos. 838: A → T → Pos. 4: A C → Pos. 271: C T Pos. 558: G T Pos. 14: Gap → C Pos. 900: T → A Pos. 290: C → T Pos. 564: Gap → A → Pos. 965: T → C → Pos. 51: Gap C → Pos. 306: A G Pos. 825: Gap C → Pos. 1166: Gap → C Pos. 313: A → G Pos. 107: A C Pos. 876: A → C → → Pos. 118: A → C Pos. 1321: T C → Pos. 327: C T Pos. 934: Gap T → Pos. 1392: T → C Pos. 334: A → C Pos. 172: A C Rhodopsin → → Pos. 294: A → G Pos. 1439: C T → Pos. 347: A C Pos. 10: A G → Pos. 1568: A → T Pos. 362: A → C Pos. 347: C T Pos. 16: A → T → Pos. 355: C → T tRNA valine → Pos. 411: T C Pos. 18: G T → Pos. 57: C → T Pos. 415: C → T Pos. 443: T A Pos. 93: C → T → Pos. 76: A → C 12S Pos. 452: T C Pos. 105: G → A 16S Pos. 61: C → T Pos. 539: Gap → A Pos. 145: C → T Pos. 403: Gap → A Pos. 73: T → C Pos. 544: Gap → C Pos. 427: T → C Agalychnis Pos. 88: C → T Pos. 573: A → Gap Pos. 579: A → G 12S Pos. 98: T → Gap Pos. 586: Gap → C Pos. 616: A → C Pos. 73: T → C Pos. 142: C → T Pos. 592: T → C Pos. 626: Gap → C Pos. 159: C → T Pos. 152: A → C Pos. 634: A → G Pos. 664: A → T Pos. 164: T → C Pos. 173: G → A Pos. 665: T → G Pos. 758: A → T Pos. 277: A → T Pos. 206: A → T Pos. 668: T → A Pos. 807: G → A Pos. 550: T → A Pos. 231: A → Gap Pos. 692: A → T Pos. 861: A → C Pos. 558: T → C Pos. 280: C → T Pos. 718: T → C Pos. 890: A → G Pos. 599: T → C Pos. 291: G → A Pos. 763: G → A Pos. 904: A → T Pos. 864: C → T Pos. 319: A → T Pos. 767: A → T Pos. 948: T → C Pos. 1144: T → C Pos. 359: A → T Pos. 784: C → T Pos. 1167: A → T Pos. 1321: C → T Pos. 370: A → T Pos. 788: C → T Pos. 1758: Gap → A Pos. 1539: C → T Pos. 391: C → T Pos. 798: T → C Pos. 1799: A → T tRNA valine Pos. 512: T → C Pos. 827: T → C Pos. 1819: A → T Pos. 39: T → C Pos. 521: T → C Pos. 920: G → A 226 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

APPENDIX 5 (Continued)

Pos. 972: T → A Pos. 3432: A → G Pos. 2866: A → Gap 16S Pos. 1008: A → C Pos. 3458: T → C Pos. 2875: A → Gap Pos. 94: A → Gap Pos. 1049: T → A Pos. 3499: C → T Pos. 2906: C → Gap Pos. 130: A → G Pos. 1153: A → T Pos. 3516: A → G Pos. 2946: A → C Pos. 272: T → A Pos. 1174: T → A 28S Pos. 3277: G → A Pos. 323: C → T Pos. 1235: C → T Pos. 207: Gap → G Pos. 3375: T → C Pos. 493: Gap → G Pos. 1242: C → T Pos. 208: C → T Rhodopsin Pos. 513: Gap → A Pos. 1468: T → A Pos. 238: G → Gap Pos. 305: C → T Pos. 580: A → G Pos. 1480: T → C Pos. 306: T → G Pos. 654: T → A Pachymedusa dacnicolor Pos. 1491: A → C Pos. 373: C → T Pos. 663: T → A 12S Pos. 1572: T → C Pos. 390: C → T Pos. 667: A → T Pos. 28: A → G Pos. 1631: T → C Pos. 509: G → Gap Pos. 772: Gap → A Pos. 33: A → G Pos. 1783: C → T Pos. 511: C → T Pos. 777: C → Gap Pos. 49: C → T Pos. 1817: T → C Pos. 516: G → A Pos. 807: A → G Pos. 117: A → T Pos. 1823: T → C Pos. 653: C → T Pos. 818: C → T Pos. 307: G → A Pos. 1826: T → A Rhodopsin Pos. 872: C → T Pos. 370: A → G Pos. 1887: T → C Pos. 6: T → C Pos. 959: A → G Pos. 381: C → T Pos. 1925: A → G Pos. 9: C → T Pos. 983: G → A → → Pos. 386: A T Pos. 2016: T → C Pos. 314: C T Pos. 1034: G → Gap Pos. 414: C → T Pos. 2018: T → A Pos. 1049: T → A Hylomantis Pos. 427: A → G Pos. 2039: G → A Pos. 1167: T → A Cytochrome b Pos. 434: G → A Pos. 2064: C → T Pos. 1208: Gap → A Pos. 33: C → T Pos. 451: T → C Pos. 2208: A → C Pos. 1268: C → T Pos. 98: C → T Pos. 480: A → G Pos. 2217: T → A Pos. 1281: T → C Pos. 126: A → G Pos. 519: Gap → G Pos. 2250: C → T Pos. 1370: Gap → T Pos. 170: T → C Pos. 601: C → T Pos. 2379: Gap → T Pos. 1371: Gap → T Pos. 204: T → C Pos. 646: T → C Pos. 2391: Gap → C Pos. 1468: T → C Pos. 250: T → A Pos. 658: G → A Pos. 2406: T → C Pos. 1491: A → T Pos. 274: C → T Pos. 672: A → C Pos. 2450: C → T Pos. 1699: T → A Pos. 316: T → C Pos. 733: T → A Pos. 2517: G → A Pos. 1855: A → T Pos. 402: T → C Pos. 736: A → T Pos. 2566: T → C Pos. 2007: A → T 12S Pos. 750: C → T → → Pos. 2581: C T Pos. 83: G → A Pos. 780: C → T Pos. 2033: A T → → Pos. 2605: G A Pos. 251: G → A Pos. 835: T → C Pos. 2041: A T → → Pos. 2616: A T Pos. 528: T → A Pos. 908: A → C Pos. 2049: G A → → Pos. 2652: T C Pos. 875: C → T Pos. 1105: A → T Pos. 2054: T C → → Pos. 2664: A T Pos. 1549: A → C Pos. 1128: T → C Pos. 2060: C T → → Pos. 2671: Gap C tRNA valine Pos. 1153: T → G Pos. 2070: C A → → Pos. 2711: C T Pos. 98: A → G Pos. 1166: C → T Pos. 2105: A G → → Pos. 2741: Gap C 16S Pos. 1187: C → T Pos. 2107: C T Pos. 2856: T → A Pos. 50: Gap → C Pos. 1233: G → A Pos. 2552: T → C Pos. 2913: T → C Pos. 252: Gap → T Pos. 1307: T → C Pos. 2606: A → G Pos. 2985: T → C Pos. 347: C → T Pos. 1317: A → G Pos. 2717: Gap → T Pos. 3010: T → A Pos. 399: T → Gap Pos. 1426: T → C Pos. 2797: Gap → C Pos. 3032: T → A Pos. 452: T → C Pos. 1429: C → A Pos. 2844: A → T Pos. 3048: A → T Pos. 459: T → C Pos. 1439: T → C Pos. 2913: T → G Pos. 3071: A → T Pos. 625: T → C Pos. 1509: A → G Pos. 3071: A → T Pos. 3083: T → C Pos. 774: T → A Pos. 1622: Gap → G Pos. 3083: T → C Pos. 3088: A → G Pos. 1160: T → A Pos. 1630: A → T Pos. 3121: A → T Pos. 3195: Gap → T Pos. 1242: C → T Pos. 1761: T → C Pos. 3181: G → A Pos. 3199: A → C Pos. 1278: T → C tRNA valine Pos. 3189: G → T Pos. 3303: C → T Pos. 1334: A → T Pos. 6: G → A Pos. 3199: A → T Pos. 3310: A → T Pos. 1737: T → C Pos. 34: Gap → T Pos. 3249: G → Gap Pos. 3316: A → T Pos. 1783: C → T Pos. 55: A → C Pos. 3260: C → Gap Pos. 3320: G → A Pos. 2112: T → Gap Pos. 84: T → C Pos. 3266: C → T Pos. 3357: A → T Pos. 2605: G → A Pos. 95: C → T Pos. 3268: C → T Pos. 3431: C → T Pos. 2616: A → T Pos. 105: C → T Pos. 3291: A → T 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 227

APPENDIX 5 (Continued)

Pos. 3439: T → C Pos. 761: T → C Pos. 434: G → A Pos. 621: A → G Pos. 3504: C → T Pos. 780: C → T Pos. 530: Gap → C Pos. 661: A → G Pos. 3507: C → T Pos. 822: A → T Pos. 864: C → A Pos. 880: A → C SIA Pos. 861: C → A Pos. 1066: C → T Pos. 1174: C → T Pos. 93: C → T Pos. 1085: T → A Pos. 1130: Gap → C Pos. 1303: A → T Pos. 220: G → A Pos. 1324: A → T Pos. 1177: T → Gap Pos. 1317: A → T Phasmahyla Pos. 1510: A → T Pos. 1585: T → A Pos. 1670: T → A → → Cytochrome b Pos. 1534: A Gap Pos. 1614: A T tRNA valine → → Pos. 10: A → C Pos. 1606: Gap A tRNA valine Pos. 98: A G → → Pos. 36: A → T Pos. 1699: T Gap Pos. 98: A G 16S Pos. 1705: T → A 16S Pos. 265: Gap → A Pos. 99: T → C Pos. 1787: C → T Pos. 348: Gap → A Pos. 459: T → A Pos. 137: T → A Pos. 1874: T → C Pos. 427: C → T Pos. 643: Gap → A Pos. 173: A → T Pos. 1878: C → T Pos. 483: T → C Pos. 821: T → A Pos. 207: C → T Pos. 1932: T → C Pos. 573: A → T Pos. 902: T → A Pos. 248: C → T Pos. 1951: A → T Pos. 610: T → C Pos. 914: C → A Pos. 250: T → A Pos. 1964: C → T Pos. 634: A → T Pos. 959: A → G Pos. 280: C → T Pos. 2018: T → A Pos. 1025: T → C Pos. 1077: T → A Pos. 356: C → T Pos. 2026: A → C Pos. 1077: T → A Pos. 1085: T → A Pos. 362: A → T Pos. 2028: G → A Pos. 1153: A → C Pos. 1235: C → A Pos. 380: C → T Pos. 2030: G → T Pos. 1274: A → G Pos. 1324: A → C 12S Pos. 2057: A → T Pos. 1737: T → C Pos. 1447: Gap → C Pos. 61: C → T Pos. 2059: A → T Pos. 1819: T → A Pos. 1725: Gap → T Pos. 69: C → T Pos. 2112: T → A Pos. 1897: T → C Pos. 1896: A → C Pos. 142: C → T Pos. 2345: C → T Pos. 2045: C → T Pos. 1900: C → T Pos. 173: G → A Pos. 2381: T → A Pos. 2094: A → Gap Pos. 1945: G → A Pos. 281: T → A Pos. 2398: C → T Pos. 2107: C → A Pos. 2112: T → A Pos. 319: A → T Pos. 2416: G → A Pos. 2203: T → C Pos. 2200: T → A Pos. 432: T → A Pos. 2422: C → T Pos. 2217: T → C Pos. 2224: A → T Pos. 518: Gap → C Pos. 2552: T → C Pos. 2233: T → A Pos. 2267: T → A Pos. 547: A → T Pos. 2566: T → C Pos. 2285: A → G Pos. 2268: C → A Pos. 600: T → C Pos. 2581: C → T Pos. 2567: T → C Pos. 2381: T → A Pos. 835: T → C Pos. 2583: A → G Pos. 2664: A → T Pos. 2676: A → T Pos. 861: Gap → C Pos. 2586: C → T Pos. 3143: G → A Pos. 2719: T → C Pos. 908: A → C Pos. 2674: C → T RAG-1 Pos. 2860: Gap → A Pos. 989: A → T → → Pos. 3086: T → A → Pos. 2711: C T Pos. 68 A G Pos. 1036: C T → Pos. 2975: A → T Rhodopsin Pos. 3181: G A → Pos. 1048: T A → Pos. 3036: T → A Pos. 133: C → T Pos. 3260: C T → Pos. 1058: Gap T → Pos. 3059: A → C Pos. 305: C → T Pos. 3274: A T → Pos. 1164: Gap T → Pos. 3111: G → A Pos. 314: C → T Pos. 3280: A T → Pos. 1233: G A → Pos. 3140: C → T SIA Pos. 3297: T A Pos. 1454: G → A Pos. 3199: A → G Pos. 148: C → T RAG-1 Pos. 1549: A → T → Pos. 3230: T → C Tyrosinase Pos. 8 A G Pos. 1645: T → C → Pos. 3323: A → T Pos. 2: T → C Pos. 89 T C tRNA valine → Pos. 3375: T → Gap Pos. 444: C → T Pos. 134 C T Pos. 59: C → T → Pos. 3484: G → A Pos. 350 C T Pos. 69: G → A Pelodryadinae → Pos. 3491: C → A Pos. 410 C T Pos. 82: C → T Cytochrome b Pos. 3551: C → T Rhodopsin 16S Pos. 62: G → T Pos. 99: G → A Pos. 162: C → T Phyllomedusa Pos. 164: C → T Pos. 270: A → T Pos. 343: Gap → T 12S 12S Tyrosinase Pos. 355: C → T Pos. 65: C → A Pos. 61: C → A Pos. 273: C → G Pos. 580: A → C Pos. 251: G → A Pos. 169: A → Gap Pos. 282: A → C Pos. 668: T → A Pos. 313: A → T Pos. 194: T → C Pos. 449: C → G Pos. 718: T → A Pos. 327: A → T Pos. 432: T → A Pos. 455: T → C Pos. 751: C → T Pos. 391: C → T Pos. 619: G → A Pos. 456: G → A 228 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Note added in proof While this paper was in press, two relevant contributions were published, each one describing a new species of Hyla. KoÈhler et al. (2005) described Hyla coffea, and tentatively assigned it to the Hyla microcephala group. For these reasons, we include this species in the resurrected genus Dendropsophus, as Dendropsophus coffea (KoÈhler, Jungfer, and Reichle, 2005) new comb. We follow the authors in tentatively assigning it to the Dendropsophus microcephalus group, increasing the number of species currently included in this group to 31. Carvalho e Silva and Carvalho e Silva (2005) described as Hyla eugenioi the species that we included in this paper as Hyla sp. 1 (aff. H. ehrhardti). Therefore, we include this species in Aplastodiscus, as Aplastodiscus eugenioi (Carvalho e Silva and Carvalho e Silva, 2005) new comb. Following our results, and the authors' assigning the species to the former Hyla albofrenata complex of the H. albomarginata group, we consider it a member of the Aplastodiscus albofrenatus group, increasing to seven the number of species of the group. Carvalho e Silva and Carvalho e Silva (2005) also noticed that the species of the former Hyla albofrenata complex of the H. albomarginata group (now the Aplastodiscus albofrenatus group) have a red-orange iris, while spe- cies of the former H. albosignata complex (now the Aplastodiscus albosignatus group) have a characteristic ring (red externally, gray internally).

References Carvalho e Silva, A.M.P.T., and S.P. Carvalho e Silva. 2005. New species of the Hyla albofrenata group, from the states of Rio de Janeiro and SaÄo Paulo, Brazil (Anura, Hylidae). Journal of Herpetology 38: 73±81. KoÈhler, J., K.H. Jungfer, and S. Reichle. 2005. Another new species of small Hyla (Anura, Hylidae) from amazonian sub-andean forest of western Bolivia. Journal of Herpetology 39: 43±50. 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 229

INDEX Numbers in bold indicate pages where only species groups are mentioned.

Acris barbouri 127 hylax 83, 157 crepitans 10, 32, 99, 152, 175 ibitiguara 84, 157 gryllus 10, 32, 99, 152, 175 ibitipoca 83, 157 Adenomera sp. 10, 197 izecksohni 83, 157 Agalychnis annae 19, 113, 172 langei 83, 123, 158 calcarifer 11, 19, 54, 113, 114, 172, 192 lucianae 83, 158 callidryas 11, 19, 113, 172, 182 luctuosa 83, 158 craspedopus 11, 54, 114, 172 martinsi 83, 123, 158 litodryas 11, 19, 113, 172, 192 nanuzae 83, 123, 159, 159 moreletii 19, 113, 172 pseudopseudis 83, 84, 123, 153, 157, 161, 162, saltator 11, 19, 113, 172, 193 207 spurrelli 19, 113, 172 ravida 83, 161 Allophryne ruthveni 12, 14, 194 saxicola 84, 162 Alsodes gargola 12, 50, 198 sazimai 83, 123, 162 Amphodus wuchereri 109 Brachycephalus ephippium 12, 14, 49, 195 Anotheca spinosa 10, 32, 41, 74, 99, 152, 175, Bromeliohyla bromeliacia 99, 154, 216 215 dendroscarta 99, 155 Aparasphenodon bokermanni 38, 108, 152 Bufo arenarum 12, 195 brunoi 10, 38, 108, 123, 152, 175, 222 marmoratus 90 venezolanus 38, 108, 152 Aplastodiscus albofrenatus 82, 152, 153, 156, Calamita melanorabdotus 111 159, 163, 205 quadrilineatus 111 albosignatus 82, 152, 154, 157, 158, 162, 206 Calyptahyla crucialis 39, 73 arildae 82, 153 Centrolene prosoblepon 12, 14, 195 callipygius 82, 154 Centrolenella pulidoi 203 cavicola 82, 154 Ceratophrys cranwelli 12, 50, 196 cochranae 10, 41, 78, 82, 152, 175 Charadrahyla altipotens 99, 104, 153 ehrhardti 82, 156 chaneque 100, 104, 155 ¯umineus 82, 156 nephila 100, 159 ibirapitanga 82, 156 taeniopus 100, 162 leucopygius 82, 158 trux 100, 163 musicus 82, 159 Cinclidium granulatum 85 perviridis 10, 41, 60, 75, 78, 80, 82, 152, 175, Cochranella bejaranoi 12, 14, 196 206 siren 201 sibilatus 82, 162 Colostethus talamancae 12, 14, 196 weygoldti 82, 163 Cophomantis punctillata 85 Argenteohyla siemersi 10, 38, 73, 152, 175, 222 Corythomantis greeningi 10, 38, 108, 109, 152, siemersi pederseni 38 175, 222 Atelognathus patagonicus 12, 198 Crossodactylus schmidti 12, 50, 196 Cruziohyla calcarifer 113, 114, 118, 172, 226 Atelopus varius 12, 195 craspedopus 113, 114, 172 Cryptobatrachus sp. 11, 191 Batrachyla leptopus 12, 198 Cyclorana australis 12, 19, 194 Bokermannohyla ahenea 83, 152 brevipes 19 alvarengai 84, 153 platicephala 19 astartea 83, 153 caramaschii 83, 154 Dendrobates auratus 12, 14, 196 carvalhoi 83, 154 tinctorius 86 circumdata 82, 83, 87, 123, 128, 152, 153, 154, Dendrophryniscus minutus 12, 195 155, 156, 157, 158, 159, 161, 162, 207 Dendropsophus acreanus 91, 152 claresignata 83, 155 allenorum 93, 153 clepsydra 83, 155 amicorum 93, 153 feioi 83, 155 anataliasiasi 92, 153 gouveai 83, 155 anceps 91, 123, 153 230 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Dendropsophus (continued) parviceps 93, 153, 154, 156, 157, 158, 159, aperomeus 92, 121, 153 160, 161, 162, 163, 211 araguaya 92, 153 pauiniensis 93, 160 battersbyi 93, 121, 153 pelidna 91, 160 berthalutzae 92, 154 phlebodes 92, 119, 160 bifurcus 91, 154 praestans 90, 121, 160 bipunctatus 92, 154 pseudomeridianus 92, 160 bogerti 90, 154 rhea 92, 161 bokermanni 93, 154 rhodopeplus 92, 161 branneri 92, 154 riveroi 92, 161 brevifrons 93, 154 robertmertensi 92, 119, 161 cachimbo 92, 154 rossalleni 91, 161 carnifex 90, 154 rubicundulus 92, 153, 154, 155, 156, 157, 161, cerradensis 92, 155 163 columbianus 90, 121, 154, 155 ruschii 93, 161 cruzi 92, 155 sanborni 92, 161 decipiens 92, 154, 155, 157, 159 sarayacuensis 91, 162 delarivai 93, 121, 155 sartori 92, 119, 162 dutrai 91, 156 schubarti 93, 162 ebraccatus 91, 118, 156 seniculus 91, 123, 162 soaresi 91, 162 elegans 91, 156 stingi 93, 121, 162 elianeae 92, 156 studerae 92, 162 garagoensis 90, 91, 121, 128, 156, 159, 160, subocularis 93, 119, 162 163 timbeba 93, 163 gaucheri 93, 156 tintinnabulum 93, 163 giesleri 93, 123, 156 triangulum 91, 163 grandisonae 93, 156 tritaeniatus 92, 163 gryllatus 92, 156 virolinensis 90, 163 haddadi 92, 157 walfordi 92, 163 haraldschultzi 93, 157 werneri 92, 163 jimi 92, 157 xapuriensis 93, 163 joannae 92, 157 yaracuyanus 93, 121, 163 koechlini 93, 157 Duellmanohyla chamulae 32, 69, 100, 152 labialis 91, 121, 123, 158, 159, 160 ignicolor 32, 69, 100, 152 leali 92, 158 lythrodes 32, 69, 100, 124, 152 leucophyllatus 91, 153, 154, 156, 158, 161, ru®oculis 10, 32, 100, 124, 152, 175 162, 163, 210 salvavida 32, 69, 100, 152 limai 93, 158 schmidtorum 32, 69, 100, 152 luteoocellatus 93, 158 soralia 10, 32, 69, 100, 152, 175 marmoratus 91, 152, 156, 158, 159, 162, 211 uranochroa 32, 100, 124, 152 mathiassoni 92, 158 Dydinamipus sjoestedti 12, 195 melanargyreus 91, 158 meridensis 91, 159 Ecnomiohyla echinata 100, 156 meridianus 92, 159 ®mbrimembra 100, 124, 156 microcephalus 91, 92, 118, 153, 154, 155, 156, miliaria 100, 124, 159 157, 158, 159, 161, 162, 163, 211 minera 100, 159 microps 93, 159 miotympanum 100, 159 minimus 92, 158, 159, 161 phantasmagoria 100, 160 minusculus 92, 159 salvaje 100, 161 minutus 92, 93, 123, 153, 155, 158, 159, 163 thysanota 100, 124, 162 miyatai 92, 159 tuberculosa 100, 119, 163 nadhereri 91, 159 valancifer 100, 163 nanus 92, 159 Edalorhina perezi 12, 197 novaisi 91, 159 Eleutherodactylus pluvicanorus 12, 197 oliveirai 92, 159 thymelensis 12, 197 padreluna 90, 159 Eupsophus calcaratus 12, 50, 198 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 231

Exerodonta abdivita 101, 152 amicorum 31, 153 bivocata 101, 154 anataliasiasi 31, 92, 153 catracha 101, 154 anceps 11, 31, 65, 90, 91, 153, 186 chimalapa 101, 155 andersonii 11, 32, 35, 36, 66, 72, 102, 153, 178 juanitae 101, 157 andina 10, 25, 76, 153, 183 melanomma 101, 158 angustilineata 35, 153 perkinsi 101, 160 annectans 10, 33, 102, 153, 177 pinorum 101, 160 aperomea 30, 153 smaragdina 101, 162 araguaya 31, 92, 153 sumichrasti 100, 101, 155, 162, 164, 218 arborea 10, 32, 33, 34, 66, 72, 101, 102, 124, xera 100, 164 125, 127, 153, 155, 157, 159, 161, 162, 163, 177, 218 Fejervarya limnocharis 12, 199 arborescandens 10, 34, 66, 68, 104, 153, 182 Flectonotus sp. 11, 17, 191 arboricola 34, 102, 153 arenicolor 10, 32, 33, 34, 35, 102, 153, 179 Garbeana garbei 94 arianae 21 Gastrotheca cf. marsupiata 11, 192 arildae 10, 21, 22, 153, 176 cornuta 11, 16, 192 armata 10, 26, 27, 40, 57, 84, 153, 155, 177 coronata 99 aromatica 10, 40, 54, 59, 76, 89, 153, 157 ®ssipes 11, 16, 192 astartea 10, 23, 74, 153, 179 marsupiata 11, 16 atlantica 25, 88, 153 nicefori 16 aurantiaca 97 ovifera 11, 16 auraria 111, 153, 202, 203 plumbea 16 aurata 94 pseustes 11, 15, 192 avivoca 10, 32, 36, 102, 153, 185 riobambae 15 balzani 10, 25, 76, 153, 183 battersbyi 31, 153 Heleophryne purcelli 12, 13, 196 baudinii 106 Hemiphractus helioi 11, 16, 49, 192 beckeri 25, 87, 153 Hemisus marmoratus 12, 196 Hyalinobatrachium eurignathum 12, 14, 196 benitezi 11, 26, 60, 86, 153, 186 estevesi 85, 152, 203 berthalutzae 10, 27, 28, 29, 92, 154, 179 taylori 20 bifurca 28, 154 Hyla abdivita 34, 101, 152 biobeba 22, 23 acreana 29, 152 bipunctata 10, 29, 31, 90, 154, 181 ahenea 23, 152 bischof® 10, 24, 25, 88, 154, 183 albofrenata 10, 21, 41, 45, 54, 56, 60, 76, 78, bistincta 10, 33, 37, 66, 68, 70, 104, 153, 154, 80, 152, 153, 156, 159, 163 155, 158, 159, 160, 161, 162, 177 alboguttata 111, 152 bivocata 34, 101, 154 albolineata 21 boans 10, 21, 22, 23, 26, 54, 56, 57, 59, 60, 61, albomarginata 10, 12, 21, 22, 24, 26, 41, 45, 75, 86, 87, 88, 154, 155, 156, 158, 160, 161, 54, 56, 57, 59, 60, 61, 75, 76, 78, 85, 86, 87, 163, 177 152, 153, 154, 156, 157, 159, 160, 161, 162, bocourti 34, 102, 154 163, 176 bogerti 27, 154 albonigra 25, 152, 158 bogotensis 10, 21, 26, 27, 57, 76, 80, 84, 153, albopunctata 10, 21, 22, 26, 45, 56, 59, 60, 61, 154, 155, 157, 158, 160, 162, 163 75, 76, 85, 86, 152, 158, 159, 161, 176 bokermanni 30, 31, 64, 154 albopunctulata 21, 26, 27, 152 branneri 29, 31, 154 albosignata 10, 21, 22, 41, 45, 54, 56, 60, 76, brevifrons 10, 30, 31, 64, 154, 182 78, 80, 152, 154, 157, 158, 162, 176 bromeliacia 10, 33, 66, 69, 70, 74, 99, 154, albovittata 152, 202 155, 178 alemani 24, 76, 88, 152 buriti 25, 87, 154 allenorum 30, 31, 64, 153 cachimbo 31, 92, 154 altipotens 35, 153 cadaverina 36 alvarengai 23, 25, 26, 59, 82, 83, 153 caingua 10, 25, 154, 183 alytolylax 27, 153 calcarata 10, 24, 56, 57, 86, 154, 179 ameibothalame 33, 153 callipeza 27, 154 americana 153 callipleura 25, 154 232 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Hyla (continued) ehrhardti 21, 22, 156 callipygia 10, 21, 22, 154, 176 elegans 28, 64, 156 calthula 10, 33, 154, 177 elianeae 31, 92, 156 calvicollina 33, 68, 154 elongata 29, 31 calypsa 34, 71, 154 ericae 10, 25, 61, 156, 184 caramaschii 23, 154 euphorbiacea 10, 32, 34, 102, 156, 179 carnifex 10, 27, 154, 179 exastis 23, 87, 156 carvalhoi 23, 76, 154 eximia 10, 32, 33, 34, 35, 36, 49, 66, 72, 101, catharinae 42 102, 124, 125, 153, 154, 156, 157, 160, 162, catracha 34, 101, 154 163, 179, 218 caucana 27, 154 faber 10, 20, 22, 23, 25, 45, 56, 61, 76, 87, cavicola 10, 21, 22, 155, 176 156, 178 celata 33, 154 fasciata 10, 24, 56, 57, 76, 86, 156, 179 cembra 33, 155 feioi 23, 156 cerradensis 31, 92, 155 femoralis 10, 32, 33, 36, 49, 66, 102, 156, 185 cf. callipleura 25 ®mbrimembra 35, 156 chaneque 35, 155 ¯uminea 21, 156 charadricola 33, 68, 155 freicanecae 25, 156 charazani 10, 26, 76, 155, 177 frontalis 90 chimalapa 11, 35, 100, 155, 184 fuentei 26, 156 chinensis 32, 33, 102, 155 fusca 111, 156 chlorostea 40, 111, 121, 155 fuscovaria 204 chryses 33, 68, 155 garagoensis 20, 27, 28, 31, 65, 66, 74, 90, 156, chrysoscelis 32, 36, 102, 155 159, 163 cinerea 10, 32, 33, 35, 36, 66, 101, 102, 155, gaucheri 30, 31, 156 156, 162, 178, 218 geographica 10, 21, 24, 26, 54, 56, 57, 59, 60, cipoensis 25, 87, 155 61, 75, 76, 85, 86, 88, 89, 154, 155, 156, circumdata 10, 21, 22, 23, 24, 25, 26, 49, 54, 157, 159, 160, 161, 162, 179 59, 60, 76, 82, 152, 153, 154, 155, 156, 157, giesleri 28, 30, 31, 63, 156, 182 158, 159, 161, 162, 179 godmani 10, 34, 41, 66, 67, 70, 104, 107, 156, claresignata 20, 21, 23, 59, 60, 74, 82, 155 158, 160, 162 clepsydra 23, 76, 155 goiana 21, 25, 76, 87, 156 columbiana 10, 27, 31, 65, 154, 155 goinorum colymba 27, 155, 178 gouveai 23, 156 cordobae 10, 21, 25, 155, 183 graeceae 35, 156 crassa 33, 155 grandisonae 30, 31, 156 crepitans 10, 21, 22, 23, 25, 56, 61, 85, 87, 155, granosa 10, 21, 24, 26, 54, 56, 57, 60, 76, 80, 177 85, 86, 88, 152, 156, 160, 162, 180 crucialis 109 gratiosa 10, 33, 66, 101, 102, 157, 178 crucifer 36, 105 gryllata 29, 156 cruzi 29, 155 guentheri 11, 25, 157, 184 cyanomma 33, 155 guibei 24 cyclada 10, 34, 66, 68, 104, 155, 182 haddadi 28, 29, 92, 157 cymbalum 25, 155 hadroceps 39 dasynota 90 hallowelli 33, 102, 157 debilis 34, 103, 155 haraldschultzi 31, 157 decipiens 10, 27, 28, 29, 61, 65, 91, 92, 154, hazelae 34, 68, 71, 104, 157 155, 157, 159 heilprini 11, 26, 39, 56, 60, 61, 86, 157, 186 delarivai 30, 155 helenae 111, 157 dendrophasma 35, 66, 68, 100, 106, 155, 185 hobbsi 25, 88, 157 dendroscarta 33, 69, 155 hutchinsi 24, 86, 157 dentei 24, 86, 156 hylax 10, 23, 49, 157, 179 denticulenta 27, 155 hypochondrialis 116 dolloi 96, 156, 203 hypselops, 157 dutrai 29, 156 ibirapitanga 22, 157 ebraccata 10, 28, 61, 65, 156, 181 ibitiguara 24, 83, 157 echinata 35, 156 ibitipoca 23, 157 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 233

imitator 111, 157 melanomma 10, 34, 66, 68, 158, 182 immaculata 33, 102, 157 melanopleura 21, 25, 61, 159 inframaculata 111, 157 melanorabdota 158 infucata 35, 157 meridensis 28, 159 infulata 85 meridiana 29, 159 inparquesi 10, 40, 57, 76, 78, 80, 89, 157, 177 meridionalis 32, 33, 102, 127, 159 insolita 34, 71, 102, 157 microcephala 10, 27, 28, 29, 30, 31, 61, 63, 64, intermedia 33, 102, 157 65, 66, 91, 92, 154, 156, 157, 158, 159, 160, izecksohni 23, 157 161, 162, 163, 181 jahni 27, 76, 78, 157 microderma 10, 24, 57, 60, 86, 159, 180 japonica 10, 32, 33, 66, 72, 102, 124, 157, 177 microps 28, 29, 30, 31, 63, 64, 159 jimi 31, 92, 157 miliaria 11, 35, 66, 68, 69, 70, 71, 155, 156, joannae 29, 157 159, 185 joaquini 11, 21, 25, 61, 76, 157, 184 minera 35, 159 juanitae 34, 68, 101, 157 minima 10, 27, 30, 65, 153, 158, 159, 161, 162 kanaima 10, 24, 57, 59, 80, 89, 157, 180 minuscula 29, 159 karenanneae 96, 158, 206 minuta 10, 27, 29, 30, 31, 64, 65, 93, 155, 159, koechlini 30, 31, 157 182 labedactyla 33, 68, 158 miocenica 127 labialis 10, 27, 28, 64, 65, 158, 159, 160, 180 mio¯oridiana 127 lactea 97 miotympanum 10, 33, 34, 35, 68, 69, 70, 71, lancasteri 29, 34, 71, 103, 158 100, 152, 153, 154, 155, 157, 158, 159, 160, lanciformis 10, 22, 86, 158, 176 182 langei 24, 158 mixe 10, 34, 70, 103, 104, 159, 182 langsdorf®i 22, 109, 158 mixomaculata 34, 66, 68, 70, 74, 101, 103, 104, larinopygion 10, 26, 27, 40, 57, 78, 84, 155, 159, 160 158, 159, 160, 161, 162 miyatai 30, 159, 181 lascinia 27, 158 molitor 111, 159 latistriata 11, 25, 87, 158, 184 moraviensis 29 leali 29, 30, 158 multifasciata 10, 22, 45, 76, 86, 159, 176 lemai 11, 26, 60, 78, 158, 180 musica 21, 159 leonhardschultzei 106 mykter 33, 159 leptolineata 11, 25, 87, 158, 184 nadhereri 29, 64, 65, 159 leucocheila 22, 158 nana 10, 29, 31, 63, 65, 92, 159, 181 leucophyllata 10, 27, 30, 63, 64, 65, 66, 154, nanuzae 23, 159 156, 158, 161, 162, 163 nephila 11, 35, 70, 159, 185 leucopygia 10, 21, 22, 28, 60, 76, 158, 176 novaisi 29, 159 limai 31, 93, 158 nubicola 34, 159 lindae 27, 158 ocularis 105 loquax 34, 104, 104, 158 oliveirai 27, 28, 29, 92, 159 loveridgei 40, 158 ornatissima 24, 88, 159 lucianae 23, 158 pacha 10, 12, 27, 159, 180 luctuosa 23, 158 pachyderma 33, 159 lundii 10, 22, 23, 56, 61, 76, 87, 158, 178 padreluna 28, 65, 66, 159 luteola 109 palaestes 25, 61, 76, 160 luteoocellata 30, 31, 158 palliata 111, 160, 203 lynchi 27, 158 palmata 85 marginata 11, 21, 25, 61, 76, 158, 184 palmeri 10, 27, 78, 160, 178 marianae 39, 158 pantosticta 10, 27, 160, 180 marianitae 11, 21, 25, 158, 184 pardalis 10, 21, 22, 23, 56, 61, 87, 160, 178 marmorata 11, 27, 28, 29, 31, 63, 64, 66, 152, parviceps 10, 27, 28, 29, 30, 31, 63, 64, 65, 66, 156, 158, 159, 162, 181 153, 154, 156, 157, 158, 159, 160, 161, 162, martinsi 21, 24, 25, 54, 59, 82, 158, 181 163, 183 mathiassoni 29, 158 pauiniensis 30, 31, 160 maxima 22 pelidna 28, 160 megapodia 205, 158 pellita 34, 160 melanargyrea 29, 158 pellucens 10, 21, 22, 24, 56, 87, 160, 176 234 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Hyla (continued) rubicundula 11, 27, 29, 30, 31, 61, 65, 91, 92, pentheter 33, 160 153, 154, 155, 156, 157, 161, 163, 184 perkinsi 34, 66, 68, 160, 182 rubra 42, 61 phaeopleura 25, 87, 160 rubracyla 21, 24, 87, 161 phantasmagoria 35, 69, 160 ru®tela 10, 21, 22, 56, 76, 87, 161, 176 phlebodes 29, 65, 92, 160 ruschii 30, 31, 64, 161 phyllognatha 27, 76, 160 sabrina 33, 68, 161 picadoi 33, 34, 160 salvadorensis piceigularis 27, 160 salvaje 35, 71, 161 picta 10, 34, 41, 70, 107, 160, 180 sanborni 11, 29, 31, 65, 92, 162, 181 pictipes 10, 33, 34, 66, 70, 71, 74, 102, 103, sanchiangensis 33, 102, 161 104, 154, 155, 157, 158, 160, 161, 162, 163 sarampiona 27, 162 picturata 10, 24, 57, 60, 88, 160, 180 sarayacuensis 28, 65, 162, 181 pinima 40, 62, 94, 160 sarda 33, 102, 162 pinorum 10, 34, 68, 100, 101, 160 sartori 29, 162 platydactyla 27, 28, 76, 78, 160 savignyi 10, 32, 33, 102, 162, 177 plicata 34, 102, 160 saxicola 24, 25, 162 polytaenia 11, 25, 59, 61, 76, 87, 153, 154, 155, sazimai 23, 162 156, 158, 160, 162, 184 schubarti 29, 30, 31, 162 pombali 24, 88, 160 secedens 24, 25, 162 praestans 27, 31, 90, 160 semiguttata 11, 25, 61, 162, 184 prasina 11, 21, 25, 76, 160, 184 semilineata 10, 21, 24, 57, 76, 85, 88, 89, 162, psarolaima 27, 160 180 psarosema 33, 160 senicula 10, 29, 64, 65, 90, 162, 181 pseudomeridiana 29, 161 septentrionalis 39, 109, 162 pseudopseudis 10, 21, 23, 24, 25, 54, 59, 82, sibilata 22, 162 83, 157, 161, 162 sibleszi 10, 24, 60, 76, 162, 180 pseudopuma 10, 34, 35, 66, 70, 71, 74, 102, siemersi 108 153, 156, 157, 161, 183 simmonsi 27, 162 ptychodactyla 27, 161 pugnax 21, 22, 23, 161 simplex 33, 102, 162 pulchella 11, 21, 25, 27, 54, 56, 59, 60, 61, 75, sioplea 33, 162 76, 85, 152, 153, 154, 155, 156, 157, 158, smaragdina 35, 100, 162 159, 160, 161, 162, 184, 202 smithii 10, 34, 107, 162, 180 pulchrilineata 39 soaresi 29, 64, 65, 162 pulidoi 86, 161, 203 sp. 1 (aff. H. ehrhardti) 10, 22, 60, 175 punctata 11, 21, 25, 26, 54, 56, 57, 59, 60, 76, sp. 2, 11, 60, 78, 186 80, 85, 86, 88, 153, 157, 161, 184 sp. 3, 10, 23, 24, 179 quadrilineata 161 sp. 4, 10, 23, 49, 179 raniceps 10, 21, 22, 24, 26, 76, 161, 177 sp. 5 (aff. H. thorectes) 10, 35, 71, 183 ravida 23, 161 sp. 6 (aff. H. pseudopseudis) 11, 24, 83, 183 regilla 36, 105 sp. 7 (aff. H. semiguttata) 10, 183 rhea 31, 92, 161 sp. 8, 11, 60, 185 rhodopepla 10, 29, 31, 161, 181 sp. 9 (aff. H. alvarengai) 11, 82, 83, 186 rhodoporus 25 spinosa 99 rhythmicus 26, 86, 119, 161 squirella 10, 33, 66, 102, 162, 178 riojana 11, 21, 25, 161, 184 staufferorum 27, 162 riveroi 30, 161 stenocephala 25, 87, 162 rivularis 10, 34, 35, 70, 71, 103, 161, 183 stingi 31, 162 robertmertensi 29, 161 strigilata 94 robertsorum 33, 161 studerae 29, 162 rodriguezi 110 subocularis 30, 31, 162 roeschmanni 111, 161 sumichrasti 11, 35, 66, 68, 100, 101, 155, 162, roraima 10, 24, 57, 60, 86, 161, 180 163 rosenbergi 22, 23, 161 surinamensis 111 rossalleni 28, 30, 161 suweonensis 32, 33, 102, 162 rubeola 25 swanstoni 127, 162 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 235

taeniopus 11, 35, 66, 68, 70, 99, 100, 153, 155, bogotensis 83, 84, 152, 153, 154, 155, 157, 159, 162, 163, 185 158, 160, 162, 163, 203, 208 tapichalaca 10, 27, 57, 163, 180 callypeza 84, 154 thorectes 35, 66, 71, 102, 103, 104, 162 caucanus 85, 154 thysanota 35, 162 charazani 84, 155 tica 35, 163 colymba 84, 155 timbeba 30, 31, 162 denticulentus 85, 155 tintinnabulum 31, 163 estevesi 85, 152, 203 torrenticola 27, 163 jahni 85, 157, 203 triangulum 28, 163, 181 larinopygion 83, 85, 155, 158, 159, 160, 161, triseriata 105 162, 208 tritaeniata 31, 92, 163 lascinius 85, 158 truncata 43, 98 lindae 85, 158 trux 35, 70, 163 lynchi 85, 158 tsinlingensis 33, 102, 163 pacha 85, 159 tuberculosa 11, 35, 66, 68, 69, 71, 74, 100, 156, palmeri 85, 160 159, 160, 161, 162, 163 pantostictus 85, 160 uranochroa 100 phyllognathus 85, 160 uruguaya 11, 40, 61, 62, 94, 95, 160, 163, 185 piceigularis 85, 160 ussuriensis 33, 102, 163 platydactylus 85, 160, 203 valancifer 35, 163 psarolaimus 85, 160 varelae 26, 163 ptychodactylus 85, 161 vasta 39 sarampiona 85, 162 versicolor 11, 32, 35, 36, 49, 66, 72, 101, 102, simmonsi 85, 162 153, 155, 163, 185, 218 staufferorum 85, 162 vigilans 40, 111, 121, 163 tapichalaca 85, 162 viridis 101 torrenticola 85, 163 virolinensis 28, 65, 163 Hypsiboas albomarginatus 87, 152 walfordi 10, 29, 163, 181 alboniger 88, 152 walkeri 10, 34, 102, 163, 179 albopunctatus 86, 123, 124, 152, 154, 155, 156, warreni 41, 111, 119, 121, 163 157, 158, 159, 161, 208 wavrini 23, 88, 163 alemani 88, 152 werneri 29, 31, 163 andinus 88, 153 weygoldti 10, 21, 22, 163, 176 atlanticus 88, 153 wilderi 39 balzani 88, 153 wrightorum 34, 102, 163 beckeri 88, 153, 204 xanthosticta 35, 163 benitezi 87, 119, 153, 157, 158, 159, 161, 203 xapuriensis 30, 163 bischof® 88, 154 xera 11, 35, 100, 163, 185 boans 89, 118, 154 yaracuyana 32, 163 buriti 88, 154 zonata 111 caingua 88, 154 zeteki 33, 35, 71, 103, 163 calcaratus 86, 154 zhaopingensis 102, 163 callipleura 88, 154 Hylella tenera 90 cipoensis 88, 155 Hylomantis aspera 19, 114, 115, 171 cordobae 88, 155 buckleyi 115, 173 crepitans 87, 123 danieli 115, 173 cymbalum 88, 123 granulosa 11, 19, 114, 115, 116, 172, 193 dentei 86, 123 hulli 115, 173 ericae 88, 156 lemur 115, 173 exastis 87, 156 medinai 115, 173 faber 87, 123, 152, 155, 156, 159, 160, 161, psilopygion 115, 173 208 Hylonomus bogotensis 84 fasciatus 86, 156 Hylopsis platycephalus 97 freicanecae 88, 156 Hyloscirtus albopunctulatus 84, 152 fuentei 89, 156 alytolylax 84, 153 geographicus 89, 156 armatus 83, 84, 153, 155, 207 goianus 88, 156 236 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Hypsiboas (continued) insolita 103, 157 granosus 88, 156 lancasteri 103, 158 guentheri 88, 157 picadoi 103, 160 heilprini 86, 124, 157 pictipes 103, 154, 155, 157, 158, 160, 161, 163 hobbsi 88, 157 pseudopuma 103, 153, 156, 157, 161 hutchinsi 87, 88, 119, 157 rivularis 103, 161 hypselops 111 tica 103, 163 joaquini 88, 157 xanthosticta 103, 163 lanciformis 86, 158 zeteki 103, 163 latistriatus 88, 158 Itapotihyla langsdorf®i 109, 123, 164, 223 lemai 87, 158 leptolineatus 88, 158 Kaloula conjuncta 12, 199 leucocheilus 86, 158 lundii 87, 158 Leptodactylus ocellatus 12, 197 marginatus 88, 158 pentadactylus 20 marianitae 88, 158 Limnodynastes salmini 12, 13, 199 melanopleurus 88, 158 Limnomedusa macroglossa 12, 50, 197 microderma 87, 88, 119, 121, 159 Lithodytes lineatus 12, 20, 197 miliarius 100 Litoria alboguttata 18 multifasciatus 86, 159 americana 111 ornatissimus 88, 159 angiana 18 palaestes 88, 159 arfakiana 12, 18, 53, 194 pardalis 87, 160 aurea 12, 18, 53, 194 pellucens 87, 160, 161, 209 becki 18 phaeopleura 88, 160 caerulea 12, 18, 194 picturatus 88, 121, 160 dahlii 18 polytaenius 87, 88, 153, 154, 155, 158, 160, dorsivena 18 162 eucnemis 18 pombali 89, 160 freycineti 12, 18, 194 prasinus 88, 160 infrafrenata 12, 18, 53, 194 pugnax 87, 119, 161 iris 112 pulchellus 87, 88, 121, 123, 152, 153, 154, 155, jungguy 61 156, 157, 158, 159, 160, 161, 162, 209 lesueuri 61 pulidoi 87, 161, 204 longirostris 112 punctatus 88, 152, 153, 156, 157, 159, 160, meiriana 12, 18, 53, 194 161, 162, 209 nannotis 18 raniceps 86, 124, 161 Lophyohyla piperata 109 Lysapsus caraya 42, 93, 163 rhythmicus 87, 119, 161 laevis 11, 42, 93, 164, 186 riojanus 88, 161 limellum 11, 42, 63, 93, 164, 186 roraima 87, 161 rosenbergi 87, 119, 161 Mantidactylus femoralis 12, 198 rubracylus 87, 161 Megastomatohyla mixe 104, 159, 219 ru®telus 87, 118, 161 mixomaculata 104, 159 secedens 88, 162 nubicola 104, 159 semiguttatus 88, 162 pellita 104, 160 semilineatus 87, 88, 89, 154, 156, 160, 162, Melanophryniscus klappenbachi 12, 195 163, 209 Myersiohyla aromatica 89, 153 sibleszi 88, 119, 162 inparquesi 89, 157 stenocephalus 88, 162 kanaima 89, 157 varelae 89, 163 loveridgei 89, 158 wavrini 89, 163 Neobatrachus sudelli 12, 13, 199 Isthmohyla angustilineata 103, 153 Nyctimantis rugiceps 11, 41, 109, 164, 186, 223 calypsa 103, 154 Nyctimystes disrupta 18 debilis 103, 155 kubori 12, 18, 194 graeceae 103, 156 narinosus 12, 18, 194 infucata 103, 157 oktediensis 18 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 237

pulcher 12, 18, 194 ®mbriata 116, 172 trachydermis 18 marginata 116, 172 tyleri 18 vanzolinii 116, 172 papua 18 Phrynopus sp 12, 49, 197 zweifeli 53 Phyllobates bicolor 12, 196 Phyllodytes acuminatus 41, 42, 110, 165 Odontophrynus americanus 12, 50, 196 auratus 41, 42, 110, 123, 165 Ololygon catharinae 204 brevirostris 41, 42, 110, 165 fuscovaria 203, 204 edelmoi 41, 42, 110, 165 megapodia 203 gyrinaethes 41, 42, 110, 165 trachythorax 204 kautskyi 41, 42, 110, 165 Osornophryne guacamayo 12, 195 luteolus 11, 41, 42, 110, 165, 187 Osteocephalus buckleyi 38, 39, 109, 164 melanomystax 41, 42, 110, 165 cabrerai 11, 39, 109, 164, 186 punctatus 41, 42, 110, 165 deridens 39, 109, 164 sp. 11, 42, 187 elkejungingerae 39, 109, 121, 164 tuberculosus 41, 42, 110, 165 exophthalmus 38, 39, 109, 164 wuchereri 41, 42, 110, 165 fuscifacies 39, 109, 164 Phyllomedusa aspera 19 heyeri 39, 109, 164 atelopoides 117, 118, 172 langsdorf®i 11, 39, 72, 73. 108, 164, 186 ayeaye 117, 172 leoniae 39, 109, 121, 164 azurea 116 leprieurii 11, 38, 39, 109, 164, 187 baltea 117, 173 mutabor 39, 109, 164 bicolor 12, 20, 116, 118, 173, 193 oophagus 11, 38, 39, 72, 108, 109, 164, 187 boliviana 116, 117, 173 pearsoni 38, 39, 109, 121, 164 buckleyi 10, 19, 20, 54, 114, 115, 173 planiceps 39, 109, 164 burmeisteri 10, 20, 117, 173 rodriguezi 39, 40 camba 117, 173 subtilis 38, 39, 109, 164 centralis 117, 173 taurinus 11, 38, 39, 108, 109, 164, 187 coelestis 118, 173 verruciger 38, 39, 109, 164 dacnicolor 115 yasuni 39, 109, 164 danieli 115, 173 Osteopilus brunneus 73, 108, 109, 164 distincta 116, 173 crucialis 11, 39, 73, 107, 109, 164, 187 duellmani 117, 173 dominicensis 11, 39, 108, 109, 164, 187 ecuatoriana 117, 173 marianae 73, 107, 108, 109, 164 ®mbriata 19 pulchrilineatus 73, 109, 164 guttata 19, 20, 115 septentrionalis 11, 39, 108, 109, 164, 187 hulli 114, 173 vastus 11, 39, 74, 109, 164, 187 hypochondrialis 12, 20, 116, 117, 172, 173, 193 wilderi 73, 108, 109, 164 iheringii 116, 117, 173 lemur 12, 20, 54, 114, 193 Pachymedusa dacnicolor 11, 19, 113, 116, 172, medinai 114, 173 193, 227 megacephala 117, 173 Pedostibes hossi 12, 195 oreades 117, 173 Pharyngodon petasatus 107 pailona 116 Phasmahyla cochranae 12, 19, 20, 116, 172, 193 palliata 12, 20, 117, 118, 173, 193 exilis 19, 20, 116, 172 perinesos 20, 117, 173 guttata 12, 19, 20, 116, 172, 193 psilopygion 54, 173 jandaia 19, 20, 116, 172 rohdei 117, 173 Phrynohyas coriacea 39, 165 sauvagii 116, 117, 173 hadroceps 11, 39, 165, 187 tarsius 12, 20, 116, 117, 173, 193 imitatrix 39, 165 tetraploidea 12, 20, 113, 116, 117, 173, 193 lepida 39, 165 tomopterna 12, 20, 118, 173, 193 mesophaea 11, 39, 74, 111, 165, 187 trinitatis 113, 118, 173 resini®ctrix 11, 39, 165, 187 vaillanti 12, 20, 117, 118, 173, 193 venulosa 11, 39, 108, 165, 187 venusta 118, 173 Phrynomedusa appendiculata 116, 172 Physalaemus cuvieri 12, 198 bokermanni 116, 172 Platymantis sp. 12, 199 238 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Plectrohyla acanthodes 37, 105, 165 regilla 11, 36, 106, 166, 188 ameibothalame 105, 153 streckeri 36, 106, 166 arborescandens 105, 153 triseriata 11, 36, 106, 166, 188 avia 37, 105, 165 Pseudis bolbodactyla 42, 94, 166 bistincta 105, 124, 153, 154, 155, 157, 158, cardosoi 42, 94, 166 159, 160, 161, 162, 220 fusca 42, 94, 166 calthula 105, 154 minuta 11, 42, 63, 94, 166, 188 calvicollina 105, 154 paradoxa 11, 42, 63, 93, 94, 108, 166, 188 celata 105, 155 tocantins 42, 94, 166 cembra 105, 155 Pseudopaludicola falcipes 12, 198 charadricola 105, 155 Pseudophryne bibroni 12, 13, 199 chryses 105, 155 Pternohyla dentata 36, 166 chrysopleura 37, 105, 165 Pternohyla fodiens 11, 37, 66, 106, 166, 188 crassa 105, 155 Ptychohyla acrochorda 37, 106, 166 cyanomma 105, 155 adipoventris 106 cyclada 105, 155 dendrophasma 106, 145 dasypus 37, 105, 165 erythromma 37, 70, 106, 167 exquisita 37, 105, 165 euthysanota 11, 37, 69, 106, 167, 188 glandulosa 11, 37, 105, 165, 188 hypomykter 11, 37, 69, 106, 167, 189 guatemalensis 11, 37, 104, 105, 124, 165, 166, legleri 37, 69, 70, 106, 124, 167 188, 220 leonhardschultzei 11, 37, 69, 106, 167, 189 hartwegi 37, 105, 165 macrotympanum 37, 69, 106, 167 hazelae 105, 157, 165 panchoi 37, 69, 106, 167 ixil 37, 105, 165 salvadorensis 37, 69, 106, 167 labedactyla 105, 158 sanctaecrucis 37, 70, 106, 167 lacertosa 37, 105, 165 sp. 11, 37, 69, 189 matudai 11, 37, 105, 165, 188 spinipollex 11, 37, 69, 106, 167, 189 mykter 105, 159 zophodes 11, 37, 69, 106, 167, 189 pachyderma 105, 159 pentheter 105, 160 Rana arborea 101 pokomchi 37, 105, 166 bicolor psarosema 105, 160 boans 85 psiloderma 37, 105, 166 gryllus 99 pycnochila 37, 105, 166 leucophyllata 90 quecchi 37, 105, 166 nigrita 105 robertsorum 105, 161 palmipes 20 sabrina 105, 161 paradoxa 93 sagorum 37, 105, 166 temporaria 12, 199 sioplea 105, 162 tinctoria 86 tecunumani 37, 105, 166 venulosa 111 teuchestes 37, 105, 166 Rhacophorus bipunctatus 12, 199 thorectes 105, 162 maculatus 202 Pleurodema brachyops 12, 198 Podonectes palmatus 93 Scarthyla goinorum 11, 42, 62, 94, 167, 189, 212 Proacris mintoni 127 ostinodactyla 94 Pseudacris brachyphona 36, 106, 166 Scaphiophryne marmorata 12, 198 brimleyi 36, 106, 166 Schismaderma carens 12, 195 cadaverina 11, 36, 106, 166, 188 Scinax acuminatus 11, 43, 97, 167, 189 clarkii 36, 106, 166 agilis 95, 167 crucifer 11, 36, 105, 166, 188 albicans 95, 167 feriarum 36, 106, 166 alcatraz 96, 167 illinoiensis 36, 106, 166 altae 97, 119, 167 maculata 36, 106, 166 alter 74, 97, 167 nigrita 36, 106, 166 angrensis 95, 167 nordensis 127 arduous 96, 167 ocularis 11, 36, 106, 166, 188 argyreornatus 95, 167 ornata 36, 106, 166 ariadne 95, 167 2005 FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE 239

aromothyella 95, 167 obtriangulatus 95, 170 atratus 96, 167 oreites 97, 121, 170 auratus 97, 168 pachycrus 97, 170 baumgardneri 97, 168 parkeri 97, 170 berthae 11, 43, 95, 168, 189 pedromedinae 96, 170 blairi 97, 168 perereca 97, 170, 204 boesemani 97, 168 perpusillus 42, 74, 96, 99, 167, 169, 170 boulengeri 11, 43, 96, 118, 168, 189 pinima 97, 160 brieni 95, 168 proboscideus 96, 170 caldarum 97, 168 quinquefasciatus 97, 170 canastrensis 95, 168 ranki 95, 170 cardosoi 97, 168 rizibilis 95, 170 carnevalli 95, 168 rostratus 42, 94, 96, 119, 168, 169 170 castroviejoi 97, 121, 168 ruber 11, 42, 43, 62, 94, 95, 97, 123, 156, 157, catharinae 11, 42, 43, 74, 95, 123, 167, 168, 160, 163, 167, 168, 169, 170, 171, 190, 213 169, 170, 189, 213 similis 97, 170 centralis 95, 168 squalirostris 11, 43, 97, 170, 190 chiquitanus 97, 168 staufferi 11, 42, 43, 97, 118, 170, 190, 204 crospedospilus 97, 168 strigilatus 96, 170 cruentommus 97, 168, 204 sugillatus 96, 170 curicica 97, 168 trachythorax 96, 205, 170, 204 cuspidatus 97, 168 trapicheiroi 96, 170 danae 97, 119, 168 trilineatus 97, 171 dolloi 97, 156, 203, 204 uruguayus 96, 97, 123 duartei 97, 168 v-signatus 96, 171 elaeochrous 11, 43, 97, 118, 168, 190 wandae 97, 171 eurydice 97, 168 x-signatus 97, 171 exiguous 97, 119, 168 Scytopis hebes 111 ¯avidus 97, 168 Smilisca baudinii 11, 37, 106, 171, 190 ¯avoguttatus 95, 168 cyanosticta 11, 37, 38, 106, 171, 190 funereus 97, 169 daulinia 106 fuscomarginatus 97, 169, 204 dentata 106, 166 fuscovarius 11, 43, 96, 97, 121, 169, 190 fodiens 106, 166 garbei 96, 169 phaeota 11, 37, 38, 107, 119, 171, 190 granulatus 97, 169 puma 11, 37, 38, 107, 119, 171, 191 hayii 97, 169, 204 sila 37, 107, 119, 171 heyeri 95, 169 sordida 37, 38, 107, 119, 171 hiemalis 95, 169 Sphaenorhynchus bromelicola 43, 96, 98, 171 humilis 95, 169 carneus 43, 98, 171 ictericus 97, 169 dorisae 11, 43, 94, 98, 171, 191 jolyi 96, 169 lacteus 11, 43, 62, 98, 171, 191 jureia 95, 169 orophilus 43, 96, 98, 171 karenanneae 97, 158, 204 palustris 43, 98, 171 kautskyi 95, 169 pauloalvini 43, 96, 98, 171 kennedyi 96, 169 planicola 43, 98, 171 lindsayi 97, 169 platycephalus 43, 98, 171 littoralis 95, 169 prasinus 43, 96, 98, 171 littoreus 96, 169 surdus 43, 98, 171 longilineus 95, 169 Stefania evansi 11, 16, 17, 192 luizotavioi 95, 169 ginesi 11, 16, 17 machadoi 95, 169 scalae 201 manriquei 97, 121, 169 schuberti 11, 17, 192 maracaya 97, 169 megapodius 96, 169, 204 Telmatobius sp. 12, 198 melloi 96, 169 Tepuihyla aecii 40, 110, 171 nasicus 11, 43, 97, 169, 190 celsae 40, 110, 171 nebulosus 96 edelcae 11, 40, 110, 171, 191 240 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 294

Tepuihyla (continued) jordani 11, 40, 72, 111,172, 191 galani 40, 110, 171 lepidus 111, 165 luteolabris 40, 110, 171 lichenatus 109 rimarum 40, 110, 171 marmoratus 109 rodriguezi 40, 111, 172 mesophaeus 111, 123, 165 talbergae 40, 111, 172 nigromaculatus 11, 40, 72, 74, 111, 123, 172, Tetraprion jordani 111 191 Tlalocohyla godmani 107, 156 resini®ctrix 111, 165 loquax 107, 158 venulosus 111, 118, 165 picta 107, 160 Trichobatrachus robustus 12, 195 smithii 107, 162 Triprion petasatus 11, 38, 107, 172, 191 Trachycephalus atlas 40, 111, 172 spatulatus 36, 38, 107, 172 coriaceus 111, 164 hadroceps 111, 164 Xenohyla eugenioi 43, 98, 172 imitatrix 111, 165 truncata 11, 43, 98, 123, 172, 191