Chapter 15 Mensuration of Solid

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 15 Mensuration of Solid 322 Applied Math Mensuration of Solid Chapter 15 Mensuration of Solid 15.1 Solid: It is a body occupying a portion of three-dimensional space and therefore bounded by a closed surface which may be curved (e.g., sphere), curved and planer (e.g., cylinder) or planer (e.g., cube or prism). 15.2 Mensuration of Prisms: Prism: A solid bounded by congruent parallel bases or ends and the side faces (called the lateral faces) are the parallelograms, formed by joining the corresponding vertices of the bases. It is called a right prism if the lateral are rectangles. Otherwise an oblique prism. A common side of the two lateral faces is called a lateral edge. Prism are named according to the shape of ends. A prism with a square base, a rectangular base, a hexagonal base, and a parallelogram base, is called a square prism, a rectangular prism, a hexagonal prism and a parallelepiped respectively. Altitude: The altitude of a prism is the vertical distance from the centre of the top to the base of the prism. Fig. 15.1 Axis: The axis of a prism is the distance between the centre of the top to the centre of the base. In a right prism the altitude, the axis and the latera edge are the same lengths. In the Fig. 1 the lateral faces are OAEC, BDGF, OBCF dan ADEG. The bases are OABD and ECFG. LM = h is the axis of the prism, where L and M are the centres of the bases. 15.3 Surface Area of a Prims: Lateral surface area of a prism is the sum of areas of the lateral faces. From Fig. 1. Lateral surface area = Area of (OAEC + ADEG + BDGF + OBCF) = (OA)h + (AD)h + (DB)h + (OB)h 323 Applied Math Mensuration of Solid = (OA + AD + DB + BO)h = Perimter of the base x height of the prism (1) Total surface area = Lateral surface area + Area of the bases (2) Note: that, Total surface, surface area, total surface area and the surface of any figure represent the same meanings. 15.4 Volume of a Prism: A sold occupies an amount of space called its volume. Certain solids have an internal volume or cubic capacity. (The term capacity, when not associated with cubic, is usually reserved for the volume of liquids or materials which pour, and special sets of units e.g.; gallon, litre, are used). The volume of solid is measured as the total number of unit cubes that it contains. If the solid is a Prism the volume can be computed directly from the formula, V = l . b . h Where, l, b and h denoted the length, breadth and height of the prism respectively. Also l . b denotes the area A of the base of the prism. Then Volume of the Prims = Ah = Area of the base x height of the prism (4) Fig. 15.2 l = 6 units b = 3 units and h = 5 units The total number of unit cubes = l b h = 6 x 3 x 5 = 90 So volume of prism = 90 cubic unit Weight of solid = volume of solid x density of solid (density means weight of unit volume) 15.5 Types of Prism: 1. Rectangular Prism: If the base of prism is a rectangle, it is called a rectangular prism. Consider a rectangular prism with length a, breadth b and height c (Fig. 15.3) 324 Applied Math Mensuration of Solid Fig. 15.3 (i) Volume of rectangular prism = abc cu. Unit (ii) Lateral surface area = area of four lateral faces = 2 ac + 2bc sq. unit = (2a + 2b)c = Perimetr of base x height (iii) Total surface area = Area of six faces = 2ab + 2ac + 2ca = 2 (ab + bc + ca) sq. unit (iv) Length of the diagonal OG In the light triangle ODG, by Pythagorean theorem, OG2 = OD2 + DG2 ……………….. (1) = OD2 + C2 ………… (I) Also in the right triangle OAD, OD2 = OA2 + AD2 = a2 + b2 Put OD2 in equation (1) (the line joining the opposite corners of the rectangular prism is called its diagonal). OG2 = a2 + b2 + c2 Or |OG| = a2 b 2 c 2 2. Cube: A cube is a right prism will all sides equals. Let ‘a’ be the side of the cube Fig. 4 Fig. 15.4 325 Applied Math Mensuration of Solid (i) Volume of the cube = a . a. a = a3 cu . unit (ii) Lateral surface area = Area of four lateral faces = 2a . a + 2a . a = 4a2 sq. unit (iii) Total surface area = Area of six faces = 6a2 sq. unit (iv) The length of the diagonal |OG| = aaa222= a 3 Example 1: Find the volume, total surface, diagonal and weight of rectangular block of wood 7.5 cm long, 8.7 cm wide and 12 cm deep, 1 cu. cm = 0.7 gm. Solution: Let a = 7.5 cm, b = 8.7 cm, and c = 12cm Then (i) Volume = abc = 7.5 x 8.7 x 12 = 783.00 cu. cm. (ii) Total surface = 2 (ab + bc + ca) = 2 (65.25 + 104.4 + 90) = 519.3 sq. cm. (iii) diagonal = = 7.52 8.7 2 12 2 = 275.94 16.6 cm (iv) Weight = Volume x density = 783 x 0.7 = 548.1 gms Example 2: The side of a triangular prism are 25, 51 and 52 cm. and height is 60 cm. Find the side 2of a cube 2 of 2 equivalent volume. Solution: a b c Volume of a prism = Area of base x height = S(s a)(s b)(s c) x h When a = 25cm, b = 51cm, c = 52cm, h = 60cm a + b + c 25 51 52 S = 64 22 S – a = 64–25 = 39, S – b = 64–51 = 13, S – c = 64–52 = 12 Volume of prism = 64(39)(13)(12) x 60 37440 cu. cm Volume of a cube of side l cm = l3 cu. cm. l3 = 37440 l = (37440)13 = 33.45 cu. cm. 326 Applied Math Mensuration of Solid Example 3: The volume of the cube is 95 cu. cm. Find the surface area and the edge of the cube. Solution: Volume of cube = 95 cu. cm. Let ‘a’ be the side of cube, then Volume = a3 a3 = 95 a = (95)13 = 4.56 cm Surface area = 6a2 = 6(4.56)2 = 124.92 sq. cm Example 4: Find the number of bricks used in a wall 100 ft long, 10 ft high and 1 one and half brick in thickness. The size of each is 9x 4 x 3 2 Solution: a = Length of wall = 100 ft = 1200 inches 9 b = Breadth of wall = 9 = 13.5 inches 2 h = Height of wall = 10ft = 120 inches Volume of the wall = abh = 1200 x 13.5 x 120 = 1944000 cu. in Note: Length of brick = a = 9 inches 9 Breadth of brick = b = = 4.5 inches 2 Height of wall = h = 3 inches 243 Volume of the brick = abh = 9 x 9.5 x 3 = cu. in. 2 Volume of wall 1944000 Number of bricks = = = 16000 Volume of brick 243 2 Example 5: Find the edge of a cube whose volume is equal to that of a rectangular bar measuring 126 cm long, 4 cm wide and 2 cm thick. Solution: Given that a = length of bar = 126 cm b = breadth of bar = 4 cm h = 2 cm Volume of rectangular bar = abh = 126 x 4 x 2 = 1008 cu. cm Let ‘a’ be the edge of a cube 327 Applied Math Mensuration of Solid The volume of cube = a3 cu. cm. Since Volume of the cube = Volume of bar a3 = 1008 a = (1008)13= 10.002 cm 3. Polygonal Prism: If the base of prism is a polygon, the prism is called polygonal prism. a. Volume of the polygonal prism when base is a regular polygon of n sides and h is th height = Area of the base x height. n a2o 180 i. V = cot xh , when side a is given. 4n n R2o 360 ii. V = Sin x h , when radius R of circumscribed circle is 2n given. 180o iii. V = nr2 tan x h , when radius r of inscribed circle is given. n b. Lateral surface area = Perimeter of the base x height = n a x height, a is the side of the base c. Total surface area = Lateral surface area + Area of bases Example 6: A hexagonal prism has its base inscribed about a circle of radius 2cm and which has a height of 10cm is cast into a cube. Find the size of the cube. Solution: Hence n = 6, R = 2cm, h = 10cm Let ‘a’ be the side of the cube 360o Volume of the hexagonal prism = n R2 sin x h n = 6 x 4 sin 60o x 10 = 240 x 0.866 = 207.84 cu. Cm. Volume of the cube = Volume of the hexagonal prism a3 = 207..84 a = 5.923 cm Note : Weight of solid = Volume Density 328 Applied Math Mensuration of Solid 15.6 Frustum of a Prism: When a solid is cut by a plane parallel to its base (or perpendicular to its axis), the section of the solid is called cross-section. If however, the plane section is not parallel to the bases, the portion of the prism between the plane section and the base is called a frustum. In Fig. 5 ABCDEIGH represents a Frustum of a prism whose cutting plane EFGH is inclined an angle θ to the horizontal. In this case the Frustum can be taken as a prism whose base ABEF which is a Trapezium and height BC. i.
Recommended publications
  • A Parallelepiped Based Approach
    3D Modelling Using Geometric Constraints: A Parallelepiped Based Approach Marta Wilczkowiak, Edmond Boyer, and Peter Sturm MOVI–GRAVIR–INRIA Rhˆone-Alpes, 38330 Montbonnot, France, [email protected], http://www.inrialpes.fr/movi/people/Surname Abstract. In this paper, efficient and generic tools for calibration and 3D reconstruction are presented. These tools exploit geometric con- straints frequently present in man-made environments and allow cam- era calibration as well as scene structure to be estimated with a small amount of user interactions and little a priori knowledge. The proposed approach is based on primitives that naturally characterize rigidity con- straints: parallelepipeds. It has been shown previously that the intrinsic metric characteristics of a parallelepiped are dual to the intrinsic charac- teristics of a perspective camera. Here, we generalize this idea by taking into account additional redundancies between multiple images of multiple parallelepipeds. We propose a method for the estimation of camera and scene parameters that bears strongsimilarities with some self-calibration approaches. Takinginto account prior knowledgeon scene primitives or cameras, leads to simpler equations than for standard self-calibration, and is expected to improve results, as well as to allow structure and mo- tion recovery in situations that are otherwise under-constrained. These principles are illustrated by experimental calibration results and several reconstructions from uncalibrated images. 1 Introduction This paper is about using partial information on camera parameters and scene structure, to simplify and enhance structure from motion and (self-) calibration. We are especially interested in reconstructing man-made environments for which constraints on the scene structure are usually easy to provide.
    [Show full text]
  • Area, Volume and Surface Area
    The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 11 AREA, VOLUME AND SURFACE AREA A guide for teachers - Years 8–10 June 2011 YEARS 810 Area, Volume and Surface Area (Measurement and Geometry: Module 11) For teachers of Primary and Secondary Mathematics 510 Cover design, Layout design and Typesetting by Claire Ho The Improving Mathematics Education in Schools (TIMES) Project 2009‑2011 was funded by the Australian Government Department of Education, Employment and Workplace Relations. The views expressed here are those of the author and do not necessarily represent the views of the Australian Government Department of Education, Employment and Workplace Relations. © The University of Melbourne on behalf of the international Centre of Excellence for Education in Mathematics (ICE‑EM), the education division of the Australian Mathematical Sciences Institute (AMSI), 2010 (except where otherwise indicated). This work is licensed under the Creative Commons Attribution‑NonCommercial‑NoDerivs 3.0 Unported License. http://creativecommons.org/licenses/by‑nc‑nd/3.0/ The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 11 AREA, VOLUME AND SURFACE AREA A guide for teachers - Years 8–10 June 2011 Peter Brown Michael Evans David Hunt Janine McIntosh Bill Pender Jacqui Ramagge YEARS 810 {4} A guide for teachers AREA, VOLUME AND SURFACE AREA ASSUMED KNOWLEDGE • Knowledge of the areas of rectangles, triangles, circles and composite figures. • The definitions of a parallelogram and a rhombus. • Familiarity with the basic properties of parallel lines. • Familiarity with the volume of a rectangular prism. • Basic knowledge of congruence and similarity. • Since some formulas will be involved, the students will need some experience with substitution and also with the distributive law.
    [Show full text]
  • Evaporationin Icparticles
    The JapaneseAssociationJapanese Association for Crystal Growth (JACG){JACG) Small Metallic ParticlesProduced by Evaporation in lnert Gas at Low Pressure Size distributions, crystal morphologyand crystal structures KazuoKimoto physiosLaboratory, Department of General Educatien, Nago)ra University Various experimental results ef the studies on fine 1. Introduction particles produced by evaperation and subsequent conden$ation in inert gas at low pressure are reviewed. Small particles of metals and semi-metals can A brief historical survey is given and experimental be produced by evaporation and subsequent arrangements for the production of the particles are condensation in the free space of an inert gas at described. The structure of the stnoke, the qualitative low pressure, a very simple technique, recently particle size clistributions, small particle statistios and "gas often referred to as evaporation technique"i) the crystallographic aspccts ofthe particles are consid- ered in some detail. Emphasis is laid on the crystal (GET). When the pressure of an inert is in the inorphology and the related crystal structures ef the gas range from about one to several tens of Torr, the particles efsome 24 elements. size of the particles produced by GET is in thc range from several to several thousand nm, de- pending on the materials evaporated, the naturc of the inert gas and various other evaporation conditions. One of the most characteristic fea- tures of the particles thus produced is that the particles have, generally speaking, very well- defined crystal habits when the particle size is in the range from about ten to several hundred nm. The crystal morphology and the relevant crystal structures of these particles greatly interested sDme invcstigators in Japan, 4nd encouraged them to study these propenies by means of elec- tron microscopy and electron difliraction.
    [Show full text]
  • A Technology to Synthesize 360-Degree Video Based on Regular Dodecahedron in Virtual Environment Systems*
    A Technology to Synthesize 360-Degree Video Based on Regular Dodecahedron in Virtual Environment Systems* Petr Timokhin 1[0000-0002-0718-1436], Mikhail Mikhaylyuk2[0000-0002-7793-080X], and Klim Panteley3[0000-0001-9281-2396] Federal State Institution «Scientific Research Institute for System Analysis of the Russian Academy of Sciences», Moscow, Russia 1 [email protected], 2 [email protected], 3 [email protected] Abstract. The paper proposes a new technology of creating panoramic video with a 360-degree view based on virtual environment projection on regular do- decahedron. The key idea consists in constructing of inner dodecahedron surface (observed by the viewer) composed of virtual environment snapshots obtained by twelve identical virtual cameras. A method to calculate such cameras’ projec- tion and orientation parameters based on “golden rectangles” geometry as well as a method to calculate snapshots position around the observer ensuring synthe- sis of continuous 360-panorama are developed. The technology and the methods were implemented in software complex and tested on the task of virtual observing the Earth from space. The research findings can be applied in virtual environment systems, video simulators, scientific visualization, virtual laboratories, etc. Keywords: Visualization, Virtual Environment, Regular Dodecahedron, Video 360, Panoramic Mapping, GPU. 1 Introduction In modern human activities the importance of the visualization of virtual prototypes of real objects and phenomena is increasingly grown. In particular, it’s especially required for training specialists in space and aviation industries, medicine, nuclear industry and other areas, where the mistake cost is extremely high [1-3]. The effectiveness of work- ing with virtual prototypes is significantly increased if an observer experiences a feeling of being present in virtual environment.
    [Show full text]
  • Cones, Pyramids and Spheres
    The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 12 CONES, PYRAMIDS AND SPHERES A guide for teachers - Years 9–10 June 2011 YEARS 910 Cones, Pyramids and Spheres (Measurement and Geometry : Module 12) For teachers of Primary and Secondary Mathematics 510 Cover design, Layout design and Typesetting by Claire Ho The Improving Mathematics Education in Schools (TIMES) Project 2009‑2011 was funded by the Australian Government Department of Education, Employment and Workplace Relations. The views expressed here are those of the author and do not necessarily represent the views of the Australian Government Department of Education, Employment and Workplace Relations. © The University of Melbourne on behalf of the International Centre of Excellence for Education in Mathematics (ICE‑EM), the education division of the Australian Mathematical Sciences Institute (AMSI), 2010 (except where otherwise indicated). This work is licensed under the Creative Commons Attribution‑NonCommercial‑NoDerivs 3.0 Unported License. 2011. http://creativecommons.org/licenses/by‑nc‑nd/3.0/ The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 12 CONES, PYRAMIDS AND SPHERES A guide for teachers - Years 9–10 June 2011 Peter Brown Michael Evans David Hunt Janine McIntosh Bill Pender Jacqui Ramagge YEARS 910 {4} A guide for teachers CONES, PYRAMIDS AND SPHERES ASSUMED KNOWLEDGE • Familiarity with calculating the areas of the standard plane figures including circles. • Familiarity with calculating the volume of a prism and a cylinder. • Familiarity with calculating the surface area of a prism. • Facility with visualizing and sketching simple three‑dimensional shapes. • Facility with using Pythagoras’ theorem. • Facility with rounding numbers to a given number of decimal places or significant figures.
    [Show full text]
  • Crystallography Ll Lattice N-Dimensional, Infinite, Periodic Array of Points, Each of Which Has Identical Surroundings
    crystallography ll Lattice n-dimensional, infinite, periodic array of points, each of which has identical surroundings. use this as test for lattice points A2 ("bcc") structure lattice points Lattice n-dimensional, infinite, periodic array of points, each of which has identical surroundings. use this as test for lattice points CsCl structure lattice points Choosing unit cells in a lattice Want very small unit cell - least complicated, fewer atoms Prefer cell with 90° or 120°angles - visualization & geometrical calculations easier Choose cell which reflects symmetry of lattice & crystal structure Choosing unit cells in a lattice Sometimes, a good unit cell has more than one lattice point 2-D example: Primitive cell (one lattice pt./cell) has End-centered cell (two strange angle lattice pts./cell) has 90° angle Choosing unit cells in a lattice Sometimes, a good unit cell has more than one lattice point 3-D example: body-centered cubic (bcc, or I cubic) (two lattice pts./cell) The primitive unit cell is not a cube 14 Bravais lattices Allowed centering types: P I F C primitive body-centered face-centered C end-centered Primitive R - rhombohedral rhombohedral cell (trigonal) centering of trigonal cell 14 Bravais lattices Combine P, I, F, C (A, B), R centering with 7 crystal systems Some combinations don't work, some don't give new lattices - C tetragonal C-centering destroys cubic = P tetragonal symmetry 14 Bravais lattices Only 14 possible (Bravais, 1848) System Allowed centering Triclinic P (primitive) Monoclinic P, I (innerzentiert) Orthorhombic P, I, F (flächenzentiert), A (end centered) Tetragonal P, I Cubic P, I, F Hexagonal P Trigonal P, R (rhombohedral centered) Choosing unit cells in a lattice Unit cell shape must be: 2-D - parallelogram (4 sides) 3-D - parallelepiped (6 faces) Not a unit cell: Choosing unit cells in a lattice Unit cell shape must be: 2-D - parallelogram (4 sides) 3-D - parallelepiped (6 faces) Not a unit cell: correct cell Stereographic projections Show or represent 3-D object in 2-D Procedure: 1.
    [Show full text]
  • Using History of Mathematics to Teach Volume Formula of Frustum Pyramids: Dissection Method
    Universal Journal of Educational Research 3(12): 1034-1048, 2015 http://www.hrpub.org DOI: 10.13189/ujer.2015.031213 Using History of Mathematics to Teach Volume Formula of Frustum Pyramids: Dissection Method Suphi Onder Butuner Department of Elementary Mathematics Education, Bozok University, Turkey Copyright © 2015 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract Within recent years, history of mathematics dynamic structure of mathematics [1, 2, 3, 4, 5, 6, 7]. It is (HoM) has become an increasingly popular topic. Studies stressed that history of mathematics will enrich the repertoire have shown that student reactions to it depend on the ways of teachers and develop their pedagogical content knowledge they use history of mathematics. The present action research [7, 8]. Jankvist [5] (2009) explains the use of history of study aimed to make students deduce volume rules of mathematics both as a tool and as a goal. History-as-a-tool frustum pyramids using the dissection method. Participants arguments are mainly concerned with learning of the inner were 24 grade eight students from Trabzon. Observations, issues of mathematics (mathematical concepts, theories, informal interviews and feedback forms were used as data methods, formulas), whereas history-as-a-goal arguments collection tools. Worksheets were distributed to students and are concerned with the use of history as a self-contained goal. the research was conducted in 3 class hours. Student views From the history-as-a-goal point of view, knowing about the on the activities were obtained through a written feedback history of mathematics is not a primary tool for learning form consisting of 4 questions.
    [Show full text]
  • Cross Product Review
    12.4 Cross Product Review: The dot product of uuuu123, , and v vvv 123, , is u v uvuvuv 112233 uv u u u u v u v cos or cos uv u and v are orthogonal if and only if u v 0 u uv uv compvu projvuv v v vv projvu cross product u v uv23 uv 32 i uv 13 uv 31 j uv 12 uv 21 k u v is orthogonal to both u and v. u v u v sin Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! • u x v is perpendicular to u and v • The length of u x v is u v u v sin • The direction is given by the right hand side rule Right hand rule Place your 4 fingers in the direction of the first vector, curl them in the direction of the second vector, Your thumb will point in the direction of the cross product Algebraic description of the cross product of the vectors u and v The cross product of uu1, u 2 , u 3 and v v 1, v 2 , v 3 is uv uv23 uvuv 3231,, uvuv 1312 uv 21 check (u v ) u 0 and ( u v ) v 0 (u v ) u uv23 uvuv 3231 , uvuv 1312 , uv 21 uuu 123 , , uvu231 uvu 321 uvu 312 uvu 132 uvu 123 uvu 213 0 similary: (u v ) v 0 length u v u v sin is a little messier : 2 2 2 2 2 2 2 2uv 2 2 2 uvuv sin22 uv 1 cos uv 1 uvuv 22 uv now need to show that u v2 u 2 v 2 u v2 (try it..) An easier way to remember the formula for the cross products is in terms of determinants: ab 12 2x2 determinant: ad bc 4 6 2 cd 34 3x3 determinants: An example Copy 1st 2 columns 1 6 2 sum of sum of 1 6 2 1 6 forward backward 3 1 3 3 1 3 3 1 diagonal diagonal 4 5 2 4 5 2 4 5 products products determinant = 2 72 30 8 15 36 40 59 19 recall: uv uv23 uvuv 3231, uvuv 1312 , uv 21 i j k i j k i j u1 u 2 u 3 u 1 u 2 now we claim that uvu1 u 2 u 3 v1 v 2 v 3 v 1 v 2 v1 v 2 v 3 iuv23 j uv 31 k uv 12 k uv 21 i uv 32 j uv 13 u v uv23 uv 32 i uv 13 uv 31 j uv 12 uv 21 k uv uv23 uvuv 3231,, uvuv 1312 uv 21 Example: Let u1, 2,1 and v 3,1, 2 Find u v.
    [Show full text]
  • Uniform Panoploid Tetracombs
    Uniform Panoploid Tetracombs George Olshevsky TETRACOMB is a four-dimensional tessellation. In any tessellation, the honeycells, which are the n-dimensional polytopes that tessellate the space, Amust by definition adjoin precisely along their facets, that is, their ( n!1)- dimensional elements, so that each facet belongs to exactly two honeycells. In the case of tetracombs, the honeycells are four-dimensional polytopes, or polychora, and their facets are polyhedra. For a tessellation to be uniform, the honeycells must all be uniform polytopes, and the vertices must be transitive on the symmetry group of the tessellation. Loosely speaking, therefore, the vertices must be “surrounded all alike” by the honeycells that meet there. If a tessellation is such that every point of its space not on a boundary between honeycells lies in the interior of exactly one honeycell, then it is panoploid. If one or more points of the space not on a boundary between honeycells lie inside more than one honeycell, the tessellation is polyploid. Tessellations may also be constructed that have “holes,” that is, regions that lie inside none of the honeycells; such tessellations are called holeycombs. It is possible for a polyploid tessellation to also be a holeycomb, but not for a panoploid tessellation, which must fill the entire space exactly once. Polyploid tessellations are also called starcombs or star-tessellations. Holeycombs usually arise when (n!1)-dimensional tessellations are themselves permitted to be honeycells; these take up the otherwise free facets that bound the “holes,” so that all the facets continue to belong to two honeycells. In this essay, as per its title, we are concerned with just the uniform panoploid tetracombs.
    [Show full text]
  • About This Booklet on Surface Areas and Volumes
    About This Booklet on Surface1 Areas and Volumes About This Booklet on Surface Areas and Volumes This Particular Booklet has been designed for the students of Math Class 10 (CBSE Board). However, it will also help those who have these chapters in their curriculum or want to gain the knowledge and explore the concepts. This Booklet explains: 1. Cube, Cuboid and Cylinder 2. Cone and Frustum 3. Sphere and Hemisphere 4. Combination of solids This Booklet also covers: 1. MCQs 2. Questions with Solutions 3. Questions for practice and 4. QR Codes to scan and watch videos on Surface Areas and Volumes QR codes when scanned with mobile scanner take you to our YouTube channel Let’sTute (www.youtube.com/letstute) where you can watch our free videos (need internet connection) on the topic. For Surface Areas and Volumes, in total, we have 8 videos which are accessible on several other platforms as described on the back cover of this Booklet. However, if there is any query, feel free to connect with us on the details given on the last page. Some other documents are also available: About Let’s Tute Let’sTute (Universal Learning Aid) is an E-learning company based in Mumbai, India. (www.letstute.com) We create content for Mathematics, Biology, Physics, Environmental Science, Book-Keeping & Accountancy and also a series on value education known as V2lead 2 13 .1 Cube, Cuboid and Cylinder Scan to watch the video on INTRODUCTION Surface area and Volume Surface Area: It is the sum of total exposed area of a three dimensional solid object.
    [Show full text]
  • 15 BASIC PROPERTIES of CONVEX POLYTOPES Martin Henk, J¨Urgenrichter-Gebert, and G¨Unterm
    15 BASIC PROPERTIES OF CONVEX POLYTOPES Martin Henk, J¨urgenRichter-Gebert, and G¨unterM. Ziegler INTRODUCTION Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by their im- portance for many other mathematical subjects, ranging from integration theory, algebraic topology, and algebraic geometry to linear and combinatorial optimiza- tion. In this chapter we try to give a short introduction, provide a sketch of \what polytopes look like" and \how they behave," with many explicit examples, and briefly state some main results (where further details are given in subsequent chap- ters of this Handbook). We concentrate on two main topics: • Combinatorial properties: faces (vertices, edges, . , facets) of polytopes and their relations, with special treatments of the classes of low-dimensional poly- topes and of polytopes \with few vertices;" • Geometric properties: volume and surface area, mixed volumes, and quer- massintegrals, including explicit formulas for the cases of the regular simplices, cubes, and cross-polytopes. We refer to Gr¨unbaum [Gr¨u67]for a comprehensive view of polytope theory, and to Ziegler [Zie95] respectively to Gruber [Gru07] and Schneider [Sch14] for detailed treatments of the combinatorial and of the convex geometric aspects of polytope theory. 15.1 COMBINATORIAL STRUCTURE GLOSSARY d V-polytope: The convex hull of a finite set X = fx1; : : : ; xng of points in R , n n X i X P = conv(X) := λix λ1; : : : ; λn ≥ 0; λi = 1 : i=1 i=1 H-polytope: The solution set of a finite system of linear inequalities, d T P = P (A; b) := x 2 R j ai x ≤ bi for 1 ≤ i ≤ m ; with the extra condition that the set of solutions is bounded, that is, such that m×d there is a constant N such that jjxjj ≤ N holds for all x 2 P .
    [Show full text]
  • Crystal Structure
    Physics 927 E.Y.Tsymbal Section 1: Crystal Structure A solid is said to be a crystal if atoms are arranged in such a way that their positions are exactly periodic. This concept is illustrated in Fig.1 using a two-dimensional (2D) structure. y T C Fig.1 A B a x 1 A perfect crystal maintains this periodicity in both the x and y directions from -∞ to +∞. As follows from this periodicity, the atoms A, B, C, etc. are equivalent. In other words, for an observer located at any of these atomic sites, the crystal appears exactly the same. The same idea can be expressed by saying that a crystal possesses a translational symmetry. The translational symmetry means that if the crystal is translated by any vector joining two atoms, say T in Fig.1, the crystal appears exactly the same as it did before the translation. In other words the crystal remains invariant under any such translation. The structure of all crystals can be described in terms of a lattice, with a group of atoms attached to every lattice point. For example, in the case of structure shown in Fig.1, if we replace each atom by a geometrical point located at the equilibrium position of that atom, we obtain a crystal lattice. The crystal lattice has the same geometrical properties as the crystal, but it is devoid of any physical contents. There are two classes of lattices: the Bravais and the non-Bravais. In a Bravais lattice all lattice points are equivalent and hence by necessity all atoms in the crystal are of the same kind.
    [Show full text]