Shale Gas Plays in North America – a Review

Total Page:16

File Type:pdf, Size:1020Kb

Shale Gas Plays in North America – a Review Canadian Energy Research Institute North American Natural Gas Market Dynamics: Shale Gas Plays in North America – A Review Paul Kralovic Study No. 123 – Section I February 2011 Relevant • Independent • Objective NORTH AMERICAN NATURAL GAS MARKET DYNAMICS: SHALE GAS PLAYS IN NORTH AMERICA – A REVIEW North American Natural Gas Market Dynamics: Shale Gas Plays in North America – A Review Copyright © Canadian Energy Research Institute, 2011 Sections of this study may be reproduced in magazines and newspapers with acknowledgement to the Canadian Energy Research Institute Study No. 123 ISBN 1-896091-97-0 Author: Paul Kralovic* *Paul Kralovic is an external consultant and is the Director of Calgary-based Kralovic Economics Inc. Acknowledgements: The author of this report would like to extend his thanks and gratitude to everyone involved in the production and editing of the material, including, but not limited to George Eynon, Megan Murphy and Peter Howard CANADIAN ENERGY RESEARCH INSITTUTE 150, 3512 – 33 Street NW Calgary, Alberta T2L 2A6 Canada www.ceri.ca February 2011 Printed in Canada North American Natural Gas Market Dynamics: iii Shale Gas Plays in North America – A Review Table of Contents LIST OF FIGURES .............................................................................................................................. v LIST OF TABLES ................................................................................................................................ vii CHAPTER 1 INTRODUCTION AND REPORT STRUCTURE .............................................................. 1 Background..................................................................................................................................... 1 Regulatory and Environmental Issues ............................................................................................ 7 Report Structure ............................................................................................................................. 22 CHAPTER 2 ESTABLISHED SHALE PLAYS ..................................................................................... 23 The Antrim Shale, Michigan ........................................................................................................... 23 The Barnett Shale, Texas ............................................................................................................... 29 The Devonian Shales, Appalachian Basin, Ohio/Kentucky/West Virginia ...................................... 35 The Fayetteville Shale, Arkansas .................................................................................................... 42 The Haynesville Shale, Louisiana/Texas ......................................................................................... 48 The Marcellus Shale, Pennsylvania/West Virginia/Ohio/New York ............................................... 55 The New Albany Shale, Illinois Basin, Illinois/Indiana/Kentucky .................................................... 62 The Woodford Shale, Oklahoma .................................................................................................... 68 CHAPTER 3 EMERGING/EXPLORATORY SHALE PLAYS ................................................................ 75 The Eagle Ford Shale and Pearsall Shale, Maverick Basin, Texas ................................................... 75 The Floyd-Neal Shale, Black Warrior Basin, Alabama/Mississippi .................................................. 81 The Hilliard-Baxter Shale, Greater Green River Basin, Wyoming/Colorado ................................... 87 The Montney Shale, British Columbia ............................................................................................ 94 The Muskwa/Ootla Shale, Horn River Basin, British Columbia ...................................................... 103 The Utica Shale, Québec ................................................................................................................ 114 Other Shale Gas Plays ..................................................................................................................... 119 APPENDIX A A LIST OF FRAC FLUID ADDITIVES ............................................................................ 133 APPENDIX B A COMPLETE LIST OF SHALE GAS PLAYS IN NORTH AMERICA .................................. 135 February 2011 iv Canadian Energy Research Institute February 2011 North American Natural Gas Market Dynamics: v Shale Gas Plays in North America – A Review List of Figures Figure 1.1 Major Shale Gas Basins in North America ........................................................................ 2 Figure 1.2 Schematic Geology of Natural Gas Resources ................................................................. 4 Figure 1.3 Horizontal versus Vertical Multi-stage Fracture Stimulation ........................................... 5 Figure 1.4 Natural Gas Production by Source, 1990-2035 ................................................................ 7 Figure 1.5 Composition of a Frac Fluid .............................................................................................. 11 Figure 1.6 Groundwater Protection and Drilling and Completions .................................................. 15 Figure 1.7 A Typical Horizontal Well and Multi-stage Frac ............................................................... 17 Figure 1.8 A Typical Frac’ing Operation in East Texas ....................................................................... 19 Figure 1.9 Multiple Horizontal Wells Drilled from a Single Well Pad ................................................ 20 Figure 1.10 Vertical Drilling versus Multiple Horizontal Wells Drilled from a Single Well Pad ........... 21 Figure 2.1 Antrim Shale Map ............................................................................................................ 23 Figure 2.2 Map of Michigan’s Drilling Activity .................................................................................. 26 Figure 2.3 Barnett Shale Map ........................................................................................................... 29 Figure 2.4 Drilling Forecast for the Barnett Shale ............................................................................. 35 Figure 2.5 Map of the Devonian & Marcellus Shales ........................................................................ 36 Figure 2.6 Map of the Lower Huron & Marcellus Fairways .............................................................. 39 Figure 2.7 Virginia’s Nora-Haysi Field ............................................................................................... 40 Figure 2.8 Fayetteville Shale Map ..................................................................................................... 42 Figure 2.9 Drilling Forecast for the Fayetteville Shale ...................................................................... 48 Figure 2.10 Haynesville Shale Map ..................................................................................................... 49 Figure 2.11 Drilling Forecast for the Haynesville Shale ....................................................................... 54 Figure 2.12 Marcellus Shale Map ........................................................................................................ 56 Figure 2.13 Hydraulic Frac’ing Job Size for Range Resources ............................................................. 60 Figure 2.14 Drilling Forecast for the Marcellus Shale ......................................................................... 61 Figure 2.15 New Albany Shale Map .................................................................................................... 63 Figure 2.16 Map of the Illinois Basin and the New Albany Shale ........................................................ 65 Figure 2.17 Woodford Shale Map ....................................................................................................... 69 Figure 2.18 Drilling Forecast for the Woodford Shale ........................................................................ 73 Figure 3.1 Eagle Ford Shale Map ....................................................................................................... 75 Figure 3.2 Schematic Geology of the Eagle Ford Shale ..................................................................... 76 Figure 3.3 Eagle Ford Shale Activity .................................................................................................. 79 Figure 3.4 Floyd-Neal Shale Map ...................................................................................................... 82 Figure 3.5 Map of the Floyd-Neal Drilling Activity ............................................................................ 84 Figure 3.6 Hilliard-Baxter Shale Map ................................................................................................ 87 Figure 3.7 Greater Green River Basin Map ....................................................................................... 88 Figure 3.8 Map of Existing and Planned Pipelines in the Rock Mountains ....................................... 93 Figure 3.9 Montney/Doig Basin Shale Region ................................................................................... 95 Figure 3.10 Upper and Lower Montney Horizontal Type Curves ........................................................ 98 Figure 3.11 Horn River Shale Region ..................................................................................................
Recommended publications
  • Deconstructing the Fayetteville Lessons from a Mature Shale Play
    Deconstructing the Fayetteville ©Lessons Kimmeridge 2015 from - Deconstructing a Mature the Fayetteville Shale Play June 20151 Introduction The Fayetteville shale gas play lies in the eastern Arkoma Basin, east of the historic oil and gas fields in the central and western parts of the Basin. As one of the most mature, well-developed and well-understood shale gas plays, it offers an unparalleled dataset on which we can look back and review how closely what we “thought we knew” matches “what we now know”, and what lessons there are to be learned in the development of shales and the distribution of the cores of these plays. As we have previously noted (see Figure 1), identifying the core of a shale play is akin to building a Venn diagram based on a number of geological factors. By revisiting the Fayetteville we can rebuild this diagram and overlay it on what is now a vast database of historical wells to see whether it matched expectations, and if not, why not. The data also allows us to review how the development of the play changed (lateral length, completion, etc.) and the variance in performance Figure 1: Schematic of gradational overlap of geologic between operators presents valuable lessons in attributes that define the core of an unconventional whether success is all about the rocks, or whether resource play operator knowledge/insight can make good rocks bad or vice versa. © Kimmeridge 2015 - Deconstructing the Fayetteville 2 Background The Fayetteville shale lies in the eastern Arkoma Basin and ranges in depth from outcrop in the north to 9,000’ at the southern end of the play, with drill depths primarily between 3,000’ and 6,000’.
    [Show full text]
  • Modern Shale Gas Development in the United States: a Primer
    U.S. Department of Energy • Office of Fossil Energy National Energy Technology Laboratory April 2009 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Modern Shale Gas Development in the United States: A Primer Work Performed Under DE-FG26-04NT15455 Prepared for U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Prepared by Ground Water Protection Council Oklahoma City, OK 73142 405-516-4972 www.gwpc.org and ALL Consulting Tulsa, OK 74119 918-382-7581 www.all-llc.com April 2009 MODERN SHALE GAS DEVELOPMENT IN THE UNITED STATES: A PRIMER ACKNOWLEDGMENTS This material is based upon work supported by the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (NETL) under Award Number DE‐FG26‐ 04NT15455. Mr. Robert Vagnetti and Ms. Sandra McSurdy, NETL Project Managers, provided oversight and technical guidance.
    [Show full text]
  • The Duvernay Resource
    AB & BC Montney Technical Session Thursday, February 20th, 2020 801 Seventh +15 – 667 7 Street SW THANK YOU TO OUR SPONSORS! AB & BC Montney Day An Update on AB and BC’s Montney Resource Play February 20th, 2020 AB & BC Montney Technical Session Thursday, February 20th, 2020 801 Seventh +15 – 667 7 Street SW QUESTIONS & ANSWERS FORMAT For this workshop, we will use CSUR`s website to make it easy for everyone to share their ideas, opinions and most importantly, questions! How it works: 1) Go to our website through the respective link: Montney Overview Session visit: https://www.csur.com/question/mo Technical Session #1 Session visit: https://www.csur.com/question/1 Technical Session #2 Session visit: https://www.csur.com/question/2 Technical Session #3 Session visit: https://www.csur.com/question/3 2) Submit your question and it will be displayed on the screen 3) Please note that “write your answer” is where you should write your question and submit your answer will complete and post your question to the speaker(s). 4) Please, make sure you are in the right link and session. 1 Page Sponsored by: AB & BC Montney Technical Session Thursday, February 20th, 2020 801 Seventh +15 – 667 7 Street SW AGENDA 08:00 – 08:25 Registration, Networking and Breakfast 08:25 – 08:30 Welcome: Al Kassam and Dan Allan Montney Play Update Moderator: Karen Spencer, University of Calgary Moderator Bio: Ms. Spencer is an experienced oil and gas Professional Engineer with a Master’s Degree in Public Policy. Her unique background includes business and financial knowledge, strong technical experience, and a policy and regulatory focus.
    [Show full text]
  • Helium in Northeastern British Columbia
    HELIUM IN NORTHEASTERN BRITISH COLUMBIA Elizabeth G. Johnson1 ABSTRACT Global demand for helium is increasing at a time when world reserves are in decline. The price of grade A helium has quadrupled in the past 12 years. Liquefied natural gas (LNG) processing can be used to capture helium as a value-added byproduct at concentrations as low as 0.04% by volume. The Slave Point, Jean Marie (Redknife) and Wabamun formations of northeastern British Columbia preferentially have helium associated with many of their natural gas pools. The mechanism for this accumulation appears to be flow in hydrothermal brines from helium-enriched basement granitic rocks along deeply seated faults. Separately, the Evie member of the Horn River Formation also has anomalous helium accumulation in its shale gas related to uranium decay in organic-rich shales. Johnson, E.G. (2012): Helium in northeastern British Columbia; in Geoscience Reports 2013, British Columbia Ministry of Natural Gas Development, pages 45–52. 1Geoscience and Strategic Initiatives Branch, British Columbia Ministry of Natural Gas Development, Victoria, British Columbia; [email protected] Key Words: Helium, LNG, Jean Marie, Slave Point, Wabamun, Evie, Horn River Formation INTRODUCTION optical fibre technology (8% of global use; Peterson and Madrid, 2012; Anonymous, 2012). Helium is a nonrenewable resource that has developed In recognition of its strategic value, the United States important strategic value. Helium (atomic number of 2) ex- 4 created the Federal Helium Reserve in the Bush Dome Res- ists primarily as the stable isotope, He, which is produced ervoir, Texas, in 1925. The primary source for the Federal on the earth through alpha decay of radioactive elements Helium Reserve is the world-class Hugoton Reservoir in such as uranium and thorium.
    [Show full text]
  • Pa 62-15.Pdf
    GEOLOGICAL SURVEY OF CANADA CANADA PAPER 62-15 MIDDLE DEVONIAN AND OLDER PALAEOZOIC FORMATIONS OF SOUTHERN DISTRICT OF MACKENZIE AND ADJACENT AREAS B y Helen R. Belyea and A. W. Norris DEPARTMENT OF MINES AND TECHNICAL SURVEYS CANADA CONTENTS Page Introduction. • . • . • • . • • . • • . • • 1 Ordovician and older(?) . • . • . • • • • • . • . • 1 Old Fort Island Formation........................... 2 Mirage Point Formation ...•...•..•. ,................ 2 Pre-Chinchaga beds . • • • . • • . • . • • • • . • . • • . • 3 Middle Devonian • . • . • . • • . • . • . • . • • . • 3 Chinchaga Formation ..•.•.••.•........•.•••••. • . • • • 3 Keg River Formation . • . • . • . • . • . • • • . 4 Muskeg Formation.................................. 5 Pine Point Formation................. .............. 5 Lonely Bay Formation • . • • • • . • . • • • • . • • 9 Sulphur Point Formation . • • . • . • . • . • . • . • • . • • . • . 10 Presqu 1ile Formation............................... 11 Watt Mountain Formation. • . • • • • . • . • . • • • • • . • . • . 12 Slave Point Formation . • • . • • • . • • . • • • • • • . • • • 12 Horn River Formation . • . • • . • • . • • • . • . • 14 References.............................................. 16 Appendix-logs of wells . • • • . • • • • • • . • . • • . • • • • • . • • . 19 Illustrations Figure 1. Formational nomenclature ••......•... .. .....•. Frontispiec e 2. Correla tion diagram from Pan American et al. A-1 Snake River c-28-D well to Imperial Triad Davidson C reek P-2 well .. ... ... •. .... ... .. in pocket 3. Correlation
    [Show full text]
  • Study Develops Fayetteville Shale Reserves, Production Forecast John Browning Katie Smye a Study of Reserve and Production Potential for the Fayette- Scott W
    Study develops Fayetteville Shale reserves, production forecast John Browning Katie Smye A study of reserve and production potential for the Fayette- Scott W. Tinker Susan Horvath ville Shale in north central Arkansas forecasts a cumulative Svetlana Ikonnikova Tad Patzek 18 tcf of economically recoverable reserves by 2050, with Gürcan Gülen Frank Male production declining to about 400 bcf/year by 2030 from Eric Potter Forrest Roberts the current peak of about 950 bcf/year. Qilong Fu Carl Grote The forecast suggests the formation will continue to be a The University of Texas major contributor to U.S. natural gas production. Austin The Bureau of Economic Geology (BEG) at The University In this cross section of the Fayetteville Shale, the pay zone is identified by lines correlated between logs. Shaded areas of density-log porosity (DPhi) curve represent DPhi values less than 5%. The map shows the location of the cross section. TECHNOLOGY 1 FAYETTEVILLE POROSITY * THICKNESS (PHI*H) FIG. 2 Contours,2 density porosity-ft Stone 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 Batesville Van Buren Cleburne Independence Pope Conway Faulkner Area shown White Conway 0 Miles 25 Arkansas 0 Km 40 1With 60° NE trend bias to reect fault trends. 2Porosity is net from density logs (DPhi). of Texas at Austin conducted the study, integrating engineer- sient flow model for the first 3-5 years, resulting in decline ing, geology, and economics into a numerical model that al- rates inversely proportional to the square root of time, later lows for scenario testing on the basis of an array of technical shifting to exponential decline as a result of interfracture and economic parameters.
    [Show full text]
  • U.S. Shale Gas
    U.S. Shale Gas An Unconventional Resource. Unconventional Challenges. WHITE PAPER U.S. Shale Gas An Unconventional Resource . Unconventional Challenges . Executive Summary Current increasing demand and lagging supply mean high prices for both oil and gas, making exploitation of North American unconventional gas plays suddenly far more lucrative for producers. One of the most important such plays to emerge has been U.S. shale gas, with current recoverable reserves conservatively estimated at 500 to 1,000 trillion cubic feet. Hydraulic fracturing and horizontal drilling are the key enabling technologies that first made recovery of shale gas economically viable with their introduction in the Barnett Shale of Texas during the 1990s. However, a comparison of the currently hottest shale plays makes it clear that, after two decades of development and several iterations of the learning curve, best practices are application-dependent and must evolve locally. That said, a review of current trends in these hot plays indicates that, in many cases, the impact of high-drilling density required to develop continuous gas accumulations can be minimized through early and better identification of the accumulation type and size, well- designed access and transportation networks, and cooperative planning and construction efforts, when possible. U.S. Shale Gas Geographic Potential Across the U.S., from the West Coast to the Northeast, some 19 geographic basins are recognized sources of shale gas, where an estimated 35,000 wells were drilled in 2006. Presently, significant commercial gas shale production occurs in the Barnett Shale in the Fort Worth Basin, Lewis Shale in the San Juan Basin, Antrim Shale in the Michigan Basin, Marcellus Shale and others in the Appalachian Basin, and New Albany Shale in the Illinois Basin.
    [Show full text]
  • Bossier Bossier
    CENTER FOR ENERGY STUDIES BOSSIER - HAYNESVILLE SHALE: NORTH LOUISIANA SALT BASIN D. A. GODDARD, E. A. MANCINI, S. C. TALUKAR & M. HORN Louisiana State University Baton Rouge , Louisiana 1 OVERVIEW Regional Geological Setting Total Organic Carbon & RockRock--EvalEval Pyrolisis Kerogen Petrography Thin Section Petrography Naturally Fractured Shale Reservoirs Conclusions 2 Gulf Coast Interior Basins Gulf Coast Interior Salt Basins Mancini and Puckett, 2005 3 TYPE LOG 4 Type Wells 5 Bossier Parish Wells 6 BossierBossier--HaynesvilleHaynesville samples in NLSB . (LA Parish) Sample (Serial #) OP/Well Name Core Interval Depth-Ft (Jackson) 10,944 (162291) AMOCO Davis Bros. Bossier Fm. 10, 945 10,948 Haynesville Fm. 12,804 12,956 12,976 (164798) AMOCO CZ 5-7 (Winn) 15,601 Bossier Fm. 15, 608 Haynesville Fm. 16,413 16,418 16,431 16,432 (166680) EXXON Pardee (Winn) 16195 Bossier Fm. 16, 200 16,400 (107545) Venzina Green #1 (Union) 9,347 Bossier Fm. 9,357 9,372 7 8 Bossier -Haynesville samples in Vernon Field Serial. # Operator Well Field Sec TWP RGE Parish Sample Depth- Ft 224274 Anadarko Fisher 16 #1 Vernon 16 16N 02W Jackson 13,175 13,770 226742 Anadarko Davis Bros 29 Vernon 29 16N 02W Jackson 14,035 15,120 231813 Anadarko Beasley 9 #2 Vernon 9 16N 02W Jackson 11,348 232316 Anadarko StewtHarrison Vernon 34 16N 03W Jackson 11,805 34 #2 9 Modified from Structuremaps.com 10 11 12 13 Analytical results of Total Organic Carbon, RockRock--EvalEval PyrolysisPyrolysis,, and Vitrinite Reflectance (Ro) in the NLSB. Depth % TOC Wt S1 S2 S3 Well Sample (Ft) % mg/g mg/g mg/g Tmax HI OI S1/TOC PI TAI Ro AMOCO DAVIS Cotton V.
    [Show full text]
  • BHP Billiton Petroleum Onshore US Shale Briefing
    BHP Billiton Petroleum Onshore US shale briefing J. Michael Yeager Group Executive and Chief Executive, Petroleum 14 November 2011 Disclaimer Reliance on Third Party Information The views expressed here contain information that has been derived from publicly available sources that have not been independently verified. No representation or warranty is made as to the accuracy, completeness or reliability of the information. This presentation should not be relied upon as a recommendation or forecast by BHP Billiton. Forward Looking Statements This presentation includes forward-looking statements within the meaning of the US Securities Litigation Reform Act of 1995 regarding future events and the future financial performance of BHP Billiton. These forward-looking statements are not guarantees or predictions of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this presentation. For more detail on those risks, you should refer to the sections of our annual report on Form 20-F for the year ended 30 June 2011 entitled “Risk factors”, “Forward looking statements” and “Operating and financial review and prospects” filed with the US Securities and Exchange Commission. No Offer of Securities Nothing in this release should be construed as either an offer to sell or a solicitation of an offer to buy or sell BHP Billiton securities in any jurisdiction. J. Michael Yeager, Group Executive and Chief Executive, Petroleum, 14 November 2011 Slide 2 Petroleum briefing agenda § Introduction § Part 1: Technical overview of the shale industry § Part 2: Business update J.
    [Show full text]
  • Pursuing Sustainable Corporate Value Corporate Profile
    Annual Report 2012 for the year ended March 31, 2012 Pursuing Sustainable Corporate Value Corporate Profile Mitsubishi Corporation (MC) is a global integrated business enterprise that develops and operates businesses across virtually every industry including industrial finance, energy, metals, machinery, chemicals, foods, and environmental business. MC’s current activities are expanding far beyond its traditional trading operations as its diverse business ranges from natural resources development to investment in retail business, infrastructure, financial products and manufacturing of industrial goods. With a presence in approximately 90 countries worldwide and a network of over 500 group companies, MC employs a multinational workforce of nearly 60,000 people. About the Cover Message MC is currently working on its three-year Midterm Corporate Strategy 2012 that was launched in the year ended March 2011. When we devised this medium-term management plan we set out to create three forms of value: sustainable economic value, sustainable societal value and sustainable environmental value. Our overarching aim in doing so is to create sustainable corporate value. The cover theme for this year’s annual report—Pursuing Sustainable Corporate Value—expresses our strong determination to work as one company to achieve this aim. < Enhanced CSR & Environmental Affairs Content in < Inclusion in SRI Indexes > Annual Reports > MC has earned a solid reputation for its past CSR and envi- MC is aiming to create sustainable corporate value, which ronmental affairs initiatives, and transparency in the disclosure consists of economic value, along with societal value and of information. environmental value. Underscoring this is MC’s inclusion in various socially respon- Since Annual Report 2011, which was published in 2011, sible investment (SRI) indices.
    [Show full text]
  • Technically Recoverable Shale Oil and Shale Gas Resources: United Kingdom
    Technically Recoverable Shale Oil and Shale Gas Resources: United Kingdom September 2015 Independent Statistics & Analysis U.S. Department of Energy www.eia.gov Washington, DC 20585 September 2015 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i September 2015 Contents Executive Summary ....................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Resource categories ................................................................................................................................. 3 Methodology ........................................................................................................................................... 5 Key exclusions .......................................................................................................................................... 6 United Kingdom…………………………………… ………………………………………………………………………………………......XI-1
    [Show full text]
  • Application of Organic Petrography in North American Shale Petroleum Systems: a Review
    International Journal of Coal Geology 163 (2016) 8–51 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Application of organic petrography in North American shale petroleum systems: A review Paul C. Hackley a, Brian J. Cardott b a U.S. Geological Survey, MS 956 National Center, 12201 Sunrise Valley Dr, Reston, VA 20192, USA b Oklahoma Geological Survey, 100 E. Boyd St., Rm. N-131, Norman, OK 73019-0628, USA article info abstract Article history: Organic petrography via incident light microscopy has broad application to shale petroleum systems, including Received 13 April 2016 delineation of thermal maturity windows and determination of organo-facies. Incident light microscopy allows Received in revised form 10 June 2016 practitioners the ability to identify various types of organic components and demonstrates that solid bitumen Accepted 13 June 2016 is the dominant organic matter occurring in shale plays of peak oil and gas window thermal maturity, whereas Available online 16 June 2016 oil-prone Type I/II kerogens have converted to hydrocarbons and are not present. High magnification SEM obser- Keywords: vation of an interconnected organic porosity occurring in the solid bitumen of thermally mature shale reservoirs Organic petrology has enabled major advances in our understanding of hydrocarbon migration and storage in shale, but suffers Thermal maturity from inability to confirm the type of organic matter present. Herein we review organic petrography applications Shale petroleum systems in the North American shale plays through discussion of incident light photographic examples. In the first part of Unconventional resources the manuscript we provide basic practical information on the measurement of organic reflectance and outline Vitrinite reflectance fluorescence microscopy and other petrographic approaches to the determination of thermal maturity.
    [Show full text]