Mouse Paqr8 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Paqr8 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Paqr8 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Paqr8 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Paqr8 gene (NCBI Reference Sequence: NM_028829 ; Ensembl: ENSMUSG00000025931 ) is located on Mouse chromosome 1. 3 exons are identified, with the ATG start codon in exon 3 and the TGA stop codon in exon 3 (Transcript: ENSMUST00000189400). Exon 3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Paqr8 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-191A12 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 3 covers 100.0% of the coding region. Start codon is in exon 3, and stop codon is in exon 3. The size of effective cKO region: ~1377 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy gRNA region Wildtype allele T gRNA region G 5' A 3' 1 3 Targeting vector T G A Targeted allele T G A Constitutive KO allele (After Cre recombination) Legends Exon of mouse Paqr8 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7062bp) | A(26.18% 1849) | C(22.9% 1617) | T(27.81% 1964) | G(23.11% 1632) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr1 + 20931625 20934624 3000 browser details YourSeq 186 1476 2412 3000 93.5% chr17 - 71340691 71586837 246147 browser details YourSeq 139 1468 1632 3000 90.2% chr10 + 117385922 117386083 162 browser details YourSeq 135 1472 1616 3000 96.6% chr15 + 78810619 78810763 145 browser details YourSeq 134 1474 1611 3000 98.6% chr18 + 46491010 46491147 138 browser details YourSeq 133 1460 1613 3000 94.6% chr1 + 45856818 45856972 155 browser details YourSeq 132 1461 1612 3000 95.2% chr15 - 83374476 83374629 154 browser details YourSeq 132 1476 1611 3000 98.6% chr12 - 16697801 16697936 136 browser details YourSeq 130 1479 1614 3000 97.8% chr16 + 4561257 4561392 136 browser details YourSeq 130 1475 1614 3000 96.5% chr1 + 55145899 55146038 140 browser details YourSeq 129 1475 1613 3000 96.5% chr18 + 35786696 35786834 139 browser details YourSeq 129 1484 1630 3000 93.9% chr14 + 25825424 25825570 147 browser details YourSeq 126 1475 1610 3000 96.4% chr10 - 90856147 90856282 136 browser details YourSeq 126 1475 1610 3000 96.4% chr13 + 99682191 99682326 136 browser details YourSeq 126 1484 1693 3000 95.0% chr1 + 139458688 139458898 211 browser details YourSeq 125 1096 1612 3000 82.1% chr17 - 26851571 26851875 305 browser details YourSeq 125 1476 1612 3000 95.7% chr13 + 64269725 64269861 137 browser details YourSeq 124 1480 1612 3000 93.8% chr15 - 78924746 78924872 127 browser details YourSeq 124 1485 1616 3000 97.0% chr12 - 110482267 110482398 132 browser details YourSeq 123 1484 1616 3000 96.3% chr16 + 38848669 38848801 133 Note: The 3000 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr1 + 20935687 20938686 3000 browser details YourSeq 49 2258 2360 3000 70.8% chr16 + 18879855 18879946 92 browser details YourSeq 46 217 297 3000 87.5% chr14 - 56588970 56589049 80 browser details YourSeq 46 2238 2337 3000 76.4% chr11 - 44709280 44709376 97 browser details YourSeq 39 228 286 3000 83.1% chr7 - 46842612 46842670 59 browser details YourSeq 38 2250 2302 3000 76.6% chr6 - 116064111 116064157 47 browser details YourSeq 38 226 285 3000 81.7% chr16 - 21990442 21990501 60 browser details YourSeq 36 226 281 3000 82.2% chr1 + 154593596 154593651 56 browser details YourSeq 33 230 278 3000 83.7% chr11 - 95613063 95613111 49 browser details YourSeq 33 219 257 3000 92.4% chr10 - 50587598 50587636 39 browser details YourSeq 33 2228 2267 3000 79.5% chr9 + 95607774 95607807 34 browser details YourSeq 33 228 272 3000 86.7% chr9 + 43383476 43383520 45 browser details YourSeq 33 265 297 3000 100.0% chr4 + 134446965 134446997 33 browser details YourSeq 32 2246 2287 3000 88.1% chrX + 21374315 21374356 42 browser details YourSeq 32 221 258 3000 92.2% chr2 + 26067869 26067906 38 browser details YourSeq 32 2241 2339 3000 63.2% chr14 + 56625836 56625894 59 browser details YourSeq 32 2238 2286 3000 81.0% chr13 + 46660000 46660046 47 browser details YourSeq 30 2249 2286 3000 89.5% chr2 - 121816756 121816793 38 browser details YourSeq 30 128 277 3000 96.9% chr14 + 121990539 121990688 150 browser details YourSeq 29 2247 2286 3000 79.0% chr11 - 78440486 78440523 38 Note: The 3000 bp section downstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Paqr8 progestin and adipoQ receptor family member VIII [ Mus musculus (house mouse) ] Gene ID: 74229, updated on 14-Aug-2019 Gene summary Official Symbol Paqr8 provided by MGI Official Full Name progestin and adipoQ receptor family member VIII provided by MGI Primary source MGI:MGI:1921479 See related Ensembl:ENSMUSG00000025931 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as 1700019B16Rik; 3110001D06Rik Expression Broad expression in cerebellum adult (RPKM 28.5), adrenal adult (RPKM 18.6) and 15 other tissues See more Orthologs human all Genomic context Location: 1; 1 A4 See Paqr8 in Genome Data Viewer Exon count: 5 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 1 NC_000067.6 (20890548..20939650) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 1 NC_000067.5 (20880703..20928837) Chromosome 1 - NC_000067.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 4 transcripts Gene: Paqr8 ENSMUSG00000025931 Description progestin and adipoQ receptor family member VIII [Source:MGI Symbol;Acc:MGI:1921479] Gene Synonyms 1700019B16Rik, 3110001D06Rik Location Chromosome 1: 20,890,606-20,939,650 forward strand. GRCm38:CM000994.2 About this gene This gene has 4 transcripts (splice variants), 224 orthologues, 10 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Paqr8-204 ENSMUST00000189400.6 5330 354aa ENSMUSP00000141054.1 Protein coding CCDS14844 Q80ZE5 TSL:1 GENCODE basic APPRIS P1 Paqr8-201 ENSMUST00000068880.13 4704 354aa ENSMUSP00000069127.7 Protein coding CCDS14844 Q80ZE5 TSL:1 GENCODE basic APPRIS P1 Paqr8-202 ENSMUST00000167119.7 1472 354aa ENSMUSP00000128781.1 Protein coding CCDS14844 Q80ZE5 TSL:1 GENCODE basic APPRIS P1 Paqr8-203 ENSMUST00000187651.1 1463 354aa ENSMUSP00000140913.1 Protein coding CCDS14844 Q80ZE5 TSL:5 GENCODE basic APPRIS P1 69.05 kb Forward strand 20.89Mb 20.90Mb 20.91Mb 20.92Mb 20.93Mb 20.94Mb Genes (Comprehensive set... Paqr8-204 >protein coding Paqr8-201 >protein coding Paqr8-202 >protein coding Gm28064-201 >processed pseudogene Paqr8-203 >protein coding Contigs < AC156980.9 Genes < 6720483E21Rik-201lncRNA < Gm24171-201snoRNA (Comprehensive set... Regulatory Build 20.89Mb 20.90Mb 20.91Mb 20.92Mb 20.93Mb 20.94Mb Reverse strand 69.05 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene pseudogene Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000189400 49.05 kb Forward strand Paqr8-204 >protein coding ENSMUSP00000141... Transmembrane heli... Low complexity (Seg) Coiled-coils (Ncoils) Pfam AdipoR/Haemolysin-III-related PANTHER PTHR20855:SF22 AdipoR/Haemolysin-III-related All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 40 80 120 160 200 240 280 354 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • The VLDL Receptor Regulates Membrane Progesterone Receptor
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs212522. doi:10.1242/jcs.212522 RESEARCH ARTICLE The VLDL receptor regulates membrane progesterone receptor trafficking and non-genomic signaling Nancy Nader, Maya Dib, Raphael Courjaret, Rawad Hodeify, Raya Machaca, Johannes Graumann and Khaled Machaca* ABSTRACT the plasma membrane and interact with the classical P4 receptor, is Progesterone mediates its physiological functions through activation of nonetheless effective at mediating non-genomic P4 signaling both transcription-coupled nuclear receptors and seven-pass- (Bandyopadhyay et al., 1998; Dressing et al., 2011; Peluso et al., transmembrane progesterone receptors (mPRs), which transduce 2002). These results argued for the presence of membrane P4 the rapid non-genomic actions of progesterone by coupling to various receptors that are distinct from the nuclear P4 receptors. In 2003, the signaling modules. However, the immediate mechanisms of action Thomas laboratory identified a family of membrane progesterone downstream of mPRs remain in question. Herein, we use an untargeted receptors (mPRs) from fish ovaries (Zhu et al., 2003a,b) that belong quantitative proteomics approach to identify mPR interactors to better to the progestin and adiponectin (AdipoQ) receptor family (also define progesterone non-genomic signaling. Surprisingly, we identify named PAQ receptors). However, the signal transduction cascade the very-low-density lipoprotein receptor (VLDLR) as an mPRβ downstream of mPRs that mediates the non-genomic actions of P4 (PAQR8) partner that is required for mPRβ plasma membrane remains unclear. localization. Knocking down VLDLR abolishes non-genomic The non-genomic action of mPR and the ensuing signaling progesterone signaling, which is rescued by overexpressing VLDLR.
    [Show full text]
  • Progesterone Receptor Membrane Component 1 Promotes Survival of Human Breast Cancer Cells and the Growth of Xenograft Tumors
    Cancer Biology & Therapy ISSN: 1538-4047 (Print) 1555-8576 (Online) Journal homepage: http://www.tandfonline.com/loi/kcbt20 Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru To cite this article: Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru (2016) Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors, Cancer Biology & Therapy, 17:3, 262-271, DOI: 10.1080/15384047.2016.1139240 To link to this article: http://dx.doi.org/10.1080/15384047.2016.1139240 Accepted author version posted online: 19 Jan 2016. Published online: 19 Jan 2016. Submit your article to this journal Article views: 49 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kcbt20 Download by: [University of Connecticut] Date: 26 May 2016, At: 11:28 CANCER BIOLOGY & THERAPY 2016, VOL. 17, NO. 3, 262–271 http://dx.doi.org/10.1080/15384047.2016.1139240 RESEARCH PAPER Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clarka,*, Anne M. Frielb,*, Cindy A. Prua, Ling Zhangb, Toshi Shiodac, Bo R. Ruedab, John J. Pelusod, and James K. Prua aDepartment of Animal Sciences,
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Progesterone – Friend Or Foe?
    Frontiers in Neuroendocrinology 59 (2020) 100856 Contents lists available at ScienceDirect Frontiers in Neuroendocrinology journal homepage: www.elsevier.com/locate/yfrne Progesterone – Friend or foe? T ⁎ Inger Sundström-Poromaaa, , Erika Comascob, Rachael Sumnerc, Eileen Ludersd,e a Department of Women’s and Children’s Health, Uppsala University, Sweden b Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden c School of Pharmacy, University of Auckland, New Zealand d School of Psychology, University of Auckland, New Zealand e Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA ARTICLE INFO ABSTRACT Keywords: Estradiol is the “prototypic” sex hormone of women. Yet, women have another sex hormone, which is often Allopregnanolone disregarded: Progesterone. The goal of this article is to provide a comprehensive review on progesterone, and its Emotion metabolite allopregnanolone, emphasizing three key areas: biological properties, main functions, and effects on Hormonal contraceptives mood in women. Recent years of intensive research on progesterone and allopregnanolone have paved the way Postpartum depression for new treatment of postpartum depression. However, treatment for premenstrual syndrome and premenstrual Premenstrual dysphoric disorder dysphoric disorder as well as contraception that women can use without risking mental health problems are still Progesterone needed. As far as progesterone is concerned, we might be dealing with a two-edged sword: while its metabolite allopregnanolone has been proven useful for treatment of PPD, it may trigger negative symptoms in women with PMS and PMDD. Overall, our current knowledge on the beneficial and harmful effects of progesterone is limited and further research is imperative. Introduction 1.
    [Show full text]
  • Caracterització De L'efecte De Compostos Naturals En Models In
    Caracterització de l’efecte de compostos naturals en models in vitro i in vivo de càncer de còlon Susana Sánchez Tena ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • G Protein-Coupled Receptors Function As Cell Membrane Receptors for the Steroid Hormone 20-Hydroxyecdysone Xiao-Fan Zhao
    Zhao Cell Communication and Signaling (2020) 18:146 https://doi.org/10.1186/s12964-020-00620-y REVIEW Open Access G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone Xiao-Fan Zhao Abstract G protein-coupled receptors (GPCRs) are cell membrane receptors for various ligands. Recent studies have suggested that GPCRs transmit animal steroid hormone signals. Certain GPCRs have been shown to bind steroid hormones, for example, G protein-coupled estrogen receptor 1 (GPER1) binds estrogen in humans, and Drosophila dopamine/ecdysteroid receptor (DopEcR) binds the molting hormone 20-hydroxyecdysone (20E) in insects. This review summarizes the research progress on GPCRs as animal steroid hormone cell membrane receptors, including the nuclear and cell membrane receptors of steroid hormones in mammals and insects, the 20E signaling cascade via GPCRs, termination of 20E signaling, and the relationship between genomic action and the nongenomic action of 20E. Studies indicate that 20E induces a signal via GPCRs to regulate rapid cellular responses, including rapid Ca2+ release from the endoplasmic reticulum and influx from the extracellular medium, as well as rapid protein phosphorylation and subcellular translocation. 20E via the GPCR/Ca2+/PKC/signaling axis and the GPCR/cAMP/PKA- signaling axis regulates gene transcription by adjusting transcription complex formation and DNA binding activity. GPCRs can bind 20E in the cell membrane and after being isolated, suggesting GPCRs as cell membrane receptors of 20E. This review deepens our understanding of GPCRs as steroid hormone cell membrane receptors and the GPCR-mediated signaling pathway of 20E (20E-GPCR pathway), which will promote further study of steroid hormone signaling via GPCRs, and presents GPCRs as targets to explore new pharmaceutical materials to treat steroid hormone-related diseases or control pest insects.
    [Show full text]
  • Open Sadiesteffens Dissertation Final.Pdf
    The Pennsylvania State University The Graduate School College of Medicine MECHANISM OF DRUG ACTION OF THE SPECIFIC CK2 INHIBITOR CX-4945 IN ACUTE MYELOID LEUKEMIA A Dissertation in Biomedical Sciences by Sadie Lynne Steffens 2015 Sadie Lynne Steffens Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2015 The dissertation of Sadie Lynne Steffens was reviewed and approved* by the following: Sinisa Dovat Physician, Associate Professor of Pediatrics, Pharmacology, & Biochemistry Director, Translational Research – Four Diamonds Pediatric Cancer Research Center Dissertation Advisor Chair of Committee Barbara A. Miller Physician, Professor of Pediatrics Chief, Division of Pediatric Hematology/Oncology Sergei A. Grigoryev Professor of Biochemistry and Molecular Biology Jong K. Yun Associate Professor of Pharmacology Ralph L. Keil Associate Professor of Biochemistry and Molecular Biology Chair, Biomedical Sciences Graduate Program *Signatures are on file in the Graduate School ii ABSTRACT Acute myeloid leukemia (AML) is a malignant disease of the myeloid line of blood cells and is characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. Cytarabine and other currently available treatments for acute myeloid leukemia are highly toxic and insufficient, as more than half of all AML patients develop resistance to chemotherapeutic agents. Since AML often affects older people who are less tolerant of chemotherapy, there is need for novel, targeted, less toxic drugs in order to improve survival for this disease. Casein Kinase II (CK2) is a pro-oncogenic serine/threonine kinase that is essential for cellular proliferation.
    [Show full text]
  • Membrane Progesterone Receptor Beta (Mprβ/Paqr8) Promotes
    www.nature.com/scientificreports OPEN Membrane progesterone receptor beta (mPRβ/Paqr8) promotes progesterone-dependent neurite Received: 19 December 2016 Accepted: 30 May 2017 outgrowth in PC12 neuronal cells Published: xx xx xxxx via non-G protein-coupled receptor (GPCR) signaling Mayu Kasubuchi1, Keita Watanabe1, Kanako Hirano2, Daisuke Inoue2, Xuan Li1, Kazuya Terasawa3, Morichika Konishi4, Nobuyuki Itoh2 & Ikuo Kimura1 Recently, sex steroid membrane receptors garnered world-wide attention because they may be related to sex hormone-mediated unknown rapid non-genomic action that cannot be currently explained by their genomic action via nuclear receptors. Progesterone affects cell proliferation and survival via non- genomic effects. In this process, membrane progesterone receptors (mPRα, mPRβ, mPRγ, mPRδ, and mPRε) were identified as putative G protein-coupled receptors (GPCRs) for progesterone. However, the structure, intracellular signaling, and physiological functions of these progesterone receptors are still unclear. Here, we identify a molecular mechanism by which progesterone promotes neurite outgrowth through mPRβ (Paqr8) activation. Mouse mPRβ mRNA was specifically expressed in the central nervous system. It has an incomplete GPCR topology, presenting 6 transmembrane domains and did not exhibit typical GPCR signaling. Progesterone-dependent neurite outgrowth was exhibited by the promotion of ERK phosphorylation via mPRβ, but not via other progesterone receptors such as progesterone membrane receptor 1 (PGRMC-1) and nuclear progesterone receptor in nerve growth factor-induced neuronal PC12 cells. These findings provide new insights of regarding the non-genomic action of progesterone in the central nervous system. Steroid hormones such as corticosterone, progesterone, testosterone, and estrogen are known to exhibit their physiological effects via their specific nuclear receptors1.
    [Show full text]
  • An Investigation of Roles for SIRT1 and Dietary Polyphenols in Modulating the Ageing Process Through DNA Methylation
    An investigation of roles for SIRT1 and dietary polyphenols in modulating the ageing process through DNA methylation Laura Jane Ions Thesis submitted for the degree of Doctor of Philosophy Institute for Cell and Molecular Biosciences, Newcastle University, UK September 2011 Declaration I certify that this thesis is my own work, except where stated, and has not been previously submitted for a degree or any other qualification at this or any other university. Laura J Ions September 2011 Thank you to Professor Dianne Ford and Dr Luisa Wakeling whose support, guidance and enthusiasm have been invaluable over the last four years. Abstract Dietary restriction (DR) can increase lifespan across evolutionarily distinct species, from yeast to rodents. The NAD+-dependent (class III) histone deacetylase SIRT1 in mammals, and its ortholog in other species, may play a major role in this response, but may affect ‘healthspan’ (number of years of good health), rather than lifespan per se. Ageing is accompanied by changes in genome methylation, which may be causal in the ageing process. Since histones are one of the many substrates that are deacetylated by SIRT1, we hypothesised that epigenetic effects of SIRT1 activity – and specifically effects on DNA methylation, which is associated closely with histone acetylation – mediate some of the beneficial effects of DR that contribute to increased healthspan. We also propose that dietary polyphenols may act at the cellular level in a similar way. To test this hypothesis, we first investigated effects of altering SIRT1 expression, by overexpression of a transgene or siRNA-mediated knockdown, on global DNA methylation (methylation of the LINE-1 element) in the human intestinal cell line, Caco-2.
    [Show full text]
  • Genetic Associations with Clozapine-Induced Myocarditis in Patients with Schizophrenia Paul Lacaze 1, Kathlyn J
    Lacaze et al. Translational Psychiatry (2020) 10:37 https://doi.org/10.1038/s41398-020-0722-0 Translational Psychiatry ARTICLE Open Access Genetic associations with clozapine-induced myocarditis in patients with schizophrenia Paul Lacaze 1, Kathlyn J. Ronaldson 1,EuniceJ.Zhang2,AnaAlfirevic2,HardikShah3,LeahNewman3, Maya Strahl3, Melissa Smith3,ChadBousman4,BenFrancis5, Andrew P. Morris5,6, Trevor Wilson7, Fernando Rossello8, David Powell9, Vivien Vasic7, Robert Sebra3,JohnJ.McNeil1 and Munir Pirmohamed2 Abstract Clozapine is the most effective antipsychotic drug for schizophrenia, yet it can cause life-threatening adverse drug reactions, including myocarditis. The aim of this study was to determine whether schizophrenia patients with clozapine-induced myocarditis have a genetic predisposition compared with clozapine-tolerant controls. We measured different types of genetic variation, including genome-wide single-nucleotide polymorphisms (SNPs), coding variants that alter protein expression, and variable forms of human leucocyte antigen (HLA) genes, alongside traditional clinical risk factors in 42 cases and 67 controls. We calculated a polygenic risk score (PRS) based on variation at 96 different genetic sites, to estimate the genetic liability to clozapine-induced myocarditis. Our genome-wide association analysis identified four SNPs suggestive of increased myocarditis risk (P <1×10−6), with odds ratios ranging 5.5–13.7. The SNP with the lowest P value was rs74675399 (chr19p13.3, P = 1.21 × 10−7;OR= 6.36), located in the GNA15 gene, previously associated with heart failure. The HLA-C*07:01 allele was identified as potentially predisposing to clozapine-induced myocarditis (OR = 2.89, 95% CI: 1.11–7.53), consistent with a previous report of association of the same allele with clozapine-induced agranulocytosis.
    [Show full text]
  • The Interaction of Progesterone and Allopregnanolone
    THE INTERACTION OF PROGESTERONE AND ALLOPREGNANOLONE WITH FEAR MEMORIES A Dissertation by GILLIAN M. ACCA Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Stephen Maren Co-Chair of Committee, Naomi Nagaya Committee Members, James W. Grau Farida Sohrabji Intercollegiate Faculty Chair, Jane Welsh August 2017 Major Subject: Neuroscience Copyright 2017 Gillian M. Acca ABSTRACT Sex differences in stress and anxiety disorders are well reported in the clinical population. For instance, women are twice as likely to be diagnosed with post-traumatic stress disorder (PTSD) compared to men. This difference is most profound during the reproductive years suggesting a role for sex hormones and their metabolites in regulating fear and anxiety. Previous studies suggest sex differences also occur in rodents, which is modulated by gonadal hormones. Despite the majority of clinical cases occurring in women, most rodent studies only include male subjects. An understanding of what contributes to this disparity is necessary for sex-specific therapies and interventions. Here, we use Pavlovian fear conditioning, a learned task in which male rats display higher fear levels compared to females, to understand the neurobiological basis for sex differences in fear and anxiety. Specifically, we focus on allopregnanolone (ALLO), a metabolite of progesterone and potent allosteric modulator of GABAA receptors and its effects in the bed nucleus of the stria terminalis (BNST) in male and female rats. The BNST is a sexually dimorphic brain region and site of hormonal modulation that has been implicated in contextual fear.
    [Show full text]