Advanced I/O

Total Page:16

File Type:pdf, Size:1020Kb

Advanced I/O ADVANCED I/O ISA 563: Fundamentals of Systems Programming Agenda File Locking File locking exercise Unix Domain Sockets Team Projects Time File Locking Background Both high-performance and general-purpose database systems require atomic access to database resources & records Unix systems have evolved to support this need flock(2) – early locking primitive, only locks files fcntl(2) – raw, powerful, configurable interface lockf(3) – simplified API built on fcntl(2) Key ability is to lock sections, or records, in a file Recall: Properties of Unix Files Unix files contain no markup A sequence of raw data bytes Contrast this with Windows files, which contain markup and index information File systems maintain maps to data blocks Advisory vs. Mandatory Locking Advisory locking is for cooperating processes: a group of processes that have a “gentleman’s agreement” to only use a particular API to access data Mandatory locking puts the burden on the kernel (really, the file system code) to check access in the particular open, read, and write system calls to intercept any process trying to access a file Aside: Security Considerations Note the trust relationships here! TCB includes the kernel Note how mandatory locking is achieved via a complete abuse/hack on the file permission bits Set-group-ID ON, group-execute OFF The semantics of this combination are entirely unclear Similar to playing with unusual combinations of memory page permissions Mandatory locking can be used maliciously to prevent legitimate access to a file Early Forms of File Locking: flock(2) flock(2) is a system call that allows cooperating processes to lock a whole file. It uses advisory locks. #include <sys/file.h> int flock(int fd, int operation); flock(2) operations Symbol Value Meaning LOCK_SH 1 Shared lock LOCK_EX 2 Exclusive lock LOCK_NB 4 Don’t block when locking LOCK_UN 8 Unlock Note how their values follow the flag pattern we discussed last class: they have significant bits at non-overlapping locations in their binary representation. flock(2) Caveats flock(2) is useful but coarse-grained Advisory locking: only cooperating processes actually using the flock(2) interface obey the locking restrictions flock(2) locks whole files, not regions of a file Also, the lock is on the file, not a file descriptor. Child processes (via fork(2)) and new file descriptors (via dup(2)) do not result in a new lock. Children can thus unlock the file and cause the parent to lose the lock. Raw Record Locking: fcntl(2) The fcntl(2) system call is a general interface for controlling file locking and locking portions or regions of a file More powerful than flock(2), and hence somewhat more complex The flock structure holds meta-data about the lock The flock structure This structure describes: The type of lock Shared read: F_RDLCK Exclusive write: F_WRLCK Unlock: F_UNLCK The size of the region to lock (in bytes) The offset of where to begin locking (a combination of two parameters, l_start, which is relative to l_whence) A process ID (of a process that *may* already hold a lock on this file) Using fcntl(2) #include <fcntl.h> int fcntl(int filedes, int cmd, &flock_structure); Third argument is a pointer to a flock struct. ‘cmd’ is one of: F_GETLK, F_SETLK, F_SETLKW ‘filedes’ must be open for reading or writing (appropriate to the desired type of lock) The fcntl ‘cmd’ parameter Command F_GETLK Determine if the flock structure describes a lock held by some other process. The ‘pid’ argument in the flock structure will be filled in with that process ID. If no lock exists, the flock structure remains unchanged except that l_type is set to F_UNLCK F_SETLK Set (via F_RDLCK or F_WRLCK) or unset the lock (via F_UNLCK) F_SETLKW The blocking version of F_GETLK (W means ‘wait’). Testing with F_GETLK and then trying to grab the lock with F_SETLK is not an atomic operation, thus two processes can race to grab the lock. Simplifying Life with lockf(3) This function is a simplified API that uses fcntl(2) underneath in its implementation Usually used in conjunction with lseek(2) or fseek(3) Because it has no parameter to say where to lock from in a file, just the ‘size’ of the region to lock The lockf(3) interface #include <unistd.h> int lockf(int filedes, int function, off_t size); ‘filedes’ must be open, either O_WRONLY or O_RDWR as appropriate for desired type of lock ‘size’ is the size (in bytes) of the region to lock. A value of zero means “lock through the largest possible size of the file” ‘function’ is described on next slide The lockf(3) ‘function’ parameter Function Description F_ULOCK Unlock locked section F_LOCK Lock a section for exclusive use F_TLOCK Test and lock a section for exclusive use F_TEST Test a section for locks by other processes Note that there is no distinction between read and write locks like with fcntl(2). Note also the “atomic” operation F_TLOCK. If fcntl(2) is not atomic, then how might we get this operation to be atomic? Food for thought… File Locking Experiment Using flock(2), write two processes that share information via a file called “myinfo”. One process accepts user input and writes it to the file. The other process should attempt to lock this file and read data from it. Does this process always block? Create a third process that writes to the file without obtaining a lock via flock(2). Observe results. Unix Domain Sockets A form of fast IPC, using standard Unix names An alternative to using Internet sockets UDS datagrams (unlike Internet UDP) are reliable Advantages of Unix Domain Sockets Can be referred to via a filename This is the standard Unix way of naming things, contrast with other forms of IPC that require a new, complex namespace Can use standard file tools (e.g., ls, rm) with them They are fast: they only copy data They do not involve: protocol state headers to add, remove, or checksum sequence numbers acknowledgements to send, no keepalives More Advantages of UDS Both stream and datagram interfaces (like TCP and UDP) Datagram service is reliable: No lost messages Messages are delivered in order Can use network-based API or the socketpair() function The socketpair(2) system call Set up a pair of unnamed UNIX domain sockets Endpoints will be connected But remain nameless After socketpair() returns, the only way to refer to the endpoints is via the 3rd argument, an array of two socket descriptors Can use the Unix Internet sockets API to bind an address (i.e., a pathname) to a UDS socket descriptor The socketpair(2) signature #include <sys/socket.h> int socketpair(int domain, int type, int protocol, int sockfd[2]); ‘domain’ should be AF_UNIX ‘type’ is ‘SOCK_STREAM’ or ‘SOCK_DGRAM’ ‘protocol’ is optional, use zero ‘sockfd’ stores the two socket descriptor handles Alternative: Using ‘socket(2)' Must use the ‘struct sockaddr_un’ structure to load in the desired name, then use the socket(2) system call to create the socket The ‘sun_path’ member of this structure is a statically sized character array that can hold a file name. Example on next slide (no error checking, condensed from example on page 596 in APUE) #include <sys/socket.h> #include <sys/un.h> void foo(){ int sd, size; struct sockaddr_un un; un.sun_family = AF_UNIX; strncpy(un.sun_path, “somesocket.sock”,16); sd = socket(AF_UNIX, SOCK_DGRAM, 0); bind(sd, (struct sockaddr*)&un, size); } Team Projects Time Use the remaining time to meet with your team and discuss / work on projects. .
Recommended publications
  • Package 'Filelock'
    Package ‘filelock’ October 5, 2018 Title Portable File Locking Version 1.0.2 Author Gábor Csárdi Maintainer Gábor Csárdi <[email protected]> Description Place an exclusive or shared lock on a file. It uses 'LockFile' on Windows and 'fcntl' locks on Unix-like systems. License MIT + file LICENSE LazyData true URL https://github.com/r-lib/filelock#readme BugReports https://github.com/r-lib/filelock/issues RoxygenNote 6.0.1.9000 Suggests callr (>= 2.0.0), covr, testthat Encoding UTF-8 NeedsCompilation yes Repository CRAN Date/Publication 2018-10-05 10:30:12 UTC R topics documented: lock .............................................2 Index 5 1 2 lock lock Advisory File Locking and Unlocking Description There are two kinds of locks, exclusive and shared, see the exclusive argument and other details below. Usage lock(path, exclusive = TRUE, timeout = Inf) unlock(lock) Arguments path Path to the file to lock. If the file does not exist, it will be created, but the directory of the file must exist. Do not place the lock on a file that you want to read from or write to! *Always use a special lock file. See details below. exclusive Whether to acquire an exclusive lock. An exclusive lock gives the process ex- clusive access to the file, no other processes can place any kind of lock on it. A non-exclusive lock is a shared lock. Multiple processes can hold a shared lock on the same file. A process that writes to a file typically requests an exclusive lock, and a process that reads from it typically requests a shared lock.
    [Show full text]
  • Mac OS X for UNIX Users the Power of UNIX with the Simplicity of Macintosh
    Mac OS X for UNIX Users The power of UNIX with the simplicity of Macintosh. Features Mac OS X version 10.3 “Panther” combines a robust and open UNIX-based foundation with the richness and usability of the Macintosh interface, bringing UNIX technology Open source, standards-based UNIX to the mass market. Apple has made open source and standards a key part of its foundation strategy and delivers an operating system built on a powerful UNIX-based foundation •Based on FreeBSD 5 and Mach 3.0 • Support for POSIX, Linux, and System V APIs that is innovative and easy to use. • High-performance math libraries, including There are over 8.5 million Mac OS X users, including scientists, animators, developers, vector/DSP and PowerPC G5 support and system administrators, making Mac OS X the most widely used UNIX-based desktop • Optimized X11 window server for UNIX GUIs operating system. In addition, Mac OS X is the only UNIX-based environment that •Open source code available via the natively runs Microsoft Office, Adobe Photoshop, and thousands of other consumer Darwin project applications—all side by side with traditional command-line, X11, and Java applications. Standards-based networking For notebook computer users, Mac OS X delivers full power management and mobility •Open source TCP/IP-based networking support for Apple’s award-winning PowerBook G4. architecture, including IPv4, IPv6, and L2TP/IPSec •Interoperability with NFS, AFP, and Windows (SMB/CIFS) file servers •Powerful web server (Apache) •Open Directory 2, an LDAP-based directory services
    [Show full text]
  • Managing Network File Systems in Oracle® Solaris 11.4
    Managing Network File Systems in ® Oracle Solaris 11.4 Part No: E61004 August 2021 Managing Network File Systems in Oracle Solaris 11.4 Part No: E61004 Copyright © 2002, 2021, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract.
    [Show full text]
  • Portalocker Documentation Release 2.3.2
    Portalocker Documentation Release 2.3.2 Rick van Hattem Aug 27, 2021 CONTENTS 1 portalocker - Cross-platform locking library1 1.1 Overview.................................................1 1.2 Redis Locks...............................................1 1.3 Python 2.................................................2 1.4 Tips....................................................2 1.5 Links...................................................2 1.6 Examples.................................................3 1.7 Versioning................................................4 1.8 Changelog................................................4 1.9 License..................................................4 1.9.1 portalocker package.......................................4 1.9.1.1 Submodules......................................4 1.9.1.2 Module contents....................................9 1.9.2 tests package.......................................... 13 1.9.2.1 Module contents.................................... 13 1.9.3 License............................................. 13 2 Indices and tables 15 Python Module Index 17 Index 19 i ii CHAPTER ONE PORTALOCKER - CROSS-PLATFORM LOCKING LIBRARY 1.1 Overview Portalocker is a library to provide an easy API to file locking. An important detail to note is that on Linux and Unix systems the locks are advisory by default. By specifying the -o mand option to the mount command it is possible to enable mandatory file locking on Linux. This is generally not recommended however. For more information about the subject: • https://en.wikipedia.org/wiki/File_locking
    [Show full text]
  • Real-Time Audio Servers on BSD Unix Derivatives
    Juha Erkkilä Real-Time Audio Servers on BSD Unix Derivatives Master's Thesis in Information Technology June 17, 2005 University of Jyväskylä Department of Mathematical Information Technology Jyväskylä Author: Juha Erkkilä Contact information: [email protected].fi Title: Real-Time Audio Servers on BSD Unix Derivatives Työn nimi: Reaaliaikaiset äänipalvelinsovellukset BSD Unix -johdannaisjärjestelmissä Project: Master's Thesis in Information Technology Page count: 146 Abstract: This paper covers real-time and interprocess communication features of 4.4BSD Unix derived operating systems, and especially their applicability for real- time audio servers. The research ground of bringing real-time properties to tradi- tional Unix operating systems (such as 4.4BSD) is covered. Included are some design ideas used in BSD-variants, such as using multithreaded kernels, and schedulers that can provide real-time guarantees to processes. Factors affecting the design of real- time audio servers are considered, especially the suitability of various interprocess communication facilities as mechanisms to pass audio data between applications. To test these mechanisms on a real operating system, an audio server and a client utilizing these techniques is written and tested on an OpenBSD operating system. The performance of the audio server and OpenBSD is analyzed, with attempts to identify some bottlenecks of real-time operation in the OpenBSD system. Suomenkielinen tiivistelmä: Tämä tutkielma kattaa reaaliaikaisuus- ja prosessien väliset kommunikaatio-ominaisuudet, keskittyen 4.4BSD Unix -johdannaisiin käyt- töjärjestelmiin, ja erityisesti siihen kuinka hyvin nämä soveltuvat reaaliaikaisille äänipalvelinsovelluksille. Tutkimusalueeseen sisältyy reaaliaikaisuusominaisuuk- sien tuominen perinteisiin Unix-käyttöjärjestelmiin (kuten 4.4BSD:hen). Mukana on suunnitteluideoita, joita on käytetty joissakin BSD-varianteissa, kuten säikeis- tetyt kernelit, ja skedulerit, jotka voivat tarjota reaaliaikaisuustakeita prosesseille.
    [Show full text]
  • Design and Implementation of XNU Port of Lustre Client File System
    Design and Implementation of XNU port of Lustre Client File System Danilov Nikita 2005.02.01 Abstract Describes structure of Lustre client file system module for XNU (Darwin kernel). In particular, changes that were necessary in core XNU kernel to enable unique Lustre requirements (e.g., intents) are discussed in much detail. Changes to the platform-independent core of Lustre in order to make it more portable are discussed in the companion paper Lustre Universal Portability Specification. Contents 1 Introduction 2 2 Distribution 3 3 Backgroundon XNU 3 3.1 XNUVFS.......................................... ......... 3 3.1.1 namei()....................................... ......... 4 3.1.2 vnodelifecycle ................................ ........... 6 3.2 XNUpagecache.................................... ........... 6 3.3 XNUSynchronization .............................. ............. 7 3.4 Miscellania..................................... ............. 9 4 High Level Design 9 4.1 XLLIntentHandling ............................... ............. 9 4.1.1 Requirements .................................. .......... 9 4.1.2 FunctionalSpecification . .............. 10 4.1.3 UseCases ...................................... ........ 10 4.1.4 LogicalSpecification . ............. 11 4.1.5 StateSpecification ......................... .... ............ 12 4.2 Sessions........................................ ............ 12 4.2.1 Requirements .................................. .......... 12 4.2.2 FunctionalSpecification . .............. 12 4.2.3 UseCases .....................................
    [Show full text]
  • Lock Or No-Lock?
    Lock Or No-Lock? Abstract guaranteeing atomicity are necessary when these oper- ations must be atomic. Many scientific applications require high perfor- With the advent of parallel I/O libraries data can be mance concurrent IO accesses to a file by multiple pro- accessed in various complex patterns. Locking mecha- cesses. Those applications rely indirectly on atomic IO nisms are used to ensure that shared data is not being capabilities inorder to perform updates to structured violated. Adapted from the POSIX semantics, parallel datasets, such as those stored in HDF5 format files. file system like GPFS [9] and Lustre [10] provide byte Current support for atomic mode operations such as range locking mechanism. Byte range locks provide these in MPI-IO is performed by locking around the an option for guaranteeing atomicity of non-contiguous operations, imposing lock overhead in all situations, operations. By locking the entire region, changes can even though in many cases these operations are non- be made using a read-modify-write sequence. How- overlapping in the file. We propose to isolate non- ever, this approach does not consider the actual non- overlapping accesses from overlapping ones in collec- contiguous access pattern that may occur in a byte tive I/O cases, allowing the non-overlapping ones to range and introduces false sharing. This approach also proceed without imposing lock overhead. To enable this limits the benefits of parallel I/O that can be gained, we have implemented an efficient conflict detection al- by unnecessarily serializing the accesses. To address gorithm in MPI-IO using MPI file views and datatypes.
    [Show full text]
  • With the Spiagent File Locking Add-On Evaluator's Guide
    with the SPIAgent File Locking Add-On Evaluator’s Guide ©2010 Software Pursuits, Inc. Table of Contents Introduction ....................................................................................................................... 2 System Requirements ....................................................................................................... 2 Contact Information ........................................................................................................... 3 Required Add-Ons for SPIAgent File Locking ................................................................... 3 SPIAgent Add-On .......................................................................................................... 3 SPIAgent File Locking Add-On ..................................................................................... 4 Other SureSync Add-Ons ................................................................................................. 4 ArchiveSync Add-On ..................................................................................................... 4 What is SPIAgent File Locking? ........................................................................................ 4 Supported Applications ..................................................................................................... 6 Expected Application Behavior when Encountering Locks ............................................... 7 Our Scenario ..................................................................................................................
    [Show full text]
  • Mac OS X Server File Services Administration for Version 10.4 Or Later
    Mac OS X Server File Services Administration For Version 10.4 or Later K Apple Computer, Inc. © 2005 Apple Computer, Inc. All rights reserved. The owner or authorized user of a valid copy of Mac OS X Server software may reproduce this publication for the purpose of learning to use such software. No part of this publication may be reproduced or transmitted for commercial purposes, such as selling copies of this publication or for providing paid-for support services. Every effort has been made to ensure that the information in this manual is accurate. Apple Computer, Inc., is not responsible for printing or clerical errors. Apple 1 Infinite Loop Cupertino CA 95014-2084 www.apple.com The Apple logo is a trademark of Apple Computer, Inc., registered in the U.S. and other countries. Use of the “keyboard” Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark infringement and unfair competition in violation of federal and state laws. Apple, the Apple logo, AppleShare, AppleTalk, Mac, Macintosh, QuickTime, Xgrid, and Xserve are trademarks of Apple Computer, Inc., registered in the U.S. and other countries. Finder is a trademark of Apple Computer, Inc. Adobe and PostScript are trademarks of Adobe Systems Incorporated. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd. Other company and product names mentioned herein are trademarks of their respective companies. Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor a recommendation.
    [Show full text]
  • Securing Mac OS X - Presentation Slides
    Securing Mac OS X - Presentation Slides Securing Mac OS X Paul Day, pd(at)csse.uwa.edu.au “Keep others out - With Mac OS X, you may never need to worry about security again.” Top 10 reasons to upgrade Apple web-site 1 Securing Mac OS X - Presentation Slides Introduction Background • Mac OS X made a major transition from Classic to X. – Introduced Unix in the form of FreeBSD, NeXT and the Mach/Darwin Kernel • One of the more secure Unix installations by default, but still plenty of drawbacks. 2 Securing Mac OS X - Presentation Slides Overview Aims of this talk: • Discuss methods of hardening OS X from a: – Local user perspective – Network perspective • Point out vulnerabilities in recommendations and existing technologies. Similar work - why bother? • Tried not to let paranoia result in recommendations with little/no benefit but large inconvenience. • Included recommendations, and discussed vulnerabilities others have over-looked. • Simplified and reduced background and semi-relevant information. 3 Securing Mac OS X - Presentation Slides Local Security Local security? Methods to harden security within Mac OS X from a local user perspective: – With local physical access to the machine via its console, OR – With interactive local access to the machine via methods such as Secure Shell (SSH) or Apple Remote Desktop (ARD). 4 Securing Mac OS X - Presentation Slides Login Window • Enable it • Disable auto-login • Insert login window message • Change your password Login Window Enable it and disable auto-login •Uncheck “Automatically log in as:”
    [Show full text]
  • Controlled Environment to Run Untrusted Applications
    CONTROLLED ENVIRONMENT TO RUN UNTRUSTED APPLICATIONS A thesis submitted To Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science by TAHANI ALBALAWI August, 2013 Thesis written by TAHANI ALBALAWI B.S., Taiba University, KSA 2007 M.S., Kent State University, USA, 2013 Approved by Michael Rothstein, Advisor Javed Khan , Chair, Department of Computer Science Raymond Craig, Dean, College of Arts and Sciences ii Abstract Untrusted applications pose a security threat to systems they run on. At the same time sometimes a user wants to run such applications without risking unauthorized access to certain parts of the system. For this reason we propose a controlled environment to run host untrusted applications based on AppArmor tool. We intend to augment the usefulness of AppArmor by further restricting the permissions of the files accessible to the process using other system mechanisms, such as NFS and Chroot. Based on the principle of least authority, programs can run in a restricted secure environment limiting access to a subset of the files. This way untrusted applications are allowed to run with limits to protect the system. iii Table of Contents LIST OF FIGURES ..................................................................................................... vii LIST OF TABLES ...................................................................................................... vii DEDICATION.............................................................................................................
    [Show full text]
  • Daemons and Systems Aspects
    Error Handling 1 / 37 Error Handling ■ I/O devices and physical media aren’t perfect ■ Device drivers have to cope with error conditions ■ Recovery can be complex and device-dependent ■ Often, errors are detected by adding check bytes or ECC bytes to physical blocks 1 / 37 Example: Tape Errors ■ Suppose a tape drive indicated a bad read ■ First, retry up to 10 times ■ Backspace the tape a few inches and “shoe shine” it — move it back and forth so the bad spot is scraped against the edge of the read head ■ The idea is to dislodge any pieces of dirt 2 / 37 1 Disk I/O Errors ■ If a disk write fails, retry a few times ■ If the write still fails, mark the block as “bad” — how this is done is device-dependent — and allocate a spare block ■ Somehow, indicate that this remapping has taken place 3 / 37 Testing for Errors ■ How do you test your error recovery code? ■ Where do you get media that are just bad enough? ■ Remember that failure modes can be arbitarily weird ■ Loose cables can generate very strange signals 4 / 37 2 From the NetBSD Printer Driver 1. You should be able to write to and read back the same value to the data port. Do an alternating zeros, alternating ones, walking zero, and walking one test to check for stuck bits. 2. You should be able to write to and read back the same value to the control port lower 5 bits, the upper 3 bits are reserved per the IBM PC technical reference manauls and different boards do different things with them.
    [Show full text]