Managing File Systems in Oracle® Solaris 11.2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Better Performance Through a Disk/Persistent-RAM Hybrid Design
The Conquest File System: Better Performance Through a Disk/Persistent-RAM Hybrid Design AN-I ANDY WANG Florida State University GEOFF KUENNING Harvey Mudd College PETER REIHER, GERALD POPEK University of California, Los Angeles ________________________________________________________________________ Modern file systems assume the use of disk, a system-wide performance bottleneck for over a decade. Current disk caching and RAM file systems either impose high overhead to access memory content or fail to provide mechanisms to achieve data persistence across reboots. The Conquest file system is based on the observation that memory is becoming inexpensive, which enables all file system services to be delivered from memory, except providing large storage capacity. Unlike caching, Conquest uses memory with battery backup as persistent storage, and provides specialized and separate data paths to memory and disk. Therefore, the memory data path contains no disk-related complexity. The disk data path consists of only optimizations for the specialized disk usage pattern. Compared to a memory-based file system, Conquest incurs little performance overhead. Compared to several disk-based file systems, Conquest achieves 1.3x to 19x faster memory performance, and 1.4x to 2.0x faster performance when exercising both memory and disk. Conquest realizes most of the benefits of persistent RAM at a fraction of the cost of a RAM-only solution. Conquest also demonstrates that disk-related optimizations impose high overheads for accessing memory content in a memory-rich environment. Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Storage Hierarchies; D.4.3 [Operating Systems]: File System Management—Access Methods and Directory Structures; D.4.8 [Operating Systems]: Performance—Measurements General Terms: Design, Experimentation, Measurement, and Performance Additional Key Words and Phrases: Persistent RAM, File Systems, Storage Management, and Performance Measurement ________________________________________________________________________ 1. -
System Calls System Calls
System calls We will investigate several issues related to system calls. Read chapter 12 of the book Linux system call categories file management process management error handling note that these categories are loosely defined and much is behind included, e.g. communication. Why? 1 System calls File management system call hierarchy you may not see some topics as part of “file management”, e.g., sockets 2 System calls Process management system call hierarchy 3 System calls Error handling hierarchy 4 Error Handling Anything can fail! System calls are no exception Try to read a file that does not exist! Error number: errno every process contains a global variable errno errno is set to 0 when process is created when error occurs errno is set to a specific code associated with the error cause trying to open file that does not exist sets errno to 2 5 Error Handling error constants are defined in errno.h here are the first few of errno.h on OS X 10.6.4 #define EPERM 1 /* Operation not permitted */ #define ENOENT 2 /* No such file or directory */ #define ESRCH 3 /* No such process */ #define EINTR 4 /* Interrupted system call */ #define EIO 5 /* Input/output error */ #define ENXIO 6 /* Device not configured */ #define E2BIG 7 /* Argument list too long */ #define ENOEXEC 8 /* Exec format error */ #define EBADF 9 /* Bad file descriptor */ #define ECHILD 10 /* No child processes */ #define EDEADLK 11 /* Resource deadlock avoided */ 6 Error Handling common mistake for displaying errno from Linux errno man page: 7 Error Handling Description of the perror () system call. -
NOAA Technical Report NOS NGS 60
NOAA Technical Report NOS NGS 60 NAD83 (NSR2007) National Readjustment Final Report Dale G. Pursell Mike Potterfield Rockville, MD August 2008 NOAA Technical Report NOS NGS 60 NAD 83(NSRS2007) National Readjustment Final Report Dale G. Pursell Mike Potterfield Silver Spring, MD August 2008 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Contents Overview ........................................................................................................................ 1 Part I. Background .................................................................................................... 5 1. North American Datum of 1983 (1986) .......................................................................... 5 2. High Accuracy Reference Networks (HARNs) .............................................................. 5 3. Continuously Operating Reference Stations (CORS) .................................................... 7 4. Federal Base Networks (FBNs) ...................................................................................... 8 5. National Readjustment .................................................................................................... 9 Part II. Data Inventory, Assessment and Input ....................................... 11 6. Preliminary GPS Project Analysis ................................................................................11 7. Master File .....................................................................................................................11 -
A Brief History of UNIX File Systems
A Brief History of UNIX File Systems Val Henson IBM, Inc. [email protected] Summary • Review of UNIX file system concepts • File system formats, 1974-2004 • File system comparisons and recommendations • Fun trivia • Questions and answers (corrections ONLY during talk) 1 VFS/vnode architecture • VFS: Virtual File System: common object-oriented interface to fs's • vnode: virtual node: abstract file object, includes vnode ops • All operations to fs's and files done through VFS/vnode in- terface • S.R. Kleiman, \Vnodes: An Architecture for Multiple File System Types in Sun UNIX," Summer USENIX 1986 2 Some Definitions superblock: fs summary, pointers to other information inode: on-disk structure containing information about a file indirect block: block containing pointers to other blocks metadata: everything that is not user data, including directory entries 3 Disk characteristics • Track - contiguous region, can be read at maximum speed • Seek time - time to move the head between different tracks • Rotational delay - time for part of track to move under head • Fixed per I/O overhead means bigger I/Os are better 4 In the beginning: System V FS (S5FS) (c. 1974) • First UNIX file system, referred to as \FS" • Disk layout: superblock, inodes, followed by everything else • 512-1024 byte block size, no fragments • Super simple - and super slow! 2-5% of raw disk bandwidth 5 Berkeley Fast File System (FFS or UFS) (c. 1984) • Metadata spread throughout the disk in \cylinder groups" • Block size 4KB minimum, frag size 1KB (to avoid 45% wasted space) • Physical -
A Longitudinal and Cross-Dataset Study of Internet Latency and Path Stability
A Longitudinal and Cross-Dataset Study of Internet Latency and Path Stability Mosharaf Chowdhury Rachit Agarwal Vyas Sekar Ion Stoica Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-172 http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-172.html October 11, 2014 Copyright © 2014, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A Longitudinal and Cross-Dataset Study of Internet Latency and Path Stability Mosharaf Chowdhury Rachit Agarwal Vyas Sekar Ion Stoica UC Berkeley UC Berkeley Carnegie Mellon University UC Berkeley ABSTRACT Even though our work does not provide new active mea- We present a retrospective and longitudinal study of Internet surement techniques or new datasets, we believe that there is value in this retrospective analysis on several fronts. First, it latency and path stability using three large-scale traceroute provides a historical and longitudinal perspective of Internet datasets collected over several years: Ark and iPlane from path properties that are surprisingly lacking in the measure- 2008 to 2013 and a proprietary CDN’s traceroute dataset spanning 2012 and 2013. Using these different “lenses”, we ment community today. Second, it can help us revisit and revisit classical properties of Internet paths such as end-to- reappraise classical assumptions about path latency and sta- end latency, stability, and of routing graph structure. -
Plw Sc/Nt/Ntr/Ls
K Service Source PLW SC/NT/NTR/LS Personal LaserWriter SC, Personal LaserWriter NT, Personal LaserWriter NTR, Personal LaserWriter LS, Personal LaserWriter LS/L K Service Source Basics PLW SC/NT/NTR/LS Basics Product Information - 1 Product Information The printers covered in this manual are • Personal LaserWriter SC • Personal LaserWriter NT • Personal LaserWriter NTR • Personal LaserWriter LS • Personal LaserWriter LS/L Compatibility Not all parts are compatible among the five models. Refer to Illustrated Parts for compatibility cross references. The cassette feeder tray and its associated parts are optional on the LS, LS/L, and NTR models. Basics Paper Paths - 2 Paper Paths There are four paper paths in the Personal LaserWriter. Paper is fed from the cassette or multipurpose tray and delivered to the face-down or face-up delivery trays. Note: Face signifies image side. Default delivery is face- down at the top of the printer. Basics LS–LS/L Identification - 3 LS–LS/L Identification I/O Board Bracket The LS/L is a cost-reduced version of the LS but is sold and packaged under the same LS name. Parts are not necessarily interchangeable between the two models. Power Switch External distinguishing characteristics: • LS: The power switch is on the left rear of printer; the rear cover has an opening for an I/O board bracket and Personal LaserWriter LS displays the family number M2000. • LS/L: The power switch is on the right rear of printer; Solid Rear Cover the rear cover is solid plastic and displays the family number M2002. Power Switch Personal LaserWriter LS/L Basics Sensing System Theory - 4 Sensing System Theory There are six sensors in the PS11 Personal LaserWriter: four PS12 paper sensors and two printer-open sensors. -
Misleading Stars: What Cannot Be Measured in the Internet?
Noname manuscript No. (will be inserted by the editor) Misleading Stars: What Cannot Be Measured in the Internet? Yvonne-Anne Pignolet · Stefan Schmid · Gilles Tredan Abstract Traceroute measurements are one of the main in- set can help to determine global properties such as the con- struments to shed light onto the structure and properties of nectivity. today’s complex networks such as the Internet. This arti- cle studies the feasibility and infeasibility of inferring the network topology given traceroute data from a worst-case 1 Introduction perspective, i.e., without any probabilistic assumptions on, e.g., the nodes’ degree distribution. We attend to a scenario Surprisingly little is known about the structure of many im- where some of the routers are anonymous, and propose two portant complex networks such as the Internet. One reason fundamental axioms that model two basic assumptions on is the inherent difficulty of performing accurate, large-scale the traceroute data: (1) each trace corresponds to a real path and preferably synchronous measurements from a large in the network, and (2) the routing paths are at most a factor number of different vantage points. Another reason are pri- 1/α off the shortest paths, for some parameter α 2 (0; 1]. vacy and information hiding issues: for example, network In contrast to existing literature that focuses on the cardi- providers may seek to hide the details of their infrastructure nality of the set of (often only minimal) inferrable topolo- to avoid tailored attacks. gies, we argue that a large number of possible topologies Knowledge of the network characteristics is crucial for alone is often unproblematic, as long as the networks have many applications as well as for an efficient operation of the a similar structure. -
Advanced Bash-Scripting Guide
Advanced Bash−Scripting Guide An in−depth exploration of the art of shell scripting Mendel Cooper <[email protected]> 2.2 31 October 2003 Revision History Revision 0.1 14 June 2000 Revised by: mc Initial release. Revision 0.2 30 October 2000 Revised by: mc Bugs fixed, plus much additional material and more example scripts. Revision 0.3 12 February 2001 Revised by: mc Another major update. Revision 0.4 08 July 2001 Revised by: mc More bugfixes, much more material, more scripts − a complete revision and expansion of the book. Revision 0.5 03 September 2001 Revised by: mc Major update. Bugfixes, material added, chapters and sections reorganized. Revision 1.0 14 October 2001 Revised by: mc Bugfixes, reorganization, material added. Stable release. Revision 1.1 06 January 2002 Revised by: mc Bugfixes, material and scripts added. Revision 1.2 31 March 2002 Revised by: mc Bugfixes, material and scripts added. Revision 1.3 02 June 2002 Revised by: mc 'TANGERINE' release: A few bugfixes, much more material and scripts added. Revision 1.4 16 June 2002 Revised by: mc 'MANGO' release: Quite a number of typos fixed, more material and scripts added. Revision 1.5 13 July 2002 Revised by: mc 'PAPAYA' release: A few bugfixes, much more material and scripts added. Revision 1.6 29 September 2002 Revised by: mc 'POMEGRANATE' release: some bugfixes, more material, one more script added. Revision 1.7 05 January 2003 Revised by: mc 'COCONUT' release: a couple of bugfixes, more material, one more script. Revision 1.8 10 May 2003 Revised by: mc 'BREADFRUIT' release: a number of bugfixes, more scripts and material. -
CIS 191 Linux Lab Exercise
CIS 191 Linux Lab Exercise Lab 9: Backup and Restore Fall 2008 Lab 9: Backup and Restore The purpose of this lab is to explore the different types of backups and methods of restoring them. We will look at three utilities often used for backups and learn the advantages and disadvantages of each. Supplies • VMWare Server 1.05 or higher • Benji VM Preconfiguration • Labs 6 and Labs 7 completed on a pristine Benji VM [root@benji /]# fdisk -l Disk /dev/sda: 5368 MB, 5368709120 bytes 255 heads, 63 sectors/track, 652 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 382 3068383+ 83 Linux /dev/sda2 383 447 522112+ 82 Linux swap / Solaris /dev/sda3 448 511 514080 83 Linux /dev/sda4 512 652 1132582+ 5 Extended /dev/sda5 512 549 305203+ 83 Linux /dev/sda6 550 556 56196 83 Linux /dev/sda7 557 581 200781 83 Linux [root@benji /]# [root@benji /]# mount /dev/sda1 on / type ext3 (rw) proc on /proc type proc (rw) sysfs on /sys type sysfs (rw) devpts on /dev/pts type devpts (rw,gid=5,mode=620) tmpfs on /dev/shm type tmpfs (rw) /dev/sda5 on /opt type ext3 (rw) /dev/sda3 on /var type ext3 (rw) none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw) sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw) /dev/sda7 on /home type ext3 (rw,usrquota) [root@benji /]# cat /etc/fstab LABEL=/1 / ext3 defaults 1 1 devpts /dev/pts devpts gid=5,mode=620 0 0 tmpfs /dev/shm tmpfs defaults 0 0 LABEL=/opt /opt ext3 defaults 1 2 proc /proc proc defaults 0 0 sysfs /sys sysfs defaults 0 0 LABEL=/var /var ext3 defaults 1 2 LABEL=SWAP-sda2 swap swap defaults 0 0 LABEL=/home /home ext3 usrquota,defaults 1 2 [root@benji /]# Forum If you get stuck on one of the steps below don’t beat your head against the wall. -
Connecting the Storage System to the Solaris Host
Configuration Guide for Solaris™ Host Attachment Hitachi Virtual Storage Platform Hitachi Universal Storage Platform V/VM FASTFIND LINKS Document Organization Product Version Getting Help Contents MK-96RD632-05 Copyright © 2010 Hitachi, Ltd., all rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or stored in a database or retrieval system for any purpose without the express written permission of Hitachi, Ltd. (hereinafter referred to as “Hitachi”) and Hitachi Data Systems Corporation (hereinafter referred to as “Hitachi Data Systems”). Hitachi Data Systems reserves the right to make changes to this document at any time without notice and assumes no responsibility for its use. This document contains the most current information available at the time of publication. When new and/or revised information becomes available, this entire document will be updated and distributed to all registered users. All of the features described in this document may not be currently available. Refer to the most recent product announcement or contact your local Hitachi Data Systems sales office for information about feature and product availability. Notice: Hitachi Data Systems products and services can be ordered only under the terms and conditions of the applicable Hitachi Data Systems agreement(s). The use of Hitachi Data Systems products is governed by the terms of your agreement(s) with Hitachi Data Systems. Hitachi is a registered trademark of Hitachi, Ltd. in the United States and other countries. Hitachi Data Systems is a registered trademark and service mark of Hitachi, Ltd. -
Life in the Fast Lane: Optimisation for Interactive and Batch Jobs Nikola Marković, Boemska T.S
Paper 11825-2016 Life in the Fast Lane: Optimisation for Interactive and Batch Jobs Nikola Marković, Boemska T.S. Ltd.; Greg Nelson, ThotWave Technologies LLC. ABSTRACT We spend so much time talking about GRID environments, distributed jobs, and huge data volumes that we ignore the thousands of relatively tiny programs scheduled to run every night, which produce only a few small data sets, but make all the difference to the users who depend on them. Individually, these jobs might place a negligible load on the system, but by their sheer number they can often account for a substantial share of overall resources, sometimes even impacting the performance of the bigger, more important jobs. SAS® programs, by their varied nature, use available resources in a varied way. Depending on whether a SAS® procedure is CPU-, disk- or memory-intensive, chunks of memory or CPU can sometimes remain unused for quite a while. Bigger jobs leave bigger chunks, and this is where being small and able to effectively exploit those leftovers can be a great advantage. We call our main optimization technique the Fast Lane, which is a queue configuration dedicated to jobs with consistently small SASWORK directories, that, when available, lets them use unused RAM in place of their SASWORK disk. The approach improves overall CPU saturation considerably while taking loads off the I/O subsystem, and without failure results in improved runtimes for big jobs and small jobs alike, without requiring any changes to deployed code. This paper explores the practical aspects of implementing the Fast Lane on your environment. -
Set Hadoop-Specific Environment Variables Here
# Set Hadoop-specific environment variables here. # The only required environment variable is JAVA_HOME. All others are # optional. When running a distributed configuration it is best to # set JAVA_HOME in this file, so that it is correctly defined on # remote nodes. # The java implementation to use. Required. export JAVA_HOME=/usr/jdk64/jdk1.8.0_112 export HADOOP_HOME_WARN_SUPPRESS=1 # Hadoop home directory export HADOOP_HOME=${HADOOP_HOME:-/usr/hdp/2.6.5.0-292/hadoop} # Hadoop Configuration Directory # Path to jsvc required by secure HDP 2.0 datanode export JSVC_HOME=/usr/lib/bigtop-utils # The maximum amount of heap to use, in MB. Default is 1000. export HADOOP_HEAPSIZE="1024" export HADOOP_NAMENODE_INIT_HEAPSIZE="-Xms1024m" # Extra Java runtime options. Empty by default. export HADOOP_OPTS="-Djava.net.preferIPv4Stack=true ${HADOOP_OPTS}" USER="$(whoami)" # Command specific options appended to HADOOP_OPTS when specified HADOOP_JOBTRACKER_OPTS="-server -XX:ParallelGCThreads=8 -XX:+UseConcMarkSweepGC - XX:ErrorFile=/var/log/hadoop/$USER/hs_err_pid%p.log -XX:NewSize=200m -XX:MaxNewSize=200m - Xloggc:/var/log/hadoop/$USER/gc.log-`date +'%Y%m%d%H%M'` -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps - XX:+PrintGCDateStamps -Xmx1024m -Dhadoop.security.logger=INFO,DRFAS -Dmapred.audit.logger=INFO,MRAUDIT - Dhadoop.mapreduce.jobsummary.logger=INFO,JSA ${HADOOP_JOBTRACKER_OPTS}" HADOOP_TASKTRACKER_OPTS="-server -Xmx1024m -Dhadoop.security.logger=ERROR,console -Dmapred.audit.logger=ERROR,console ${HADOOP_TASKTRACKER_OPTS}" SHARED_HADOOP_NAMENODE_OPTS="-server