Molecular Xenomonitoring for Wuchereria Bancrofti in Culex Quinquefasciatus in Two Districts in Bangladesh Supports Transmission Assessment Survey Findings

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Xenomonitoring for Wuchereria Bancrofti in Culex Quinquefasciatus in Two Districts in Bangladesh Supports Transmission Assessment Survey Findings RESEARCH ARTICLE Molecular xenomonitoring for Wuchereria bancrofti in Culex quinquefasciatus in two districts in Bangladesh supports transmission assessment survey findings Seth R. Irish1,2*, Hasan Mohammad Al-Amin3, Heather N. Paulin1, A. S. M. Sultan Mahmood4, Rajaul K. Khan4, A. K. M. Muraduzzaman5, Caitlin M. Worrell1, Meerjady S. Flora5, Mohammed J. Karim4, Tahmina Shirin5, A. K. M. Shamsuzzaman4, a1111111111 Sanya Tahmina3,4, Audrey Lenhart1, Christine Dubray1 a1111111111 a1111111111 1 Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, 2 President's Malaria Initiative, Bureau for Global a1111111111 Health, Office of Infectious Disease, United States Agency for International Development, Washington, DC, a1111111111 United States of America, 3 International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh, 4 Ministry of Health and Family Welfare, Communicable Disease Control, Directorate General of Health Services, Dhaka, Bangladesh, 5 Institute of Epidemiology Disease Control & Research, Dhaka, Bangladesh * [email protected] OPEN ACCESS Citation: Irish SR, Al-Amin HM, Paulin HN, Mahmood ASMS, Khan RK, Muraduzzaman AKM, et al. (2018) Molecular xenomonitoring for Abstract Wuchereria bancrofti in Culex quinquefasciatus in two districts in Bangladesh supports transmission assessment survey findings. PLoS Negl Trop Dis Background 12(7): e0006574. https://doi.org/10.1371/journal. pntd.0006574 Careful monitoring for recrudescence of Wuchereria bancrofti infection is necessary Editor: Samuel Wanji, University of Buea, in communities where mass drug administration (MDA) for the elimination of lymphatic CAMEROON filariasis (LF) as a public health problem has been stopped. During the post-MDA period, Received: February 9, 2018 transmission assessment surveys (TAS) are recommended by the World Health Organiza- tion to monitor the presence of the parasite in humans. Molecular xenomonitoring (MX), a Accepted: June 1, 2018 method by which parasite infection in the mosquito population is monitored, has also been Published: July 26, 2018 proposed as a sensitive method to determine whether the parasite is still present in the Copyright: This is an open access article, free of all human population. The aim of this study was to conduct an MX evaluation in two areas of copyright, and may be freely reproduced, Bangladesh, one previously endemic district that had stopped MDA (Panchagarh), and part distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. of a non-endemic district (Gaibandha) that borders the district where transmission was most The work is made available under the Creative recently recorded. Commons CC0 public domain dedication. Data Availability Statement: All relevant data are within the paper and in its Supporting Information Methodology/Principal findings files. Mosquitoes were systematically collected from 180 trap sites per district and mosquito Funding: This work received financial support from pools were tested for W. bancrofti using real-time PCR. A total of 23,436 intact mosquitoes, the Neglected Tropical Disease Support Center representing 31 species, were collected from the two districts, of which 10,344 (41%) were (NTDSC), which is funded at the Task Force for Culex quinquefasciatus, the vector of W. bancrofti in Bangladesh. All of the 594 pools of Cx. Global Health principally by grants from the Bill & Melinda Gates Foundation and United States quinquefasciatus tested by real-time PCR were negative for the presence of W. bancrofti Agency for International Development. The funders DNA. PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006574 July 26, 2018 1 / 12 Molecular xenomonitoring in Bangladesh had no role in the study design, data collection and Conclusions/Significance analysis, decision to publish or preparation of the manuscript. This study suggested the absence of W. bancrofti in these districts. MX could be a sensitive tool to confirm interruption of LF transmission in areas considered at higher risk of recrudes- Competing interests: The authors have declared that no competing interests exist. cence, particularly in countries like Bangladesh where entomological and laboratory capac- ity to perform MX is available. Author summary To ensure elimination of lymphatic filariasis, efficient surveillance methods are needed. While some available methods rely on the detection of Wuchereria bancrofti microfilaria, antigen or antibody in human blood samples, molecular xenomonitoring can identify par- asite DNA in vector mosquitoes. We collected the main vector of lymphatic filariasis in Bangladesh, Culex quinquefasciatus mosquitoes, in two districts in Bangladesh to see if W. bancrofti could be detected. One of the districts never had evidence of widespread trans- mission but borders another district where transmission was most recently detected. The other district had previously had W. bancrofti transmission, but after 12 rounds of mass drug administration, had been deemed to have little to no ongoing transmission. In each district, traps were set at 180 sites to collect mosquitoes. Over ten thousand Cx. quinque- fasciatus mosquitoes were collected, but none of them tested positive for presence of W. bancrofti. The practice of trapping mosquitoes was feasible for the national program to execute, and the absence of infected mosquitoes suggests that parasite rates are nearing zero. Introduction Lymphatic filariasis (LF), an important cause of acute and chronic morbidity worldwide, is caused by infection with the thread-like nematodes Wuchereria bancrofti, Brugia malayi and Brugia timori. The Global Programme to Eliminate Lymphatic Filariasis was established in 2000 by the World Health Organization (WHO) and has two objectives: (i) the interruption of LF transmission through mass drug administration (MDA) using the combination of albenda- zole plus diethylcarbamazine or ivermectin, or all three drugs together in specific contexts as recommended recently by WHO [1] and (ii) the alleviation of the suffering of affected popula- tions through morbidity management and disability prevention [2]. Interruption of transmis- sion is thought to require at least five rounds of MDA, after which national LF elimination programs conduct a Transmission Assessment Survey (TAS) to determine whether MDA can be stopped [3]. After MDA is ceased, programs must conduct surveillance to identify and respond to the possibility of re-emergence of transmission. Current WHO recommendations for post-MDA surveillance include repeating TAS twice at 2±3 year intervals after stopping MDA, and ongo- ing surveillance [3]. Detection of parasites in vector mosquitoes is one of the surveillance strat- egies that countries can consider. Molecular xenomonitoring (MX), the use of PCR to identify parasite DNA in vector mosquitoes, has previously been used for LF surveillance after cessa- tion of MDA [4±6] to identify residual foci of transmission. It has the advantage of being non- invasive to humans and could be useful when willingness of people to be tested is an issue, especially as households (HH) that refused MDA may also refuse testing during post-MDA PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006574 July 26, 2018 2 / 12 Molecular xenomonitoring in Bangladesh surveillance. However, MX requires entomological expertise and laboratories with molecular capacity. In Bangladesh, 70 million individuals were at risk of LF before the Ministry of Health and Family Welfare (MoHFW) started its LF elimination program in 2000 [7±8]. Wuchereria ban- crofti is the only species of human filarial worm currently known to be present in Bangladesh and the main vector is Culex quinquefasciatus [9]. Based on initial mapping, 19 of 64 districts were classified as endemic (baseline microfilaria prevalence between 1% and 16%) and therefore required MDA [7], which began in 2001. By 2016, all 19 districts had passed the TAS and were eligible to cease MDA activities [7]. An ongoing surveillance project was initiated in April 2014 in Panchagarh (one of the previously treated endemic districts) and in Gaibandha (a non- endemic district that had never conducted MDA). The latter district was selected because it bor- ders a district with recent LF transmission and was considered at high risk for re-introduction. The objective of the project was to monitor W. bancrofti transmission trends through the assess- ment of microfilaremia (Mf), antibodies, and antigenemia among adults in these two districts. Molecular xenomonitoring [10] was implemented as a complementary strategy for identifying areas of active transmission [11]. We sought to use MX to measure if the mosquito infection rate with W. bancrofti in the two districts was less than the cut-off point of 0.25%, a threshold that has been suggested for areas where Culex mosquitoes are the vector [10]. Methods Study site Mosquitoes were collected in two evaluation units, one in Panchagarh district and one in Gai- bandha district (Fig 1). Panchagarh district is part of the Rangpur division and is the most northeasterly district in Bangladesh, with a population of 987,644 and an area of 1404 km2 [12]. It is bordered on three sides by India and in the south by three other districts belonging to the Rangpur division, all of them previously endemic for LF but without any positive cases identified during the TAS1 and
Recommended publications
  • A Checklist of Mosquitoes (Diptera: Pondicherrx India with Notes On
    Journal of the American Mosquito Control Association, ZO(3):22g_232,2004 Copyright @ 20M by the American Mosquito Control Association, Inc. A CHECKLIST OF MOSQUITOES (DIPTERA: CULICIDAE) OF PONDICHERRX INDIA WITH NOTES ON NEW AREA RECORDS A. R. RAJAVEL, R. NATARAJAN AND K. VAIDYANATHAN Vector Control Research Centre (ICMR), pondicherry 6O5 0O6, India ABSTRACT A checklist of mosquito species for Pondicherry, India, is presented based on collections made from November 1995 to September 1997. Mosquitoes of 64 species were found belonging to 23 subgenera and 14 genera, Aedeomyia, Aedes, Anopheles, Armigeres, Coquitlettidia, Culex, Ficalbia,- Malaya, Maisonia, Mi- momyia, Ochlerotatus, Toxorhynchites, {lranotaenia, and Verrallina. We report 25 new speciLs for pondicherry. KEY WORDS Mosquitoes, check list, new area records, pondicherry, India INTRODUCTION season. The period from December to February is Documentation of species is a critically impor- relatively cool. tant component of biodiversity studies and has great significance in conservation of genetic re- MATERIALS AND METHODS sources as well as control of pests and vectors. In India, mosquito fauna of several states has been Mosquito surveys were made from November documented, but comprehensive information on 1995 to September 1997 . Each of the 6 communes, species diversity is not available for Pondicherry. Ariankuppam, Bahour, Mannadipet, Nettapakkam, A recent update on the distribution of Aedini mos- Ozhukarai, and Villianur, were considered as dis- quitoes in India by Kaur (2003) included all the tinct units to ensure complete coverage of the re- states except Pondicheny. The 14 species of mos- gion, and collections were made in a total of 97 quitoes collected by Nair (1960) during the filarial villages among these and in the old town of Pon- survey in Pondicherry settlement is the earliest dicherry.
    [Show full text]
  • Mosquito Immatures in Drought-Prone and Drought-Resistant Bamboo Stumps in Flores, Indonesia
    Journal of the American Mosquito Control Association, 15(3):271_2.:5, 1999 Copyright O 1999 by the American Mosquito Control Association, Inc. MOSQUITO IMMATURES IN DROUGHT-PRONE AND DROUGHT-RESISTANT BAMBOO STUMPS IN FLORES, INDONESIA TOSHIHIKO SUNAHARA,I MoToYoSHI MOGII INo MAKMUR SELoMo, ABSTRACT _ Mosquito species in water-filled bamboo stumps were compared with those emerged from dormant eggs in dry stumps. Tripteroides spp. was more abundant than Aetleslstegomyia) spp. (mainly annan- dalei and albttpictus) in water-filled stumps, whereas the latter was more abundant than the former in dry stumps. During 5 days after inundation, Aedes (Stegomyia) spp. developed faster than Tripteroides spp. Density of Tripteroides spp. was high in narrow and deep stumps. Both taxa of mosquitoes were at low deniities in water- filled stumps with large detritivores (Tipulidae and Oligochaeta). KEY WOR"DS Aedes, habitat segregation, mosquito community, species interaction, Tripteroitles INTRODUCTION retained water in the dry season with those that emerged from dormant eggs in dry stumps. Several container-breeding mosquito species of- In addition to drought susceptibility, we exam- ten co-occur in the same locality without competi- ined effects of the stump morphology and presence tive exclusion. Their coexistence can be attributed of predators and large detritivores on habitat uses at least partially to habitat segregation, which re- of mosquitoes. These habitat conditions vary sults from differential specialization of mosquitoes among stumps and may affect the use of bamboo under variable habitat conditions. stumps by mosquitoes. Drought susceptibility is one of the conditions that may result in habitat segregation of mosqui- toes. Drought susceptibility varies among tree MATERIALS AND METHODS holes, bamboo stumps, and other artif,cial contain- Sampling was carried out in 7 sites near villages ers (Bradshaw and Holzapfel 1988, Sota et al.
    [Show full text]
  • Nationwide Distribution and Insecticide Resistance Study of Malaysian Mosquito Culex Quinquefasciatus Say by Molecular and Biochemical Tools
    NATIONWIDE DISTRIBUTION AND INSECTICIDE RESISTANCE STUDY OF MALAYSIAN MOSQUITO CULEX QUINQUEFASCIATUS SAY BY MOLECULAR AND BIOCHEMICAL TOOLS LOW VAN LUN THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 ABSTRACT A nationwide investigation was carried out to (1) determine the distribution of Culex quinquefasciatus and other species of mosquitoes in stagnant water in residential areas, (2) investigate the genetic diversity of Cx. quinquefasciatus, (3) quantify the insecticide susceptibility status of Cx. quinquefasciatus, (4) characterize the biochemical mechanisms of insecticide resistance in Cx. quinquefasciatus, (5) characterize the molecular mechanisms of insecticide resistance in Cx. quinquefasciatus from 13 states and one federal territory in Malaysia. Culex larval surveillance indicated that Cx. quinquefasciatus was the predominant species in residential areas. Several habitat characteristics (i.e., pH, conductivity, salinity, total dissolved solids, elevation and dissolved oxygen) were found to be associated with Culex larvae distribution. In the context of molecular phylogeography, the genetic diversity of Malaysian Cx. quinquefasciatus was extremely low since only three and four haplotypes were revealed by COI and COII, respectively. As for insecticide resistance study of Cx. quinquefasciatus, both WHO larval and adult bioassays exhibited dissimilar trends in susceptibility against DDT, propoxur, malathion and permethrin. Correlations between propoxur and malathion resistance as well as between propoxur and permethrin resistance in larval bioassays were found. In enzyme microassays, elevated levels of α- esterases, β-esterases, mixed function oxidases, glutathione-S-transferase and acetylcholinesterase activities were demonstrated in majority of the populations. Besides, a correlation between α-esterases activity and malathion resistance was also demonstrated.
    [Show full text]
  • 1. Laporan-2020-Loka Litbang P2B2
    LAPORAN AKHIR PENELITIAN PENGARUH PENEBARAN IKAN NILA MERAH (Oreochromis niloticus ) TERHADAP KEPADATAN NYAMUK Anopheles DI KECAMATAN MERAPI BARAT, LAHAT DAN DI KECAMATAN SEMIDANG AJI, OGAN KOMERING ULU TAHUN 2020 Penyusun: Yahya,SKM.,M.Si. dan Tim BALAI PENELITIAN DAN PENGEMBANGAN KESEHATAN BATURAJA BADAN PENELITIAN DAN PENGEMBANGAN KESEHATAN KEMENTERIAN KESEHATAN 2020 2 3 4 5 6 7 SUSUNAN TIM PENELITI Panitia Pembina Ilmiah Pusat III: 1. Dra. Shinta., M.Si 2. Jusniar Ariati, S.Si. M.Si Keahlian / Kedudukan No N a m a Uraian Tugas Kesarjanaan dalam Tim Ketua Entomologi Bertanggung jawab terhadap 1 Yahya Pelaksana Kesehatan/ S2 seluruh aspek penelitian. Membantu dalam kegiatan Lasbudi P. survei entomologi dan 2 S2 Kesehatan Anggota Ambarita wawancara mendalam dan FGD Membantu merancang metode penelitian, kuesioner 2 Milana Salim S2 Kesehatan Anggota penelitian, analisa data, serta kegiatan lapangan. Bertanggung jawab pada R. Irpan 3 S2 Kesehatan Anggota kegiatan penangkapan namuk Pahlevi dan identifikasi Anopheles Bertanggung jawab pada Yanelza pembuatan prosedur 4 S2 Kesehatan Anggota Supranelfy penelitian dan penangkapan nyamuk. Bertanggungjawab pada Indah 5 S1 Sosiologi Anggota kegiatan FGD, analisis Margarethy tematik data kualitatif Bertanggung jawab pada Rizki kegiatan pengumpulan data 6 Nurmaliani S1 Kesehatan Anggota di lapangan, penyiapan ikan nila merah, dan penyiapan laporan Membantu pengumpulan data kepadtaan populasi Surakhmi S1 Kesehatan jentik Anopheles dan 7 Anggota Oktavia Masyarakat membantu dalam identifikasi nyamuk
    [Show full text]
  • Identifying the Main Mosquito Species in China Based on DNA Barcoding
    Identifying the Main Mosquito Species in China Based on DNA Barcoding Gang Wang1, Chunxiao Li1, Xiaoxia Guo1, Dan Xing1, Yande Dong1, Zhongming Wang1, Yingmei Zhang1, Meide Liu1, Zhong Zheng1,2, Hengduan Zhang1, Xiaojuan Zhu1, Zhiming Wu1, Tongyan Zhao1* 1 Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China, 2 Center for Disease Control and Prevention of Military Area Command, Xinjiang, China Abstract Mosquitoes are insects of the Diptera, Nematocera, and Culicidae families, some species of which are important disease vectors. Identifying mosquito species based on morphological characteristics is difficult, particularly the identification of specimens collected in the field as part of disease surveillance programs. Because of this difficulty, we constructed DNA barcodes of the cytochrome c oxidase subunit 1, the COI gene, for the more common mosquito species in China, including the major disease vectors. A total of 404 mosquito specimens were collected and assigned to 15 genera and 122 species and subspecies on the basis of morphological characteristics. Individuals of the same species grouped closely together in a Neighborhood-Joining tree based on COI sequence similarity, regardless of collection site. COI gene sequence divergence was approximately 30 times higher for species in the same genus than for members of the same species. Divergence in over 98% of congeneric species ranged from 2.3% to 21.8%, whereas divergence in conspecific individuals ranged from 0% to 1.67%. Cryptic species may be common and a few pseudogenes were detected. Citation: Wang G, Li C, Guo X, Xing D, Dong Y, et al. (2012) Identifying the Main Mosquito Species in China Based on DNA Barcoding.
    [Show full text]
  • The Biodiversity of Water Mites That Prey on and Parasitize Mosquitoes
    diversity Review The Biodiversity of Water Mites That Prey on and Parasitize Mosquitoes 1,2, , 3, 4 1 Adrian A. Vasquez * y , Bana A. Kabalan y, Jeffrey L. Ram and Carol J. Miller 1 Healthy Urban Waters, Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI 48202, USA; [email protected] 2 Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, USA 3 Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA; bana.kabalan@ufl.edu 4 Department of Physiology, School of Medicine Wayne State University, Detroit, MI 48201, USA; jeff[email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 2 May 2020; Accepted: 4 June 2020; Published: 6 June 2020 Abstract: Water mites form one of the most biodiverse groups within the aquatic arachnid class. These freshwater macroinvertebrates are predators and parasites of the equally diverse nematocerous Dipterans, such as mosquitoes, and water mites are believed to have diversified as a result of these predatory and parasitic relationships. Through these two major biotic interactions, water mites have been found to greatly impact a variety of mosquito species. Although these predatory and parasitic interactions are important in aquatic ecology, very little is known about the diversity of water mites that interact with mosquitoes. In this paper, we review and update the past literature on the predatory and parasitic mite–mosquito relationships, update past records, discuss the biogeographic range of these interactions, and add our own recent findings on this topic conducted in habitats around the Laurentian Great Lakes.
    [Show full text]
  • Seasonal Dynamics and Relative Abundance of Seven Japanese
    International Journal of Mosquito Research 2021; 8(2): 134-144 ISSN: 2348-5906 CODEN: IJMRK2 IJMR 2021; 8(2): 134-144 Seasonal dynamics and relative abundance of © 2021 IJMR www.dipterajournal.com seven Japanese encephalitis vectors of Culex Received: 17-01-2021 Accepted: 04-03-2021 sitiens group and their association with Ranjana Rani meteorological factors in various ecological P.G. Department of Zoology, DAV College, Sector-10, habitats of Chandigarh and its surrounding areas Chandigarh, India Sandeep Kaur Ranjana Rani, Sandeep Kaur, Sukhbir Kaur and Sagan Deep Kaur Department of Zoology, Panjab University, Sector-14, DOI: https://doi.org/10.22271/23487941.2021.v8.i2b.527 Chandigarh, India Sukhbir Kaur Abstract Department of Zoology, Panjab Japanese encephalitis (JE) is one of the most common cause of acute viral encephalitis which poses University, Sector-14, serious infection of the brain. Species under Culex sitiens group are major vectors responsible for the Chandigarh, India transmission of JE. The knowledge about the occurrence of Culex sitiens group in Chandigarh and its adjoining areas is very scanty. Hence, present investigations have been carried out to study seasonal Sagan Deep Kaur dynamics and relative abundance of JE vectors in these areas. Detailed surveys have been carried out in P.G. Department of Zoology, various ecological habitats of Chandigarh from June 2017–November 2019. The monthly meteorological DAV College, Sector-10, parameters of the study–area like temperature, rainfall, and relative humidity were compared and Chandigarh, India statistically correlated with JE vector density. As many as 34 mosquito species belonging to 8 genera have been recorded.
    [Show full text]
  • Diptera: Culicidae) Richard F
    Iowa State University From the SelectedWorks of Gregory W. Courtney November, 1993 Notes on the mosquitoes of Nepal: III. additional new records in 1992 (Diptera: Culicidae) Richard F. Darsie, Jr., University of South Carolina Gregory W. Courtney, Smithsonian Institution Shreedhar P. Pradhan, U.S. Agency for International Development Available at: https://works.bepress.com/gregory_courtney/39/ Mosquito Systematics, 25(3): 186-191, 1993 Copyright © 1993 by the American Mosquito Control Association, Inc. NOTES ON THE MOSQUITOES OF NEPAL: III. ADDITIONAL NEW RECORDS IN 1992 (DIPTERA: CULICIDAE) 1 2 RICHARD F. DARSIE, JR. , GREGORY W. COURTNEY AND SHREEDHAR P. PRADHAN3 ABSTRACT. The result~ of a mosquito survey in the Western Region of Nepal are reported. A genus, Aede~myza, two subgenera, Aedeomyia and Tripteroides, and 14 species are reco:ded for the ~rst time. Most of the new records are species in the genus Aedes collected at the higher elevat10ns of the Annapurna Range of the Himalaya Mountains. INTRODUCTION tions during the period July to October. We are here reporting results of our explorations. The Himalayan country of Nepal is diverse Objectives and methods are the same as those not only with respect to altitude and topog­ given by Darsie et al. (1992). raphy but also in terms of its native biota. Our first camp was in Pokhara, Kaski Dis­ Faunistically the country is considered to be trict, at an altitude of 915 m. Although at a a composite of the Palearctic and Oriental relatively low altitude, Pokhara is only 25 km biogeographic regions. It is expected that Ne­ from the summits of the Annapurna Himal, pal's mosquito diversity will parallel the a range that contains three peaks exceeding country's topographical and biogeographic 7 ,000 m.
    [Show full text]
  • Eggs of Tripteroides (Rachionotcrnyia) Aranoides (Theobald)
    Mosquito Systematics Vol. 18(3,4) 1986 293 Eggs of Tripteroides (RachionotcRnyia) aranoides (Theobald) and Topomyia (Suaymyia) yanbarensis Miyagil Takao 0kazawa2, Masahiro Horio3, Ichiro Miyagi4 Motoyoshi Mogi2 and Supat Sucharit5 ABSTRACT. Eggs of Tripteroides axw-ioides and Topomyia yanbarensis are described with notes on their biology. Tripteroides aranoides eggs resemble those of Tp. bambusa in surface structure, but differ in size. Mattingly (1969, 1974) reviewed the mosquito eggs of the tribe Sabethini so far known. This revealed that our knowledge of the sabethine eggs is still poor. A greater knowledge of them may broaden our understanding of inter- and intratribal taxonomic relationships. In the present study we give the first description of the eggs of two autogenous mosquitoes, Tripteroides (Rachionotomyia) aranoides (Theobald) and Topomyia LSuaymyial’ yanbarensis Miyagi. Also some observations on their biology were made, including oogenesis and floating posture. Morphology and biology of m. aranoides were compared with those of rrp. Uripteroides) bambusa (Yamada) which is best known species in this genus. Supported in part by Grant-in-Aid for Overseas Scientific Survey (No. 58041058), the Ministry of Education, Science and Culture of Japan (Leader, Prof. I. Miyagi). 2 Division of Parasitology, Department of Microbiology, Saga Medical School, Saga 840-01, Japan. 3 Department of Medical Zoology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807, Japan. 4 Laboratory of Medical Zoology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-01, Japan. 5 Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand. 294 MATERIALSAND METHODS All eggs observed were obtained from laboratory colonies maintained in Saga Medical School.
    [Show full text]
  • (Diptera : Culicidae) of Singapore : Updated Checklist and New Records
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Mosquitoes (Diptera : Culicidae) of Singapore : updated checklist and new records Lam‑Phua, Sai‑Gek; Yeo, Huiqing; Lee, Ruth Mee‑Lian; Chong, Chee‑Seng; Png, Ah‑Bah; Foo, Siew‑Yoong; Liew, Christina; Ng, Lee‑Ching; Tang, Choon‑Siang; Rueda, Leopoldo M; Pecor, James E.; Harrison, Bruce A. 2018 Lam‑Phua, S.‑G., Yeo, H., Lee, R. M.‑L., Chong, C.‑S., Png, A.‑B., Foo, S.‑Y., . Harrison, B. A. (2019). Mosquitoes (Diptera : Culicidae) of Singapore : updated checklist and new records. Journal of Medical Entomology, 56(1), 103‑119. doi:10.1093/jme/tjy154 https://hdl.handle.net/10356/136592 https://doi.org/10.1093/jme/tjy154 © 2018 The Author(s). Published by Oxford University Press on behalf of Entomological Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution‑NonCommercial‑NoDerivs licence (http://creativecommons.org/licenses/by‑nc‑nd/4.0/), which permits non‑commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re‑use, please contact [email protected]. Downloaded on 28 Sep 2021 19:37:49 SGT Journal of Medical Entomology, 56(1), 2019, 103–119 doi: 10.1093/jme/tjy154 Advance Access Publication Date: 31 August 2018 Morphology, Systematics, Evolution Research Article Mosquitoes (Diptera: Culicidae) of Singapore: Updated Downloaded from https://academic.oup.com/jme/article-abstract/56/1/103/5088067 by National Institute of Education Library, Serials Unit user on 29 August 2019 Checklist and New Records Sai-Gek Lam-Phua,1,8 Huiqing Yeo,1,8 Ruth Mee-Lian Lee,1 Chee-Seng Chong,1,7, Ah-Bah Png,1 Siew-Yoong Foo,1 Christina Liew,1 Lee-Ching Ng,1,2 Choon-Siang Tang,3 Leopoldo M.
    [Show full text]
  • Non-Anopheline Mosquitoes of Taiwan: Annotated Catalog and Bibliography1
    Pacific Insects 4 (3) : 615-649 October 10, 1962 NON-ANOPHELINE MOSQUITOES OF TAIWAN: ANNOTATED CATALOG AND BIBLIOGRAPHY1 By J. C. Lien TAIWAN PROVINCIAL MALARIA RESEARCH INSTITUTE2 INTRODUCTION The studies of the mosquitoes of Taiwan were initiated as early as 1901 or even earlier by several pioneer workers, i. e. K. Kinoshita, J. Hatori, F. V. Theobald, J. Tsuzuki and so on, and have subsequently been carried out by them and many other workers. Most of the workers laid much more emphasis on anopheline than on non-anopheline mosquitoes, because the former had direct bearing on the transmission of the most dreaded disease, malaria, in Taiwan. Owing to their efforts, the taxonomic problems of the Anopheles mos­ quitoes of Taiwan are now well settled, and their local distribution and some aspects of their habits well understood. However, there still remains much work to be done on the non-anopheline mosquitoes of Taiwan. Nowadays, malaria is being so successfully brought down to near-eradication in Taiwan that public health workers as well as the general pub­ lic are starting to give their attention to the control of other mosquito-borne diseases such as filariasis and Japanese B encephalitis, and the elimination of mosquito nuisance. Ac­ cordingly extensive studies of the non-anopheline mosquitoes of Taiwan now become very necessary and important. Morishita and Okada (1955) published a reference catalogue of the local non-anophe­ line mosquitoes. However the catalog compiled by them in 1955 was based on informa­ tion obtained before 1945. They listed 34 species, but now it becomes clear that 4 of them are respectively synonyms of 4 species among the remaining 30.
    [Show full text]
  • Co-Occurrence of Mosquito Larvae in Stagnant Water in Residential Areas in Malaysia
    Asian Biomedicine Vol. 7 No. 3 June 2013; 375-380 DOI: 10.5372/1905-7415.0703.189 Brief communication (Original) Co-occurrence of mosquito larvae in stagnant water in residential areas in Malaysia Van Lun Lowa, Chee Dhang Chena, Han Lim Leeb, Phaik Eem Lima, c, Cherng Shii Leonga, Mohd Sofian-Aziruna aInstitute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, bMedical Entomology Unit, WHO Collaborating Centre for Vectors, Institute for Medical Research, Jalan Pahang, Kuala Lumpur 50588, cInstitute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia Background: The importance of mosquito-borne diseases can be aggravated when there is an occurrence of mixed infestation between the mosquitoes in a habitat. However, there is limited available information on mixed infestation behavior among Malaysian mosquitoes. Objective: We elucidated the nature of co-occurrence among mosquito species from residential areas in Malaysia. Methods: Entomological investigation was carried out by using a previously described larval dipping method in 20 residential areas across 11 states and a federal territory (i.e., Kuala Lumpur) in Peninsular Malaysia as well as two states in East Malaysia. Results: Of 20 study sites, eight study sites exhibited co-occurrence of mosquito larvae, ranging from 1.28% to 50.00%. Culex quinquefasciatus was able to breed simultaneously with Cx. gelidus (10.00%–50.00%), Lutzia fuscanus (2.94%–13.33%), Cx. vishnui (5.00%) and Armigeres subalbatus (1.28%–3.77%). On the other hand, Cx. vishnui was able to breed simultaneously with Cx. gelidus (20.00%) and Lu. fuscanus (3.33%).
    [Show full text]