SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System David Petrick, Alessandro Geist, Dennis Albaijes, Milton Davis, Pietro Sparacino, Gary Crum, Robin Ripley, Jonathan Boblitt, and Thomas Flatley NASA Goddard Space Flight Greenbelt, MD 20771
[email protected] Abstract—This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high Finally, this paper will describe how this system is being used performance data processing system for space applications. to solve the extreme challenges of a robotic satellite servicing The purpose in building the SpaceCube v2.0 system is to create mission where typical space-rated processors are not sufficient a superior high performance, reconfigurable, hybrid data enough to meet the intensive data processing requirements. processing system that can be used in a multitude of The SpaceCube v2.0 is the main payload control computer and applications including those that require a radiation hardened is required to control critical subsystems such as autonomous and reliable solution. The SpaceCube v2.0 system leverages rendezvous and docking using a suite of vision sensors and seven years of board design, avionics systems design, and space object avoidance when controlling two robotic arms. For this flight application experiences. This paper shows how application three SpaceCube processing systems are required, SpaceCube v2.0 solves the increasing computing demands of each with two processor cards. space data processing applications that cannot be attained with a standalone processor approach. TABLE OF CONTENTS The main objective during the design stage is to find a good 1. INTRODUCTION ............................................... 1 system balance between power, size, reliability, cost, and data 2.