I, II &V Unit :I General Topics in Pteridophytes

Total Page:16

File Type:pdf, Size:1020Kb

I, II &V Unit :I General Topics in Pteridophytes I M.Sc., BOTANY PLANT DIVERSITY II UNIT: I, II &V Unit :I General topics in pteridophytes Introduction of pteridophytes Pteridophytes (ferns and lycophytes) are free-sporing vascular plants that have a life cycle with alternating, free- living gametophyte and sporophyte phases that are independent at maturity. The body of the sporophyte is well differentiated into roots, stem and leaves. The root system is always adventitious. The stem is either underground or aerial. The leaves may be microphylls or megaphylls. Their other common characteristics include vascular plant apomorphies (e.g., vascular tissue) and land plant plesiomorphies (e.g., spore dispersal and the absence of seeds. General characters of pteridophytes: Pteridophyta (gr, pteron = feather, phyton = plant), the name was originally given to those groups of plants which have well developed pinnate or frond like leaves. Pteridophytes are cryptogams (gr. Kruptos = hidden, and gamos = wedded) which have well developed vascular tissue. Therefore, these plants are also known as vascular cryptogams or snakes of plant kingdom. They are represented by about 400 living and fossil genera and some 10,500 species. Palaeobotanical studies reveal that these plants were dominant on the earth during the devonian period and they were originated about 400 million years ago in the silurian period of the palaeozoic era. (i) Majority of the living pteridophytes are terrestrial and prefer to grow in cool, moist and shady places e.g., ferns. Some members are aquatic (e.g., marsileci, azolla), xerophytic (e.g., selaginella rupestris, equisetum) or epiphytic (e.g., lycopodium squarrosum) (fig. 1). (ii) Majority of the pteridophytes are herbaceous but a few are perennial and tree like (e.g., angiopteris). Smallest pteridophyte is azolla (an aquatic fern) and largest is cyathea (tree fern). (iii) Plant body is sporophytic and can be differentiated into root, stem and leaves. (iv) Roots are adventitious in nature with monopodial or dichotomous branching. Internally usually they are diarch. (v) Stem is usually branched. Branching is monopodial or dichotomous. Branches do not arise in the axil of the leaves. In many pteridophytes stem is represented by rhizome. (vi) Leaves may be small, thin, scaly (microphyllous e.g., equisetum), simple and sessile (e.g., selaginella) or large and pinnately compound (megaphyllous e.g., dryopteris, adiantum). (vii) Vascular tissue is present in stem and root. It consists of xylem and phloem. Xylem consists of tracheids only and phloem has only sieve tubes. (viii) The steel is protostele (e.g., rhynia, lycopodium), siphonostele (e.g., equisetum), dictyostele adiantum) or polycyclic (e.g., angiopteris). (ix) Cambium is absent; hence, they do not show secondary growth. 3. Reproduction in pteridophytes: (i) Reproduction takes place by means of spores which are produced inside sporangia. (ii) The development of the sporangium may be leptosporangiate (sporangium originates from a single cell) or eusporangiate (sporangium develops from a group of cells). (iii) Sporangia may be borne either on stem or leaves. On the stem they may be terminal (e.g., rhynia) or lateral (e.g., lycopodium). On the leaves (sporophylls) they may be ventral, marginal (pteris, adiantum) or dorsal (e.g., polypodiceae). In equisetum the sporangia are borne on special structures called sporangiophores which constitute a cone. In marsilea, azolla, salvinia sporangia are produced in sporocarps. (iv) Spores on germination give rise to multicellular gametophytic bodies called prothalli (sing. Prothallus). (v) In homosporous pteridophytes prothalli are monoecious (antheridia and archegonia develop on the same prothallus). In heterosporous species prothalli are always dioecious. Microspores on germination give rise to male prothalli and megaspores to the female prothalli. (vi) Antheridia and archegonia are developed on prothalli. (vii) Antheridium is surrounded by a single layered sterile jacket. (viii) Archegonium consists of four vertical rows of neck cells, 1-2 neck canal cells, ventral canal cell and egg. (ix) Antherozoids are unicellular, biflagellate (e.g., selaginella) or multiflagellate (e.g., equisetum and ferns) and motile. (x) Antherozoids are attracted towards the neck of the archegonium chemotactically by certain substances like malic acid) present in the mucilaginous substance formed by the degeneration of neck canal cells and venter canal cell. (xi) Water is essential for fertilization (zooidogamous). Therefore, pteridophytes are also known as amphibians of the plant kingdom. (xii) Fertilization results in the formation of zygote or oospore, which ultimately develops into well-developed sporophyte. (xiii) The fertilized egg divides transversely or vertically. Another cross wall forms a quadrant stage producing stem, leaf, foot and root. (xiv) Plants show heteromorphic alternation of generation. The main plant body is sporophytic and forms a dominant phase in the life cycle. Classification of pteridophytes (parihar 1996): the modern classification of pteridophytes have been suggested by many scientist according to the Sporne(1975) pteridophytes have been classified into six classes. They are psilopsida, psilotopsida, lycopsida, sphenopsida, pteropsida and progymnospermopsida. This classification is a modification is a modification of Reimer’s (1954) system. According to the modern system of classification by Parihar in 1996; pteridophytes have been divided into seven divisions. They are rhyniophyta, trimerophytophyta, zosterophyllophyta, psilotophyta, lycopodiophyta, equisetophyta and polypodiophyta. Bold (1973) differentiated psilophytes into living and fossil groups. The living psilophytes were placed under the division psilotophyta and extinct psilophytes were divided into three division. They are rhyniophyta, trimerophytophyta and zosterophyllophyta Types of stele in pteridophytes: Stelar system of plant: definition and types (with diagrams) Definition of stelar system: According to the older botanists, the vascular bundle is the fundamental unit in the vascular system of pteridophytes and higher plants. Van tieghem and douliot (1886) interpreted the plant body of vascular plant in the different way. According to them, the fundamental parts of a shoot are the cortex and a central cylinder, is known as stele. Thus the stele is defined as a central vascular cylinder, with or without pith and delimited the cortex by endodermis. The term stele has been derived from a Greek word meaning pillar. Van Tieghem and Douliot (1886) recognized only three types of steles. They also thought that the monostelic shoot were rare in comparison of polystelic shoots. It is an established fact that all shoots are monostelic and polystelic condition rarely occurs. The stele of the stem remains connected with that of leaf by a vascular connection known as the leaf supply. Types of steles: 1. Protostele: Jeffrey (1898), for the first time pointed out the stelar theory from the point of view of the phylogeny. According to him, the primitive type of stele is protostele. In protostele, the vascular tissue is a solid mass and the central core of the xylem is completely surrounded by the strand of phloem. This is the most primitive and simplest type of stele. There are several forms of protostele: (a) Haplostele: This is the most primitive type of protostele. Here the central solid smooth core of xylem remains surrounded by phloem (e.g., in selaginella spp.). (b) Actinostele: This is the modification of the haplostele and somewhat more advanced in having the central xylem core with radiating ribs (e.g., in psilotum spp.). (c) Plectostele: This is the most advanced type of protostele. Here the central core of xylem is divided into number of plates arranged parallel to each other. The phloem alternates the xylem (e.g., in lycopodium). (d) Mixed-pith stele: Here the xylem elements (i.e., tracheids) are mixed with the parenchymatous cells of the pith. This type is found in primitive fossils and living ferns. They are treated to be the transitional types in between true protosteles on the one hand and siphonosteles on the other (e.g., in gleichenia spp. And osmunda spp.). 2. Siphonostele: This is the modification of protostele. A stele in which the protostele is medullated is known as siphonostele. Such stele contains a tubular vascular region and a parenchymatous central region. Jeffrey (1898) interpreted that the vascular portion of siphonostele possesses a parenchymatous area known as a gap immediately above the branch traces only or immediately above leaf and branch traces. On the basis of these branch and leaf gaps Jeffrey (1910), distinguished two types of siphonosteles. In one type, however, the leaf gaps are not found and they are known as cladosiphonic siphonosteles. In the other type both leaf and branch gaps are present and they are known as phyllosiphonic siphonosteles. Jeffrey (1902, 1910, and 1917) interpreted the evolution of the siphonostele from the protostele as follows. He supported that the parenchyma found internal to the phloem and xylem has been originated from the cortex. The supporters of this theory believe that the inner endodermis found to the inner face of the vascular tissue and the parenchyma encircled by this endodermis have been originated from the cortex. According to Jeffrey and other supporters of this theory the siphonosteles with internal endodermis are more primitive than those without an internal endodermis. The siphonosteles which do not possess the inner endodermis are
Recommended publications
  • Prepared in Cooperation with the Lllinois State Museum, Springfield
    Prepared in cooperation with the lllinois State Museum, Springfield Richard 1. Leary' and Hermann W. Pfefferkorn2 ABSTRACT The Spencer Farm Flora is a compression-impression flora of early Pennsylvanian age (Namurian B, or possibly Namurian C) from Brown County, west-central Illinois. The plant fossils occur in argillaceous siltstones and sand- stones of the Caseyville Formation that were deposited in a ravine eroded in Mississippian carbonate rocks. The plant-bearing beds are the oldest deposits of Pennsylva- nian age yet discovered in Illinois. They were formed be- fore extensive Pennsylvanian coal swamps developed. The flora consists of 29 species and a few prob- lematical forms. It represents an unusual biofacies, in which the generally rare genera Megalopteris, Lesleya, Palaeopteridium, and Lacoea are quite common. Noegger- athiales, which are seldom present in roof-shale floras, make up over 20 percent of the specimens. The Spencer Farm Flora is an extrabasinal (= "upland1') flora that was grow- ing on the calcareous soils in the vicinity of the ravine in which they were deposited. It is suggested here that the Noeggerathiales may belong to the Progymnosperms and that Noeggerathialian cones might be derived from Archaeopteris-like fructifica- tions. The cone genus Lacoea is intermediate between Noeggerathiostrobus and Discini tes in its morphology. Two new species, Lesleya cheimarosa and Rhodeop- teridi urn phillipsii , are described, and Gulpenia limbur- gensis is reported from North America for the first time. INTRODUCTION The Spencer Farm Flora (table 1) differs from other Pennsylvanian floras of the Illinois Basin. Many genera and species in the Spencer Farm Flora either have not been found elsewhere in the basin or are very l~uratorof Geology, Illinois State Museum, Springfield.
    [Show full text]
  • Is Chloroplastic Class IIA Aldolase a Marine Enzyme&Quest;
    The ISME Journal (2016) 10, 2767–2772 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej SHORT COMMUNICATION Is chloroplastic class IIA aldolase a marine enzyme? Hitoshi Miyasaka1, Takeru Ogata1, Satoshi Tanaka2, Takeshi Ohama3, Sanae Kano4, Fujiwara Kazuhiro4,7, Shuhei Hayashi1, Shinjiro Yamamoto1, Hiro Takahashi5, Hideyuki Matsuura6 and Kazumasa Hirata6 1Department of Applied Life Science, Sojo University, Kumamoto, Japan; 2The Kansai Electric Power Co., Environmental Research Center, Keihanna-Plaza, Kyoto, Japan; 3School of Environmental Science and Engineering, Kochi University of Technology, Kochi, Japan; 4Chugai Technos Corporation, Hiroshima, Japan; 5Graduate School of Horticulture, Faculty of Horticulture, Chiba University, Chiba, Japan and 6Environmental Biotechnology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan Expressed sequence tag analyses revealed that two marine Chlorophyceae green algae, Chlamydo- monas sp. W80 and Chlamydomonas sp. HS5, contain genes coding for chloroplastic class IIA aldolase (fructose-1, 6-bisphosphate aldolase: FBA). These genes show robust monophyly with those of the marine Prasinophyceae algae genera Micromonas, Ostreococcus and Bathycoccus, indicating that the acquisition of this gene through horizontal gene transfer by an ancestor of the green algal lineage occurred prior to the divergence of the core chlorophytes (Chlorophyceae and Treboux- iophyceae) and the prasinophytes. The absence of this gene in some freshwater chlorophytes, such as Chlamydomonas reinhardtii, Volvox carteri, Chlorella vulgaris, Chlorella variabilis and Coccomyxa subellipsoidea, can therefore be explained by the loss of this gene somewhere in the evolutionary process. Our survey on the distribution of this gene in genomic and transcriptome databases suggests that this gene occurs almost exclusively in marine algae, with a few exceptions, and as such, we propose that chloroplastic class IIA FBA is a marine environment-adapted enzyme.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • A Taxonomic Reassessment of Chlamydomonas Meslinii (Volvocales, Chlorophyceae) with a Description of Paludistella Gen.Nov
    Phytotaxa 432 (1): 065–080 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.432.1.6 A taxonomic reassessment of Chlamydomonas meslinii (Volvocales, Chlorophyceae) with a description of Paludistella gen.nov. HANI SUSANTI1,6, MASAKI YOSHIDA2, TAKESHI NAKAYAMA2, TAKASHI NAKADA3,4 & MAKOTO M. WATANABE5 1Life Science Innovation, School of Integrative and Global Major, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. 2Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan. 3Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. 4Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan. 5Algae Biomass Energy System Development and Research Center, University of Tsukuba. 6Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Bogor KM 46 Cibinong West Java, Indonesia. Corresponding author: [email protected] Abstract Chlamydomonas (Volvocales, Chlorophyceae) is a large polyphyletic genus that includes numerous species that should be classified into independent genera. The present study aimed to examine the authentic strain of Chlamydomonas meslinii and related strains based on morphological and molecular data. All the strains possessed an asteroid chloroplast with a central pyrenoid and hemispherical papilla; however, they were different based on cell and stigmata shapes. Molecular phylogenetic analyses based on 18S rDNA, atpB, and psaB indicated that the strains represented a distinct subclade in the clade Chloromonadinia. The secondary structure of ITS-2 supported the separation of the strains into four species.
    [Show full text]
  • The Symbiotic Green Algae, Oophila (Chlamydomonadales
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 12-16-2016 The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Schultz University of Connecticut - Storrs, [email protected] Recommended Citation Schultz, Nikolaus, "The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History" (2016). Master's Theses. 1035. https://opencommons.uconn.edu/gs_theses/1035 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. The Symbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Eduard Schultz B.A., Trinity College, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Connecticut 2016 Copyright by Nikolaus Eduard Schultz 2016 ii ACKNOWLEDGEMENTS This thesis was made possible through the guidance, teachings and support of numerous individuals in my life. First and foremost, Louise Lewis deserves recognition for her tremendous efforts in making this work possible. She has performed pioneering work on this algal system and is one of the preeminent phycologists of our time. She has spent hundreds of hours of her time mentoring and teaching me invaluable skills. For this and so much more, I am very appreciative and humbled to have worked with her. Thank you Louise! To my committee members, Kurt Schwenk and David Wagner, thank you for your mentorship and guidance.
    [Show full text]
  • I. Algal Origin: Many Scientists Believe That Pteridophytes Have Originated from Algae, Though They Are Not Unanimous About the Type of Ancestral Algae
    Cooksonia The oldest known vascular plant is Cooksonia, a 6.5-centimeter-tall plant with dichotomously branched (forking into two) leafless stems with sporangia at their tips. Silurian ORIGIN OF PTERIDOPHYTA I. Algal Origin: Many scientists believe that pteridophytes have originated from algae, though they are not unanimous about the type of ancestral algae. The concept of algal origin of pteridophytes is based on the similarity between algae (specially chlorophyceae) and pteridophytes. The common characteristics for both the groups are: 1. Thalloid gametophytes, 2. Similar photosynthetic pigments (chlorophyll a, b; carotenoids a, (5), 3. Cell wall made up of cellulose, 4. Starch as reserve food, 5. Flagellated sperms, 6. Water essential for fertilisation. 7. Cell plate formation during cytokinesis, cell division features a complex network of microtubules and membrane vesicles (the “phragmoplast”). Lignier’s Hypothesis: Lignier (1908) supported the algal origin of land plant. He postulated that the pteridophytes arose from the Chlorophyta with dichotomising parenchymatous thallus. For the transmigration from water to land, the basal part entered the soil for anchorage and absorption purposes. The erect parts retained the photosynthetic function and the aerial portion with terminal sporangia became the primitive three-dimensional dichotomous branching system (e.g., Rhynia). Church’s Hypothesis: Church (1919) is believer of polyphyletic origin of pteridophytes and proposed the theory in his essay “Thallasiophyta and the sub-aerial Transmigration”. According to Church, a hypothetical group of advanced marine seaweeds called Thallasiophyta formed the ancestral stock for land plants (both bryophytes and pteridophytes). This transmigrant algae had metabolic efficiency of Chlorophyceae, somatic equipment and reproductive scheme of the Phaeophyceae.
    [Show full text]
  • Chlorophyceae Incertae Sedis, Viridiplantae), Described from Europe
    Preslia 87: 403–416, 2015 403 A new species Jenufa aeroterrestrica (Chlorophyceae incertae sedis, Viridiplantae), described from Europe Nový druh Jenufa aeroterrestrica (Chlorophyceae incertae sedis, Viridiplantae), popsaný z Evropy KateřinaProcházková,YvonneNěmcová&JiříNeustupa Department of Botany, Faculty of Science, Charles University of Prague, Benátská 2, CZ-128 01 Prague, Czech Republic, e-mail: [email protected] Procházková K., Němcová Y. & Neustupa J. (2015): A new species Jenufa aeroterrestrica (Chlorophyceae incertae sedis, Viridiplantae), described from Europe. – Preslia 87: 403–416. The chlorophycean genus Jenufa includes chlorelloid green microalgae with an irregularly spher- ical cell outline and a parietal perforated chloroplast with numerous lobes. Two species of the genus are known from tropical microhabitats. However, sequences recently obtained from vari- ous temperate subaerial biofilms indicate that members of the Jenufa lineage do not only occur in the tropics. In this paper, we describe and characterize a new species of the genus Jenufa, J. aero- terrestrica, which was identified in five samples of corticolous microalgal biofilms collected in Europe. These strains shared the general morphological and ultrastructural features of the genus Jenufa, but differed in having a larger average cell size and higher numbers of autospores. Phylo- genetic analyses showed that the strains clustered in a sister position to two previously described tropical species, together with previously published European 18S rDNA sequences. This pattern was also supported by the ITS2 rDNA sequences of the genus Jenufa. Our data and previously published sequences indicate that the newly described species J. aeroterrestrica frequently occurs in temperate and sub-Mediterranean European subaerial biofilms, such as those occurring on tree bark or surfaces of stone buildings.
    [Show full text]
  • A High-Latitude Gondwanan Lagerstätte
    University of Birmingham A high-latitude Gondwanan lagerstätte : the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica Slater, Ben J.; Mcloughlin, Stephen; Hilton, Jason DOI: 10.1016/j.gr.2014.01.004 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Slater, BJ, Mcloughlin, S & Hilton, J 2014, 'A high-latitude Gondwanan lagerstätte : the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica', Gondwana Research. https://doi.org/10.1016/j.gr.2014.01.004 Link to publication on Research at Birmingham portal Publisher Rights Statement: Eligibility for repository : checked 03/06/2014 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Ultra-High Voltage Electron Microscopy of Primitive Algae Illuminates 3D
    www.nature.com/scientificreports OPEN Ultra-high voltage electron microscopy of primitive algae illuminates 3D ultrastructures of Received: 08 June 2015 Accepted: 07 September 2015 the first photosynthetic eukaryote Published: 06 October 2015 Toshiyuki Takahashi1, Tomoki Nishida2,†,, Chieko Saito1, Hidehiro Yasuda2 & Hisayoshi Nozaki1 A heterotrophic organism 1–2 billion years ago enslaved a cyanobacterium to become the first photosynthetic eukaryote, and has diverged globally. The primary phototrophs, glaucophytes, are thought to retain ancestral features of the first photosynthetic eukaryote, but examining the protoplast ultrastructure has previously been problematic in the coccoid glaucophyte Glaucocystis due to its thick cell wall. Here, we examined the three-dimensional (3D) ultrastructure in two divergent species of Glaucocystis using ultra-high voltage electron microscopy. Three-dimensional modelling of Glaucocystis cells using electron tomography clearly showed that numerous, leaflet- like flattened vesicles are distributed throughout the protoplast periphery just underneath a single- layered plasma membrane. This 3D feature is essentially identical to that of another glaucophyte genus Cyanophora, as well as the secondary phototrophs in Alveolata. Thus, the common ancestor of glaucophytes and/or the first photosynthetic eukaryote may have shown similar 3D structures. Approximately 1–2 billion years ago during the Proterozoic Eon, a heterotrophic eukaryote enslaved a cyanobacterium to obtain the ability for photosynthesis and become the common ancestor of the pri- mary photosynthetic eukaryotes [Archaeplastida1,2 or Kingdom Plantae sensu Cavalier-Smith (1981)3,4]. Primary photosynthetic eukaryotes have ruled this planet as primary producers, evolving into species of three major lineages1,2,5,6; namely, red algae thriving throughout the ocean, Chloroplastida [Viridiplantae (green algae and land plants)] advancing onto land, and glaucophytes (Fig.
    [Show full text]
  • Novas Evidências E Análise Quantitativa Das Interações Inseto-Planta No Permiano Inferior Da Bacia Do Paraná
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS NOVAS EVIDÊNCIAS E ANÁLISE QUANTITATIVA DAS INTERAÇÕES INSETO-PLANTA NO PERMIANO INFERIOR DA BACIA DO PARANÁ ESTHER REGINA DE SOUZA PINHEIRO ORIENTADOR – Prof. Dr. Roberto Iannuzzi Porto Alegre - 2011 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS NOVAS EVIDÊNCIAS E ANÁLISE QUANTITATIVA DAS INTERAÇÕES INSETO-PLANTA NO PERMIANO INFERIOR DA BACIA DO PARANÁ ESTHER REGINA DE SOUZA PINHEIRO ORIENTADOR – Prof. Dr. Roberto Iannuzzi BANCA EXAMINADORA Prof. Dr. Karen Adami-Rodrigues – Universidade Federal de Pelotas Prof. Dr. Rosemarie Rohn Davies– Universidade Estadual Paulista Prof. Dr. Tânia Lindner Dutra – Universidade do Vale do Rio dos Sinos Dissertação de Mestrado apresentada como requisito parcial para a obtenção do Título de Mestre em Geociências. Porto Alegre – 2011 Pinheiro, Esther Regina de Souza Novas evidências e análise quantitativa das interações inseto-planta no permiano inferior da Bacia do Paraná. / Esther Regina de Souza Pinheiro. - Porto Alegre : IGEO/UFRGS, 2010. [72 f.] il. Dissertação (Mestrado). - Universidade Federal do Rio Grande do Sul. Instituto de Geociências. Programa de Pós-Graduação em Geociências. Porto Alegre, RS - BR, 2010. Orientação: Prof. Dr. Roberto Iannuzzi 1. Herbivoria. 2. Análise multivariada. 3. Folhas glossopterídeas. 4. Folhas cordaitaleanas. 5. Bacia do Paraná. I. Título _____________________________ Catalogação na Publicação Biblioteca Geociências - UFRGS Miriam Alves CRB 10/1947 DEDICATÓRIA Dedico essa dissertação a pessoa que mais apoiou minha trajetória acadêmica. Me apresentou a ciência da forma mais bonita que ela pode ser. Foi muito mais que um amigo, muitas vezes um orientador.
    [Show full text]
  • Early Permian Palaeofloras from Southern Brazilian Gondwana: a Palaeoclimatic Approach
    Revista Brasileira de Geociências 30(3):486-490, setembro de 2000 EARLY PERMIAN PALAEOFLORAS FROM SOUTHERN BRAZILIAN GONDWANA: A PALAEOCLIMATIC APPROACH MARGOT GUERRA-SOMMER AND MIRIAM CAZZULO-KLEPZIG ABSTRACT In evaluating the parameters supplied by the taphofloras from different sedimentary facies in the Early Permian sedimentary sequences of the southern part of the Paraná basin, Brazil, it has become evident that the palaeofloristic evolution was related to palaeoecological and palaeoclimatic evolution. The homogeneous composition of Early Permian floral assemblages, which are characterized mainly by herbaceous to shrub-like plants considered to be relicts from the rigorous climate of an ice age (e.g. Botrychiopsis plantiana) suggest the persistence of the cold climate. The dominance of Rubidgea and Gangamopteris leaves with palmate venation associated with glossopterids with penate venation seems to indicate a gradual warming of climate. In roof-shales of coalbearing strata pinnate glossopterids related to Glossopteris are common, while Gangamopteris and Rubidgea (palmate forms) are poorly represented. The sudden enrichment of herbaceous articulates and filicoids fronds is characteristic of this stage and trunks of arborescents lycophytes become important elements. These antrocophilic paleofloras are characterized by typical elements of the "Glossopteris flora" associated to tree lycophytes and ferns communities. Therefore, the cool seasonal climate of Early Permian changed into the moist seasonal interval during the Artinskian-Kungurian. This climatic change was significant to the meso-hygrophitic to hygrophitic vegetation registered in roof-shale ferns of the Gondwana Southern Brazilian coalbearing strata. Keywords: roof-shale floras, Gondwana, Southern Brazil, Paraná basin, Glossopteris Flora INTRODUCTION The intracratonic Paraná basin, with a total area proposed by Milani et al.
    [Show full text]
  • Delineating Species of Two Glaucophyte Genera, on the Basis Of
    学位論文 (要約) Delineating species of two glaucophyte genera, on the basis of molecular data and comparative ultrastructures (灰色藻 2 属の分子情報と微細形態比較に基づく種分類学的研究) 平成 27 年 12 月博士(理学)申請 東京大学大学院理学系研究科 生物科学専攻 高橋 紀之 Contents CONTENTS Abstract ......................................................................................................................... 1 Abbreviations ........................................................................................................... 7 1. General introduction .............................................................................................. 9 1.1. The phylogeny and classification of glaucophytes ...................................... 10 1.2. The taxonomy of glaucophyte species as a microalgal lineage ................... 14 1.3. Microscopy and microbiology ..................................................................... 17 1.4. Table and figures .......................................................................................... 20 2. Taxonomic delineation of Cyanophora species ................................................... 26 2.1. Introduction .................................................................................................. 27 2.2. Materials and Methods ................................................................................. 30 2.2.1. Strains and culture conditions for observation...................................... 30 2.2.2. Light microscopy (LM) and scanning electron microscopy (SEM) ..... 30 2.2.3. Transmission electron microscopy (TEM) ..........................................
    [Show full text]