Design and Implementation of an Inductive Power Transfer System for Wireless Charging of Future Electric Transportation

Total Page:16

File Type:pdf, Size:1020Kb

Design and Implementation of an Inductive Power Transfer System for Wireless Charging of Future Electric Transportation DESIGN AND IMPLEMENTATION OF AN INDUCTIVE POWER TRANSFER SYSTEM FOR WIRELESS CHARGING OF FUTURE ELECTRIC TRANSPORTATION by Kunwar Aditya A Thesis Submitted to the Faculty of Graduate Studies through the Department of Electrical, Computer and Software Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Ontario Institute of Technology Oshawa, Ontario, Canada August 2016 © Kunwar Aditya, 2016 Design and implementation of an inductive power transfer system for wireless charging of future electric transportation By Kunwar Aditya APPROVED BY SUPERVISORY COMMITTEE: Dr. Srdjan Lucik, External Examiner (Department of Electrical and Computer Engineering, North Carolina State University) Dr. Sheldon S. Williamson, Thesis Supervisor (Department of Electrical, Computer and Software Engineering, UOIT, Oshawa) Dr. Vijay Sood, Internal Examiner (Department of Electrical, Computer and Software Engineering, UOIT, Oshawa) Dr. Walid M. Ibrahim, Internal Examiner (Department of Electrical, Computer and Software Engineering, UOIT, Oshawa) Dr. Greg Rohrauer, External to Program (Department of Automotive, Mechanical and Manufacturing Engineering, UOIT, Oshawa) Dr. Ying Wang, Committee Chair (Department of Electrical, Computer and Software Engineering, UOIT, Oshawa) [August 30, 2016] ii Abstract Design and implementation of an inductive power transfer system for wireless charging of future electric transportation Kunwar Aditya, Ph.D. The University of Ontario Institute of Technology, 2016 The motivation of this thesis was to formulate clear design guidelines for fabrication and control of an efficient series-series resonant inductive power transfer (SS-RIPT) system for electric vehicle battery charging application. In meeting this objective, several critical deficiencies about the field of RIPT based EV chargers specific to stationary charging have been solved. Firstly, to increase the tolerance to misalignments, use of an unsymmetrical coil pair for the charger has been proposed. An unsymmetrical coil pair, in which the outer diameter of the primary and the secondary coils are kept equal, whereas the inner diameter of the secondary is kept larger compared to the primary counterpart gives the best performance in misalignment conditions. By employing this unsymmetrical coil-pair, a charging pad which shows the horizontal tolerance to misalignment equal to 71% of the pad diameter has been presented. Secondly, a very simple yet novel analytical design procedure has been submitted, adopting which, eliminates the bifurcation issue for the entire range of load and coupling variation and therefore requires no sophisticated control. Finally, a simplified mathematical model of SS-RIPT system has been proposed for primary side control of output voltage and current. All the proposed theories and analysis have been verified by a 3.6 kW prototype of the SS-RIPT based charger fabricated in the lab. A DC-DC efficiency of 91% for rated load condition is achieved for the designed charger. For partial load conditions (less than 50% of the rated load), the efficiency is 87%. iii Acknowledgements I express my deepest sense of gratitude to my supervisor Dr. Sheldon S. Williamson for accepting me as his Research Assistant and for his guidance during the course of this research. I am highly indebted to him for the financial support during my tenure as his Research Assistant. I would like to thank him for the supervision, trust and time that I received during this research that proved very useful for increasing my research capabilities and increasing my knowledge of power electronics. I owe the successful realization of this work to the financial support from Dr. Williamson through NSERC and Transport Canada, as well as the teaching assistantship provided by the University Of Ontario Institute Of Technology, Oshawa, Ontario. Many thanks to Dr. Najath Abdul Azeez, Post-doctoral Fellow at UOIT for his timely support on the procurement of components and pieces of equipment requested by me. I also acknowledge the help and encouragement from my colleagues in the STEER group. I would also like to acknowledge the utilization of facilities available at the Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, where I pursued the first year of my Ph.D. research under the supervision of Dr. Sheldon Williamson. Last, but not least, I am grateful to my parents for allowing me to study abroad and carry out the research, as well as for their love and moral support. iv Table of Contents Abstract .................................................................................................................................................. iii Acknowledgements .................................................................................................................................iv List of Figures .........................................................................................................................................ix List of Tables ........................................................................................................................................ xiii List of Symbols...................................................................................................................................... xiv Introduction ..................................................................................................................... 17 1.1 Rationale for Adopting Wireless Charging system for EVs ........................................ 18 1.2 A Brief History of Development of RIPT System for EV Charging ........................... 20 1.3 Working Principle and Components of RIPT System ................................................. 23 1.4 Wireless Charging Standards for Electric Vehicle ...................................................... 27 1.5 Research Goals and Objectives ...................................................................................... 29 Design Considerations for Resonant Inductive Link ................................................... 33 2.1 Brief Overview of Different Coil Shapes Employed In Wireless Charger ................. 33 2.2 Electrical Equivalent Circuit for Series-Series Compensated RIPT System ............. 36 2.2.1 Quality Factor of an SS-RIPT System ............................................................... 38 2.2.2 Bifurcation Phenomena In an SS-RIPT System................................................ 41 2.3 Calculation of Electrical Parameters for Bifurcation Free Operation ....................... 47 2.4 Analytical Design of Archimedean Spiral Coils ........................................................... 49 2.4.1 Analytical Model of Self-Inductance of Coils .................................................... 50 2.4.2 Analytical Model of Mutual Inductance between Coils.................................... 52 2.5 Finding Coil-Pair Least Sensitive to Misalignment...................................................... 54 2.5.1 Calculation of Electrical Parameters for 500 W setup. .................................... 55 2.5.2 Calculation of Geometric Parameters for 500 W setup. ................................... 60 2.5.3 Verification of Analytical Expressions ............................................................... 63 2.5.4 Mutual Inductance Profile of Coil-Pairs............................................................ 67 2.6 Summary of Chapter 2 ................................................................................................... 72 Design of 3.6 kW Wireless Charger............................................................................... 73 v 3.1 Calculation of Electrical Parameters ............................................................................ 73 3.2 Design of Litz Wire for the Coils ................................................................................... 74 3.3 Fabrication of Coils for 3.6 kW Charger ...................................................................... 76 3.4 Addition of Ferrites to the Fabricated Coils ................................................................. 77 3.5 Verification of Designed Pads ........................................................................................ 80 3.5.1 Verification of Magnetic Saturation in Ferrites ................................................ 80 3.5.2 Verification of Bifurcation Free Design ............................................................. 82 3.6 Sensitivity Analysis of Designed Pads ........................................................................... 84 3.7 Summary of Chapter 3 ................................................................................................... 88 Mathematical Model and Controller Design ................................................................ 89 4.1 A Reduced Dynamic Model for an SS-RIPT system .................................................... 90 4.2 Derivation of Small-Signal Model from Reduced Dynamic Model ............................ 93 4.3 Piecewise-Linear Model of Li-Ion Battery Pack ........................................................ 100 4.4 Selecting the Compensation Capacitors for ZVS Tuning .......................................... 103 4.5 Design of Voltage Control Loop .................................................................................. 107 4.5.1 Bode Plot of Open-Loop System ....................................................................... 107 4.5.2 Derivation
Recommended publications
  • Methodology for Analysis of Electrical Breakdown in Micrometer Gaps In
    Methodology for Analysis of Electrical Breakdown In Micrometer gaps in Tip-To-Plane Configuration Kemas Tofani, Jean-Pascal Cambronne, Sorin Dinculescu, Ngapuli Sinisuka, Kremena Makasheva To cite this version: Kemas Tofani, Jean-Pascal Cambronne, Sorin Dinculescu, Ngapuli Sinisuka, Kremena Makasheva. Methodology for Analysis of Electrical Breakdown In Micrometer gaps in Tip-To-Plane Configuration. 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), Oct 2018, Portland, United States. pp.1-4, 10.1109/NMDC.2018.8605855. hal-02324370 HAL Id: hal-02324370 https://hal.archives-ouvertes.fr/hal-02324370 Submitted on 1 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Methodology for analysis of electrical breakdown in micrometer gaps in tip-to-plane configuration Kemas M Tofani LAPLACE, Université de Toulouse, Jean-Pascal Cambronne Sorin Dinculescu CNRS LAPLACE, Université de Toulouse, LAPLACE, Université de Toulouse, Toulouse, France CNRS CNRS Bandung Institute of Technology Toulouse, France Toulouse, France Bandung, Indonesia [email protected] [email protected] PT. PLN Jakarta, Indonesia Kremena Makasheva [email protected] LAPLACE, Université de Toulouse, CNRS Ngapuli I. Sinisuka Toulouse, France Bandung Institute of Technology [email protected] Bandung, Indonesia [email protected] Abstract—Better understanding of the electrical behavior of electron emission process by ions bombardment on the miniaturized electrical devices is largely supported by the need cathode.
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Materials Science and Engineering TEMPERATURE DEPENDENCE OF DIELECTRIC BREAKDOWN IN POLYMERS A Thesis in Materials Science and Engineering by Cheolhong Min © 2008 Cheolhong Min Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2008 ii The thesis of Cheolhong Min was reviewed and approved* by the following: Thomas R. Shrout Professor of Materials Science Thesis Co-Advisor Michael T. Lanagan Associate Professor of Engineering Science and Mechanics Thesis Co-Advisor Shujun Zhang Research Associate and Assistant Professor of Materials Science and Engineering Joan Redwing Professor of Materials Science and Engineering Chair, Intercollege Graduate Degree Program in Materials Science and Engineering *Signatures are on file in the Graduate School iii ABSTRACT Capacitors possess high-power densities and have the ability to deliver energy with short discharge times, which are in the micro-second to nano-second range. Both energy and power density are related to the dielectric materials used in the capacitor. One of the main challenges for capacitors is achieving high energy density as determined by the relative permittivity and dielectric breakdown strength of a material. Polymers are some of the most important dielectric materials for high-power capacitors because polymer films show high breakdown strength. A general trend in polymers is that the breakdown strength increases with decreasing temperature. An understanding of the temperature dependence relationships among electrical properties, polymer chemistry, and crystalline structure may lead to improved energy storage for polymer-based capacitors—this is the basis of the thesis. Various polymers including polypropylene (PP), polyimide (PI), polymethyl methacrylate (PMMA), poly(vinylidene fluoride-trifluoroethylene- chlorotrifluoroethylene) terpolymer (p(VDF-TrFE-CTFE)) were investigated in this study.
    [Show full text]
  • Download Technical Paper
    TECHNICAL PAPER Thermal and Electrical Breakdown Versus Reliability of Ta2O5 under Both – Bipolar Biasing Conditions P. Vašina, T. Zedníček, Z. Sita AVX Czech Republic, s.r.o., Dvorakova 328, 563 01 Lanskroun, Czech Republic J. Sikula and J. Pavelka CNRL TU Brno, Technicka 8, 602 00 Brno, Czech Republic Abstract: Our investigation of breakdown is mainly oriented to find a basic parameters describing the phenomena as well as its impact on reliability and quality of the final product that is “GOOD” tantalum capacitor. Basically, breakdown can be produced by a number of successive processes: thermal breakdown because of increasing conductance by Joule heating, avalanche and field emission break, an electromechanical collapse due to the attractive forces between electrodes electrochemical deterioration, dendrite formation and so on. Breakdown causes destruction in the insulator and across the electrodes mainly by melting and evaporation, sometimes followed by ignition. An identification of breakdown nature can be achieved from VA characteristics. Therefore, we have investigated the operating parameters both in the normal mode, Ta is a positive electrode, as well as in the reverse mode with Ta as a negative one. In the reverse mode we have reported that the thermal breakdown is initiated by an increase of the electrical conductance by Joule heating. Consequently followed in a feedback cycle consisting of temperature - conductivity - current - Joule heat - temperature. In normal mode an electrical breakdown can be stimulated by an increase of the electrical conductance in a channel by an electrical pulse and stored charge leads to the sample destruction. Both of these breakdowns have got a stochastic behaviour and could be hardly localized in advance.
    [Show full text]
  • Capacitive Power Transfer Through Rotational and Sliding Bearings
    CAPACITIVE POWER TRANSFER THROUGH ROTATIONAL AND SLIDING BEARINGS by Skyler S. Hagen A thesis submitted in partial fulfillment of the requirements for the degree of: Master of Science (Electrical Engineering) at the UNIVERSITY OF WISCONSIN – MADISON 2016 i Abstract Throughout the history of electrification, applications have existed for the transmission of electrical energy from stationary sources to moving loads. Electrical equipment which is expected to move along tracks, or in cyclical, pivoting, or rotational patterns of motion often requires externally-supplied electrical power to operate. Various techniques have been used with success in the past such as brushes with sliding contacts [1], cable connections (when practical), and various inductive and capacitive contactless power transfer strategies [2],[3],[4],[5]; however, each has its own limitations in longevity and/or complexity. Applications for power transfer to moving loads proliferate in the automotive and traction industries, as well as automation and manufacturing. Both of these categories have strict requirements on reliability. Failure in operation can be hazardous to human life and property in the case of transportation and heavy equipment traction. In the case of manufacturing, the reliability requirement is justified by the large opportunity cost incurred by machine down time. The following is a proposition for a technology which is well suited for many key modern applications. Using the nanofarad-scale capacitance already present in a variety of rotational and linear journal bearings, along with a simple soft-switching high frequency power converter circuit, power levels in the 102-103 watt range have successfully been transferred capacitively from stationary power sources to moving loads.
    [Show full text]
  • Electrical Breakdown in Vacuum 1
    ELECTRICAL B RE AKDOWN IN VACUUM G.P. BEUKEMA Stellingen behorende bij het prdefschrift ELECTRICAL BREAKDOWN IN VACUUM 1. De door Coolen en Van Schaik opgemeten profielen van de D2~absorptielijn van z3Na in neon worden bepaald door een combinatie van de overgangswaar- schijnlijkheden tussen de niveaus en van het laservermogen. Zij hadden een uitspraak kunnen doen over de invloed van beide effekten als zij de profielen niet alleen bij verschillende laservermogens hadden opgemeten, maar ook bij verschillende dichtheden van het neongas. F.C.M. Coolen en N. van Schaik, Physica 93 C, (1978) 261 - 6. 2. De uitspraak, gedaan in "Structure of Physics" door G.R. Noakes, dat inter- ferentie van fotonen bij de proef van Young plaatsvindt nadat deze de twee spleten gepasseerd zijn, of dat een bepaald foton geen wisselwerking heeft met elk van de spleten, is onjuist. • G.R. Noakes, Structure of Physics, Mac Millan (1977), blz. 468 en 502. 3. Voor het waarnemen van het ontstaan en de groei van interne disrupties in Tokamak plasma's verdienen cyclotron-stralingsmetingen de voorkeur boven röntgen-metingen. 4. De door Knudson en Nimrod voorgestelde exacte vergelijking voor de bereke- ning van titratiecurven voor twee-basische zouten is niet exact. G.E. Knudson en D. Nimrod, J. Chem. Educ. _54_ (1977) 351. 5. Plasma's kunnen de 5 aggregatietoestand van de materie genoemd worden, niet de 4 , zoals te doen gebruikelijk is. 6. De term "desorption cross section", zoals ingevoerd door Taglauer et al. kan aanleiding geven tot misverstand. E. Taglauer, U. Beitat, G. Marin en W. Heiland, J.
    [Show full text]
  • 9705: Measuring Electrical Breakdown of a Dielectric-Filled
    ZYVEX APPLICATION NOTE 9705 Measuring Electrical Breakdown of a Dielectric-Filled Trench Used for Electrical Isolation of Semiconductor Devices By Rishi Gupta and Phil Foster, Zyvex Corporation Introduction Semiconductor devices employ insulating dielectric materials contribute to breakdown include occluded particles, surface for electrical isolation between active elements and layers that and material contamination, and water vapor. Each can are susceptible to electrical breakdown. The breakdown voltage influence breakdown; actions must be taken to eliminate is the level at which the insulating dielectric begins to allow their contribution to breakdown voltage measurements. charge flow. Unlike conducting materials, this charge flow Humidity, for example, reduces the resistance of most tends to be non-linear. That means that below a threshold dielectrics, thus increasing the return current (the current voltage no charge will flow, and at or above that voltage a that opposes a charge build-up).3 Contamination can rush of charge will flow. This rush is termed “avalanche contribute to leakage currents and charge mobility across breakdown,” which is a runaway process resulting in a current isolation areas. Occluded particles such as alkalis or halides spike. Once the charge begins to flow, the dielectric material can act to increase the breakdown strength.2 properties become unpredictable. To properly characterize a given film, breakdown voltages must be repeated over different The S100 Nanomanipulation System (Figure 1) can function samples. as a nano- and microprobe and is an ideal tool for dielectric breakdown voltage measurements. When operated inside a Several mechanisms give rise to electron avalanche, one of scanning electron microscope (SEM), the vacuum environ- which is by impact ionization.1 Impact ionization occurs ment minimizes moisture.
    [Show full text]
  • The Prevention of Electrical Breakdown and Electrostatic Voltage Problems in the Space Shuttle and Its Paylaods
    1980022937 THE PREVENTION OF ELECTRICAL BREAKDOWN AND ELECTROSTATIC VOLTAGE PROBLEMS IN THE SPACE SHUTTLE AND ITS PAYLAODS PAR; I - THEORY AND PHENOMENA PART II - DESIGN GUIDES AND OPERATIONAL CONSIDERATIONS ABSTRACT A two volume manual was prepared that will hopefully prevent workers on the Space Shuttle from having the same sort of problems with electrical dlscharg_ phenomena that otheres in the space program have had. The manual contains an introduction to the theory of Y corona discharge and electrostatic phenome-,a. The theory is mainly qualitative so that workers in the field should not have to go outside this manual for an understanding of the relevant phenomena. Some of the problems that may occur vith the Space Shuttle in regards to electrical discharge are discussed in the final sections. (NA3A-T_I-8||37) l'llEi'z_gVZNIlUN 0_. NSd-31_43 EL,':CT_iCAL BEEAKDOWN A.r_DE_EC'[_OSrATIC VOLTAGE i_ROBLB15 xN TdE 5_ACI_ 5:IUTTLE ANO IF:_ PA/LOADS. PAEI' I: THEuhY AND PtlENOdENA O[_cla_ Final l{eport (NASA) 110 t) HC AOO/_F A01 G J/16 30997 ? 1980022937-002 THE PREVENTION OF ELECTRICAL BREAKDOWN AND ELECTROSTATIC VOLTAGE PROBLEMS IN THE SPACE SHUTTLE AND ITS PAYLOADS SYNOPSIS PART I - THEORY AND PHENOMENA 1.0 Introduction. Throughout the aerospace program high potentials at low gas pressures have caused myriad problems. Many of our scientific satellites have been disabled partially or completely due to electrical breakdown. The genesis of this problem, however, did not occur within the space program. In fact, electrical breakdown of high voltage supplies was a problem in high altitude aircraft during World War II.
    [Show full text]
  • Electrical Breakdown from Macro to Micro/Nano Scales: a Tutorial and a Review of the State of The
    Plasma Res. Express 2 (2020) 013001 https://doi.org/10.1088/2516-1067/ab6c84 TUTORIAL Electrical breakdown from macro to micro/nano scales: a tutorial RECEIVED 31 October 2019 and a review of the state of the art REVISED 23 December 2019 1,2 2 1,2 3 ACCEPTED FOR PUBLICATION Yangyang Fu , Peng Zhang , John P Verboncoeur and Xinxin Wang 16 January 2020 1 Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United PUBLISHED States of America 7 February 2020 2 Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States of America 3 Department of Electrical Engineering, Tsinghua University, Beijing 10084, People’s Republic of China E-mail: [email protected] Keywords: electrical breakdown, Paschen’s law, secondary electron emission, thermionic emission, field emission, microdischarge, Townsend theory Abstract Fundamental processes for electric breakdown, i.e., electrode emission and bulk ionization, as well as the resultant Paschen’s law, are reviewed under various conditions. The effect of the ramping rate of applied voltage on breakdown is first introduced for macroscopic gaps, followed by showing the significant impact of the electric field nonuniformity due to gap geometry. The classical Paschen’s law assumes uniform electric field; a more general breakdown scaling law is illustrated for both DC and RF fields in geometrically similar gaps, based on the Townsend similarity theory. For a submillimeter gap, effects of electrode surface morphology with local field enhancement and electric shielding on the breakdown curve are discussed, including the most recent efforts. Breakdown characteristics and scaling laws in microgaps with both metallic and non-metallic (e.g., semiconductor) materials are detailed.
    [Show full text]
  • RF Transport
    RF Transport Stefan Choroba, DESY, Hamburg, Germany RF Transport, S. Choroba, DESY, CERN School on High Power Hadron Machines, 25 May - 02 June 2011, Bilbao, Spain Overview • Introduction • Electromagnetic Waves in Waveguides •TE10-Mode • Waveguide Elements • Waveguide Distributions • Limitations, Problems and Countermeasures RF Transport, S. Choroba, DESY, CERN School on High Power Hadron Machines, 25 May - 02 June 2011, Bilbao, Spain 1 Introduction RF Transport, S. Choroba, DESY, CERN School on High Power Hadron Machines, 25 May - 02 June 2011, Bilbao, Spain RF Transport RF Source(s) Load(s) •Task: Transmission of RF power of typical several kW up to several MW at frequencies from the MHz to GHz range. The RF power generated by an RF generator or a number of RF generators must be combined, transported and distributed to a load or cavity or a number of loads or cavities. •Requirements: low loss, high efficieny, low reflections, high reliability, high stability, adjustment of phase and amplitude, …. RF Transport, S. Choroba, DESY, CERN School on High Power Hadron Machines, 25 May - 02 June 2011, Bilbao, Spain 2 Transmission Lines for RF Transport • Two-wire lines (Lecher Leitung) conductor – often used for indoor antenna (e.g. radio or TV) conductor – problem: radiation to the environment, can not be used for high power transportation • Strip-lines conductor – often used for microwave dielectric integrated circuits – problem: radiation to the environment and limited power capability, can not be used for high power transportation conductor
    [Show full text]
  • Lec 2 Properties and Breakdown Theory of Insulation Notes
    Lecture 2: Insulating Materials, their Properties and Breakdown Theory Learning objectives: • Introduce the concept of insulation materials, the forms of breakdowns • Introduce the concepts of insulation properties and provides the properties of selected insulation materials • Assess the breakdown mechanisms of solids insulation materials • Demonstrate the concept of partial discharge (PD) and how to numerically analyse the PD activities • Assess the breakdown mechanism of gases insulation materials • Appreciate Paschen’s Law and its engineering significance 1. Insulation and insulation materials An insulating material used in bulk to wrap electrical cables or other equipment is called insulation. In electrical insulation material, internal electric charges do not flow freely; very little electric current will flow through it under the influence of an electric field. This contrasts with other materials, semiconductors and conductors, which conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. Where a voltage difference exists between two conductors, it is necessary to apply insulation material or insulator to keep them apart, and to prevent electrical current to flow undesirably from one conductor to the other. In other words, insulators (insulation materials) are used in electrical equipment to support and separate electrical conductors without allowing current through themselves. The term insulator is also used more specifically to refer to insulating supports used to attach electric power distribution or transmission lines to utility poles and transmission towers. They support the weight of the suspended wires without allowing the current to flow through the tower to ground. The term “dielectric” is often used in place of insulation.
    [Show full text]
  • Electrical Breakdown Testing of Polymeric Materials Intended For
    Electrical Breakdown Testing of Materials Intended for use in PV Modules IEC Standard Development and Progress Bernt Sultan, Johan Andersson and Thomas Hjertberg 3rd Atlas/NIST Workshop on Photovoltaics Materials Durability Gaitherburg, Maryland December 8-9, 2015 Acknowledgement We are grateful to 3M and Isovoltaic who are member of the ongoing DC breakdown round robin testing within IEC TC 82 WG2 and already have contributed with data of which some is used in this presentation We also thank Toray, NREL and Isovoltaic for contributing with material for the ongoing tests Atlas/NIST Seminar December 8-9, 2015 Content 1.Breakdown Fundamentals 2.Test Method and Variables 3.Impact of Environmental Parameters Atlas/NIST Seminar December 8-9, 2015 Renewables - increasing need to transport energy over longer distances – DC transmission Atlas/NIST Seminar December 8-9, 2015 Why HVDC cables? Maximum transmission distance: HVAC power cables HVDC power cables 2000 km 1000 km Losses < 6% Losses < 3% <100 km Transmission capacity → 0%! Atlas/NIST Seminar December 8-9, 2015 What is an electrical breakdown? • If the voltage is steadily increased V over a sample it comes to a point where the dielectric insulating barrier properties are exceeded. A short- circuited breakdown channel is formed. • Common names: (Dielectric) breakdown strength, withstand voltage • Maximum electric field stress (kV/mm) a dielectric material can withstand without breakdown • Several mechanisms can cause electrical breakdown (BD) Atlas/NIST Seminar December 8-9, 2015 Breakdown
    [Show full text]
  • Studies of Dielectric Breakdown Under Pulsed Power Conditions Palmarin Castro Jr
    University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 6-24-2010 Studies of dielectric breakdown under pulsed power conditions Palmarin Castro Jr Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Recommended Citation Castro, Palmarin Jr. "Studies of dielectric breakdown under pulsed power conditions." (2010). https://digitalrepository.unm.edu/ ece_etds/45 This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. STUDIES OF DIELECTRIC BREAKDOWN UNDER PULSED POWER CONDITIONS BY PALMARIN A. CASTRO B.S., ELECTRICAL ENGINEERING NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY, 1997 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE ELECTRICAL ENGINEERING The University of New Mexico Albuquerque, New Mexico MAY 2010 ii ACKNOWLEDGEMENTS First of all, I would like to thank my advisor, Professor Edl Schamiloglu. Without his distinguished instruction and sound advice, I would not have made any progress on such a broad and difficult topic. I appreciate my group member, Professor Jerald Buchenauer, for his patience and help in my research. His rich experience in the field of pulsed power and high voltage helped me a lot during the construction of my test set up and testing. I also would like to appreciate Professor John Gaudet for his instruction and education of pulsed power and Weibull statistics in my research. Secondly, I express my thanks to Professor Mark Gilmore for allowing me to work in his lab and use his lab facilities.
    [Show full text]