Biology and Larval Taxonomy of Eucelatoria Bryani Sabrosky and E

Total Page:16

File Type:pdf, Size:1020Kb

Biology and Larval Taxonomy of Eucelatoria Bryani Sabrosky and E 31 October 1996 PROC. ENTOMOL. SOc. WASH. 98(4), 1996, pp. 625-629 BIOLOGY AND LARVAL TAXONOMY OF EUCELATORIA BRYANI SABROSKY AND E. RUBENTIS (COQUILLETT) (DIPTERA: TACHINIDAE) STUART R. REITZ AND PETER H. ADLER Department of Entomology, Clemson University, Clemson, SC 29634, U.S.A. Present address (SRR): Department of Entomology, University of California, Riverside, CA 92521, U.S.A. Abstract.-The tachinid flies Eucelatoria bryani Sabrosky and E. ruhentis (Coquillett) are similar in their reproductive behaviors and will mate with one another under laboratory conditions; however, sperm is not transferred. Both spe~ies parasitize noctuid caterpillars, with the host range of E. rubentis being about four times broader than that of E. bryani, which is essentially restricted to Heliothis virescens, H. subfiexa and Helicoverpa zea. Larvae of the two species can be separated from one another as second and third instars primarily by the shape of the dorsal cornu of the tentoropharyngeal sclerite. Both tachinids offer great promise as biological control agents of noctuid pests. Key Words: Diptera, Tachinidae, Eucelatoria, Heliothis, Helicoverpa, host-parasite re­ lations The Tachinidae comprise the largest fam­ Young and Price 1975, Sabrosky 1981, ily of parasitic Diptera and have great po­ Steward et at. 1990). Eucelatoria rubentis tential economic importance as biological occurs across the southeastern USA from control agents. However, of the approxi­ Delaware south through Florida, and west mately 8000 described species of Tachini­ to Arkansas, Texas and Tamaulipas, Mexico dae in the world, most are only known on (Sabrosky 1981). Eucelatoria bryani and E. the basis of adult morphology. Often, the rubentis can be differentiated on the basis characters used for distinguishing species or of adult characters (Sabrosky 1981). Here genera are subtle and of uncertain biologi­ we provide further diagnostic information cal importance (Wood 1987). This lack of by presenting the larval taxonomy and a information constrains the use of tachinids synopsis of biological characters for both as biological control agents, a problem that species. could be alleviated by information on other life stages and biological traits. MATERIALS AND METHODS Eucelatoria bryani Sabrosky and E. rub­ Our colony of E. bryani was derived entis (Coquillett) are two potentially impor­ from material originally collected from corn tant biological control agents (Knipling (Zea mays L.) in Arizona and later cultured 1992). These two tachinids are sympatric in USDA laboratories in College Station across the south-central USA and north­ and Weslaco, Texas. The colony of Euce­ eastern Mexico. The geographic range of E. latoria rubentis was deri ved from material bryani extends from western Arkansas and collected and maintained in culture at the eastern Oklahoma, south and west to Ari­ USDA laboratory in Tifton, Georgia. Both zona and Mexico (Jackson et al. 1969, colonies were reared at Clemson University 626 PROCEEDINGS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON in Helicoverpa zea (Boddie) and Heliotlzis microspines around the body, although the virescens (F), according to methods de­ terminal (12th) band, surrounding the pos­ scribed by Nettles et al. (1980) and Reitz terior spiracles, is weakly developed. and Adler (1991). Second and third instars of the two spe­ Larvae for taxonomic study were dis­ cies can be distinguished most readily by sected from singly-parasitized hosts (H. the development of the dorsal cornu of the zea), boiled in lactic acid, slide-mounted tentoropharyngeal sclerite, which is signif­ (cephalopharyngeal skeletons in lateral icantly greater in height and more massive view) in Euparal®, and examined with an anteriorly in E. rubentis than E. bryani (Ta­ Olympus BH-2 compound microscope fit­ ble I, Fig. I). Additionally, third instars of ted with an ocular micrometer. Voucher ma­ E. bryani have significantly more papillate terial is deposited in the Clemson Univer­ openings (range: 3-5 each) at the apex of sity Arthropod Collection. the anterior spiracles than do those of E. Methods for interspecific mating trials rubentis (2 or 3) (Table I). The posterior follow those of Reitz and Adler (1991). spiracles of the third instar (Fig. ID) are Briefly, 2-day old, virgin males were placed similar, although the scierotization between in a plexiglass arena (15 X lOX 10 cm). spiracular slits tends to be darker in E. rub­ Five minutes later, one newly eclosed entis. First instars cannot be separated re­ heterospecific female was introduced into liably. the arena and all interactions were recorded. Interspecific matings.-Under laboratory Additional heterospecific groups were held conditions, these two species are reproduc­ together for up to 5 days, after which fe­ tively isolated. For both species, the emer­ males were dissected in physiological saline gence pattern is protandrous, females are and examined for the presence of sperm in monogamous, and males are polygamous. the spermathecae and embryonated eggs in The courtship behaviors of E. rubentis are the common oviduct. similar to those described for E. bryani To determine the suitability of various (Reitz and Adler 1991). Males of both spe­ species of Noctuidae as hosts, feeding-stage cies mounted heterospecific females and fifth instars (2:20) of each noctuid were pre­ initiated courtship. These interspecific sented to individual 2-wk old females, or courtships continued in a manner similar to larvae were placed in cages containing 50­ that described for E. bryani by Reitz and 100 adult flies for 30-120 min. Larvae Adler (1991), with males of both species were then returned individually to 31-ml attempting intromission with heterospecific plastic cups containing a suitable meridic females. However, based on examination of diet and inspected daily for the pr~sence of spermathecae after mating attempts, sperm parasitoids. transfer did not occur and these females did not produce embryonated eggs (n = 8 for RESULTS AND DISCUSSION E. bryani male X E. rubentis female; n = Larval taxonomy.-The three larval in­ 6 for E. rubentis male X E. bryani female). stars of each species can be distinguished Host specificity.-We successfully reared on the basis of size and development of the E. bryani from H. zea, H. virescens, and cephalopharyngeal skeletons (Fig. I). The Heliotlzis subflexa (Guenee). Attempts to posterior spiracles are well-developed, with rear E. b,yani from other Noctuidae includ­ three slits each, only in the third instar (Fig. ing Anticarsia gemmatalis HUbner, Pseu­ I). Instar I has three blunt hooks surround­ doplusia inc/udens (Walker), Spodoptera ing the posterior spiracles, whereas instar 2 ornitlzogalli (Guenee), and Triclzoplusia ni has two pairs of hook plates around the pos­ (HUbner) were unsuccessful. Eucelatoria terior spiracles; hook plates are absent in hryani has been reared from field-collected third instars. All instars have 12 bands of A. gemmatalis, Spodoptera jrugiperda VOLUME 98, NUMBER 4 627 D Fig. 1. Larval features of Eucelatoria. A-C, E. bryani, cephalopharyngeal skeletons (lateral). A, First instar. B, Second instar. C, Third instar. D, E. bryani, posterior spiracle of third instar. E-G, E. rubentis, cephalophar­ yngeal skeletons (lateral). E, First instar. F, Second instar. G, Third instar. (Smith) and T. ni, but these host records are males to oviposit in hosts. Nettles (1980) rare compared with those from H. zea and found E. bryani females were attracted to H. virescens (Butler 1958, Sabrosky 1981). H. virescens but not to Spodoptera eridania In contrast, we successfully reared E. (Cramer) or Estigmene acrea (Drury). rubentis from H. zea, H. virescens, and H. Females of both species deposit progeny subflexa, A. gemmatalis, and P. includens. in proportion to host size (Reitz 1996a), but Based on field collections, host species for progeny of E. bryani tend to be smaller and E. rubentis include these species as well as develop more rapidly than those of E. rub­ 12 other species of Noctuidae and Pyralidae entis. Because of its more rapid develop­ (Arnaud 1978, Sabrosky 1981). The basis ment, E. bryani is a superior intrinsic com­ for this interspecific difference in host range petitor compared with E. rubentis when appears to be the failure of E. bryani fe- parasitizing H. zea (Reitz 1996b). 628 PROCEEDINGS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON Table I. Selected larval features, mean ::t: SE, n, of Eucelmoria bryani and E. ruben/is. Means with different letters are significantly different for each character within each instar (Hest; P < 0.005); other values are not significantly different (P > 0.05); n.O., not observed. Cephalopharyngeal Number of Anterior 2 Species Instar Skeleton. Lenglh' Dorsal Cornu, Height Spiracular Openings E. bryani I 0.16::t: 0.004 (lO)a 0.02 ::t: 0.001 (lO)a n.o. E. rubentis 1 0.18 ::t: 0.011 (8)a 0.02 ::t: 0.002 (7)a n.o. E. bryani 2 0.33 ::t: 0.008 (lO)a 0.07 ::t: 0.002 (lO)a n.o. E. ruben/is 2 0.34 ::t: 0.007 (6)a 0.09 ::t: 0.002 (6)b n.o. E. bryani 3 0.67 ::t: o.on (ll)a 0.16 ::t: 0.003 (ll)a 3.7 ::t: 0.17 (ll)a E. ruben/is 3 0.76 ::t: 0.020 (lO)b 0.19 ::t: 0.006 (lO)b 2.6::t: 0.17 (lO)b I Tip of mandible to posterior of dorsal cornu in mm. 2 Greatest height in mm. Potential for biological control.-Given No. 4177 of the South Carolina Agricultur­ that both species are facultatively gregari­ al Experiment Station, Clemson University. ous (Reitz 1996a) and have relatively high fecundities (Gross and Rogers 1995, Reitz LiTERATURE CITED and Adler 1995), both species could be im­ Arnaud, P. H., Jr. 1978. A host-parasite catalog of portant biological control agents. Knipling North American Tachinidae (Diptera). United (1992) considered E. bryani to be one of States Department of Agriculture Miscellaneous Publication 1319, 860 pp.
Recommended publications
  • Saltmarsh Caterpillar, Estigmene Acrea (Drury) (Insecta: Lepidoptera: Arctiidae)1 John L
    EENY218 Saltmarsh Caterpillar, Estigmene acrea (Drury) (Insecta: Lepidoptera: Arctiidae)1 John L. Capinera2 Distribution The saltmarsh caterpillar, Estigmene acrea (Drury), is a native insect found throughout the United States. Its distribution extends to Central America, and in Canada it has damaged crops in Ontario and Quebec. As a pest, it is most common in the southern United States, particularly the southwest. Description and Life Cycle A generation can be completed in 35 to 40 days under ideal conditions, but most reports from the field suggest about six weeks between generations. The number of generations per year is estimated at one in the northern states to three Figure 1. Adult saltmarsh caterpillars, Estigmene acrea (Drury). to four in the south. Overwintering reportedly occurs in Credits: John L. Capinera, UF/IFAS the mature larval stage, with pupation early in the spring. Saltmarsh caterpillars usually are infrequent early in the season, but may attain high numbers by autumn. Eggs The eggs are nearly spherical in shape, and measure about 0.6 mm in diameter. Initially they are yellow, but soon become grayish in color. Females commonly produce 400 to 1000 eggs in one or more clusters. It is not unusual to find a single egg cluster containing 1200 eggs. Eggs hatch in four to five days. Figure 2. Eggs of the saltmarsh caterpillar, Estigmene acrea (Drury). Credits: John L. Capinera, UF/IFAS 1. This document is EENY218, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date July 2001. Revised March 2013. Reviewed July 2019. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.
    [Show full text]
  • Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J
    Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(s): Diego J. Inclan and John O. Stireman, III Source: Annals of the Entomological Society of America, 104(2):287-296. Published By: Entomological Society of America https://doi.org/10.1603/AN10047 URL: http://www.bioone.org/doi/full/10.1603/AN10047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION BIOLOGY AND BIODIVERSITY Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States 1 DIEGO J. INCLAN AND JOHN O. STIREMAN, III Department of Biological Sciences, 3640 Colonel Glenn Highway, 235A, BH, Wright State University, Dayton, OH 45435 Ann. Entomol. Soc. Am. 104(2): 287Ð296 (2011); DOI: 10.1603/AN10047 ABSTRACT Although tachinids are one of the most diverse families of Diptera and represent the largest group of nonhymenopteran parasitoids, their local diversity and distribution patterns of most species in the family are poorly known.
    [Show full text]
  • Preference for High Concentrations of Plant Pyrrolizidine Alkaloids in the Specialist Arctiid Moth Utetheisa Ornatrix Depends on Previous Experience
    Arthropod-Plant Interactions (2013) 7:169–175 DOI 10.1007/s11829-012-9232-1 ORIGINAL PAPER Preference for high concentrations of plant pyrrolizidine alkaloids in the specialist arctiid moth Utetheisa ornatrix depends on previous experience Adam Hoina • Carlos Henrique Zanini Martins • Jose´ Roberto Trigo • Rodrigo Cogni Received: 12 October 2012 / Accepted: 31 October 2012 / Published online: 15 November 2012 Ó Springer Science+Business Media Dordrecht 2012 Abstract Secondary metabolites are one the most per- diet with the high PA concentration, while larvae that were vasive defensive mechanisms in plants. Many specialist pretreated with a high PA diet showed no discrimination herbivores have evolved adaptations to overcome these between future feeding of different PA concentration diets. defensive compounds. Some herbivores can even take We discuss our results using mechanistic and evolutionary advantage of these compounds by sequestering them for approaches. Finally, we discuss how these results have protection and/or mate attraction. One of the most studied important implications on the evolution of plant herbivore specialist insects that sequesters secondary metabolites is interactions and how specialist herbivores may decrease the arctiid moth Utetheisa ornatrix. This species sequesters the levels of chemical defenses on plant populations. pyrrolizidine alkaloids (PAs) from its host plant, the legume Crotalaria spp. The sequestered PAs are used as a Keywords Coevolution Á Crotalaria Á Chemical defense Á predator repellent and as a mating pheromone. We used Diet choice Á Mating choice Á Taste receptors this species to test larval preference for different concen- trations of PAs. We purified PAs from plant material and added them at different concentrations to an artificial diet.
    [Show full text]
  • Autographa Gamma
    1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ......................................................................................................
    [Show full text]
  • Cross-Crop Resistance of Spodoptera Frugiperda Selected on Bt Maize To
    www.nature.com/scientificreports OPEN Cross‑crop resistance of Spodoptera frugiperda selected on Bt maize to genetically‑modifed soybean expressing Cry1Ac and Cry1F proteins in Brazil Eduardo P. Machado1, Gerson L. dos S. Rodrigues Junior1, Fábio M. Führ1, Stefan L. Zago1, Luiz H. Marques2*, Antonio C. Santos2, Timothy Nowatzki3, Mark L. Dahmer3, Celso Omoto4 & Oderlei Bernardi1* Spodoptera frugiperda is one of the main pests of maize and cotton in Brazil and has increased its occurrence on soybean. Field‑evolved resistance of this species to Cry1 Bacillus thuringiensis (Bt) proteins expressed in maize has been characterized in Brazil, Argentina, Puerto Rico and southeastern U.S. Here, we conducted studies to evaluate the survival and development of S. frugiperda strains that are susceptible, selected for resistance to Bt‑maize single (Cry1F) or pyramided (Cry1F/Cry1A.105/ Cry2Ab2) events and F­ 1 hybrids of the selected and susceptible strains (heterozygotes) on DAS‑ 444Ø6‑6 × DAS‑81419‑2 soybean with tolerance to 2,4‑d, glyphosate and ammonium glufosinate herbicides (event DAS‑444Ø6‑6) and insect‑resistant due to expression of Cry1Ac and Cry1F Bt proteins (event DAS‑81419‑2). Susceptible insects of S. frugiperda did not survive on Cry1Ac/Cry1F‑ soybean. However, homozygous‑resistant and heterozygous insects were able to survive and emerge as fertile adults when fed on Cry1Ac/Cry1F‑soybean, suggesting that the resistance is partially recessive. Life history studies revealed that homozygous‑resistant insects had similar development, reproductive performance, net reproductive rate, intrinsic and fnite rates of population increase on Cry1Ac/Cry1F‑soybean and non‑Bt soybean. In contrast, heterozygotes had their fertility life table parameters signifcantly reduced on Cry1Ac/Cry1F‑soybean.
    [Show full text]
  • Phylogenetic Relationships of Tachinid Flies in Subfamily Exoristinae Tachinidae: Diptera) Based on 28S Rdna and Elongation Factor-1A
    Systematic Entomology *2002) 27,409±435 Phylogenetic relationships of tachinid flies in subfamily Exoristinae Tachinidae: Diptera) based on 28S rDNA and elongation factor-1a JOHN O. STIREMAN III Department of Ecology and Evolutionary Biology,University of Arizona,Tucson,U.S.A. Abstract. The phylogenetic relationships within the largest subfamily of Tachi- nidae,Exoristinae,were explored using nucleotide sequences of two genes *EF-1 a and 28S rDNA). A total of fifty-five and forty-three taxa were represented in the analyses for each gene,respectively,representing forty-three genera. Neighbour joining,parsimony and maximum likelihood inference methods were employed to reconstruct phylogenetic relationships in separate analyses of each gene,and parsimony was used to analyse the combined dataset. Although certain taxa were highly mobile,phylogenetic reconstructions generally supported recent clas- sification schemes based on reproductive habits and genitalia. Generally,the monophyly of Tachinidae and Exoristinae was supported. Tribes Winthemiini, Exoristini and Blondeliini were repeatedly constructed as monophyletic groups, with the former two clades often occupying a basal position among Exoristinae. Goniini and Eryciini generally clustered together as a derived clade within Exoristinae; however,they were never reconstructed as two distinct clades. These results suggest that the possession of unembryonated eggs is plesiomorphic within the subfamily and that there may have been multiple transitions between micro- type and macrotype egg forms. Introduction 1987; Williams et al.,1990; Eggleton & Belshaw,1993), and the wide variety of mechanisms by which they attack Tachinidae is generally regarded as a relatively recent, them *O'Hara,1985). These oviposition strategies include actively radiating clade of parasitic flies *Crosskey,1976).
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • No Slide Title
    Tachinidae: The “other” parasitoids Diego Inclán University of Padova Outline • Briefly (re-) introduce parasitoids & the parasitoid lifestyle • Quick survey of dipteran parasitoids • Introduce you to tachinid flies • major groups • oviposition strategies • host associations • host range… • Discuss role of tachinids in biological control Parasite vs. parasitoid Parasite Life cycle of a parasitoid Alien (1979) Life cycle of a parasitoid Parasite vs. parasitoid Parasite Parasitoid does not kill the host kill its host Insects life cycles Life cycle of a parasitoid Some facts about parasitoids • Parasitoids are diverse (15-25% of all insect species) • Hosts of parasitoids = virtually all terrestrial insects • Parasitoids are among the dominant natural enemies of phytophagous insects (e.g., crop pests) • Offer model systems for understanding community structure, coevolution & evolutionary diversification Distribution/frequency of parasitoids among insect orders Primary groups of parasitoids Diptera (flies) ca. 20% of parasitoids Hymenoptera (wasps) ca. 70% of parasitoids Described Family Primary hosts Diptera parasitoid sp Sciomyzidae 200? Gastropods: (snails/slugs) Nemestrinidae 300 Orth.: Acrididae Bombyliidae 5000 primarily Hym., Col., Dip. Pipunculidae 1000 Hom.:Auchenorrycha Conopidae 800 Hym:Aculeata Lep., Orth., Hom., Col., Sarcophagidae 1250? Gastropoda + others Lep., Hym., Col., Hem., Tachinidae > 8500 Dip., + many others Pyrgotidae 350 Col:Scarabaeidae Acroceridae 500 Arach.:Aranea Hym., Dip., Col., Lep., Phoridae 400?? Isop.,Diplopoda
    [Show full text]
  • Lepidoptera: Erebidae, Arctiinae) SHILAP Revista De Lepidopterología, Vol
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España González, E.; Beccacece, H. M. First record of Dysschema sacrifica (Hübner, [1831]) on Soybean ( Glycine max (L.) Merr) (Lepidoptera: Erebidae, Arctiinae) SHILAP Revista de Lepidopterología, vol. 45, núm. 179, septiembre, 2017, pp. 403-408 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45552790005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SHILAP Revta. lepid., 45 (179) septiembre 2017: 403-408 eISSN: 2340-4078 ISSN: 0300-5267 First record of Dysschema sacrifica (Hübner, [1831]) on Soybean ( Glycine max (L.) Merr) (Lepidoptera: Erebidae, Arctiinae) E. González & H. M. Beccacece Abstract The presence of Dysschema sacrifica (Hübner, [1831]) on soybean ( Glycine max (L.) Merr) is reported for the first time. Larvae of this species were found consuming soybean leaves in soybean fields in Córdoba province, Argentina, and were able to complete their life cycle. Characteristics of adults and larvae are provided for rapid identification in the field. Due to the widespread distribution of this species within the region where soybean is more intensively cultivated in South America, we conclude that D. sacrifica is a potential soybean pest. Further studies on infestation frequency, damage levels and control by natural enemies are needed. KEY WORDS: Lepidoptera, Erebidae, Arctiidae, Dysschema sacrifica , soybean, pest, Argentina. Primer registro de Dysschema sacrifica (Hübner, [1831]) en soja ( Glycine max (L.) Merr) (Lepidoptera: Erebidae, Arctiinae) Resumen Se reporta por primera vez la presencia de Dysschema sacrifica (Hübner, [1831]) en soja ( Glycine max (L.) Merr).
    [Show full text]
  • 000363920800046.Pdf
    UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP Versão do arquivo anexado / Version of attached file: Versão do Editor / Published Version Mais informações no site da editora / Further information on publisher's website: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141480 DOI: 10.1371/journal.pone.0141480 Direitos autorais / Publisher's copyright statement: ©2015 by Public Library of Science. All rights reserved. DIRETORIA DE TRATAMENTO DA INFORMAÇÃO Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br RESEARCH ARTICLE Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore Carlos H. Z. Martins1,2☯, Beatriz P. Cunha3‡, Vera N. Solferini3‡, José R. Trigo1☯* 1 Laboratório de Ecologia Química, Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Caixa Postal 6109, 13083–970, Campinas, São Paulo, Brazil, 2 Programa de Pós-Graduação em Biologia Funcional e Molecular, Instituto de Biologia, UNICAMP, Caixa Postal 6109, 13084–970, Campinas, São Paulo, Brazil, 3 Departamento de Genética e Evolução, Instituto de Biologia, Unicamp, Caixa Postal 6109, 13083–970, Campinas, São Paulo, Brazil ☯ These authors contributed equally to this work. ‡ These authors also contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Martins CHZ, Cunha BP, Solferini VN, Trigo Sequestration of chemical defenses from host plants is a strategy widely used by herbivo- JR (2015) Feeding on Host Plants with Different rous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides Effectiveness of a Specialist Herbivore.
    [Show full text]
  • ATTRACTIVENESS and INJURY of Phaseolus Vulgaris L. GENOTYPES by Anticarsia Gemmatalis HÜBNER (LEPIDOPTERA: EREBIDAE)
    ATTRACTIVENESS AND INJURY OF Phaseolus vulgaris L. GENOTYPES BY Anticarsia gemmatalis HÜBNER (LEPIDOPTERA: EREBIDAE) J. G. E. A. R. Aiala1, L. Nogueira1*, G. A. P. Bernardes1, C. C. Melville2, N. T. Oliveira3, T. L. P. O. Souza4 1 Univ. Estadual de Goiás, UEG, Laboratório de Entomologia Agrícola, Rod. GO 330, Km 241, s/n°, Ipameri, GO, 75780-000, Brazil; 2Univ. Est. Paulista, UNESP/FCAV, Via de Acesso Prof. Paulo Donato Castellane s/nº, Jaboticabal, SP, 14884-900, Brazil; 3Univ. Federal de Lavras, Lavras, MG, 37200-000, Brazil; 4Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO, 75375- 000, Brazil; *corresponding author: [email protected] INTRODUCTION The Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae) is the most defoliator pest, causing economic damage to many species of crop plants, including preferentially, soybeans – [Glycine max (L.) Merrill] and common bean - Phaseoulus vulgaris L. (Herzog; Todd, 1980; Panizzi et al., 2004). These crops are extensively cultivated in Brazil, thus forming very simplified and vulnerable agroecosystems, resulting in problems such as the excessive and indiscriminate use of pesticides, with adverse ecological consequences to the environment. In an attempt to diminish pesticide use in cropping systems, alternative control methods have been investigated, and host plant resistance is one of them (Boiça Júnior et al., 2014). Searching genotypes that express tolerance and/or resistance to insect pest represents an important step for plant breeding. Thus, the aim of this study we evaluated the attractiveness and the leaf injury caused by A. gemmatalis larvae in bean genotypes. MATERIAL AND METHODS Assays were conducted in the agricultural entomology Laboratory, UEG, Ipameri, GO, Brazil, under environmentally controlled conditions.
    [Show full text]
  • Bacillus Thuringiensis Cry1ac Protein and the Genetic Material
    BIOPESTICIDE REGISTRATION ACTION DOCUMENT Bacillus thuringiensis Cry1Ac Protein and the Genetic Material (Vector PV-GMIR9) Necessary for Its Production in MON 87701 (OECD Unique Identifier: MON 877Ø1-2) Soybean [PC Code 006532] U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division September 2010 Bacillus thuringiensis Cry1Ac in MON 87701 Soybean Biopesticide Registration Action Document TABLE of CONTENTS I. OVERVIEW ............................................................................................................................................................ 3 A. EXECUTIVE SUMMARY .................................................................................................................................... 3 B. USE PROFILE ........................................................................................................................................................ 4 C. REGULATORY HISTORY .................................................................................................................................. 5 II. SCIENCE ASSESSMENT ......................................................................................................................................... 6 A. PRODUCT CHARACTERIZATION B. HUMAN HEALTH ASSESSMENT D. ENVIRONMENTAL ASSESSMENT ................................................................................................................. 15 E. INSECT RESISTANCE MANAGEMENT (IRM) ............................................................................................
    [Show full text]